Citation: Mengxue Zhou, Ning Ren, Jianjun Zhang. Crystal Structure, Thermal Decomposition Mechanism and Properties of Lanthanide Supramolecular Complexes Based on 2, 4, 6-Trimethylbenzoic Acid and 5, 5'-Dimethyl-2, 2'-bipyridine[J]. Acta Physico-Chimica Sinica, ;2021, 37(10): 200407. doi: 10.3866/PKU.WHXB202004071 shu

Crystal Structure, Thermal Decomposition Mechanism and Properties of Lanthanide Supramolecular Complexes Based on 2, 4, 6-Trimethylbenzoic Acid and 5, 5'-Dimethyl-2, 2'-bipyridine

  • Corresponding author: Ning Ren, ningren9@163.com Jianjun Zhang, jjzhang6@126.com
  • Received Date: 27 April 2020
    Revised Date: 15 May 2020
    Accepted Date: 15 May 2020
    Available Online: 20 May 2020

    Fund Project: the National Natural Science Foundation of China 21803016

  • Six ternary lanthanide complexes formulated as [Ln(2, 4, 6-TMBA)3(5, 5'-DM-2, 2'-bipy)]2 (Ln = Pr 1, Nd 2, Sm 3, Eu 4, Gd 5, Dy 6; 2, 4, 6-TMBA = 2, 4, 6-trimethylbenzoate; 5, 5'-DM-2, 2'-bipy = 5, 5'-dimethyl-2, 2'-bipyridine) have been synthesized under solvothermal conditions and characterized by single-crystal X-ray diffraction, elemental analysis, thermogravimetric analysis, etc. The results of crystal diffraction analysis show that complexes 16 are binuclear units, crystallizing in the triclinic space group. Complexes 15 are isostructural, and each of the central metal ions has a coordination number of 9. The asymmetric unit of complexes 15 consists of one Ln3+, one 5, 5'-DM-2, 2'-bipy ligand, and three 2, 4, 6-TMBA- moieties with three coordination modes: chelation bidentate, bridging bidentate, and bridging tridentate. The coordination geometry of Ln3+ is distorted monocapped square antiprismatic. The binuclear units of complexes 15 form a one-dimensional (1D) supramolecular chain along the c-axis via ππ stacking interactions between the 2, 4, 6-trimethylbenzoic acid rings. The 1D chains are linked to form a supramolecular two-dimensional (2D) sheet in the bc plane via ππ stacking interactions between the pyridine rings. Although the molecular formulae of complex 6 and complexes 1–5 are similar, the coordination environment of the lanthanide ions is different in the two cases. The asymmetric unit of complex 6 contains a Dy3+ ion coordinated by a bidentate 5, 5'-DM-2, 2'-bipy and three 2, 4, 6-TMBA- ligands adopting bidentate and bridging bidentate coordination modes. The Dy3+ metal center has a coordination number of 8, with distorted square antiprismatic molecular geometry. The binuclear molecule of 6 is assembled into a six-nuclear unit by ππ weak staking interactions between two 5, 5'-DM-2, 2'-bipy ligands; then, adjacent six-nuclear units form a 1D chain via offset ππ interactions between 5, 5'-DM-2, 2'-bipy ligands on different adjacent units. The adjacent 1D chains are linked by C―H···O hydrogen bonding interactions to form a 2D supramolecular structure. The thermal stability and thermal decomposition mechanism of all the complexes are investigated by the combination of thermogravimetry and infrared spectroscopy (TG/FTIR) techniques under a simulated air atmosphere in the temperature range of 298–973 K at a heating rate of 10 K·min-1. Thermogravimetric studies show that this series of complexes have excellent thermal stability. During the thermal decomposition of the complex, the neutral ligand is lost first, followed by the acid ligand, and finally, the complex is decomposed into rare earth oxides. The three-dimensional infrared results are consistent with the thermogravimetric results. The photoluminescence spectra of complex 4 show the strong characteristic luminescence of Eu3+. The five typical emission peaks at 581, 591, 621, 651, and 701 nm correspond to the 5D07F0, 5D07F1, 5D07F2, 5D07F3, and 5D07F4 electronic transitions of Eu3+, respectively. The emission at 621 nm is due to the electric dipole transition 5D07F2, while that at 591 nm is assigned to the 5D07F1 the magnetic dipole transition. The lifetime (τ) of complex 4 is calculated as 1.15 ms based on the equation τ = (B1τ12 + B2τ22))/(B1τ1 + B2τ2), and the intrinsic quantum yield is calculated to be 45.1%. Further, the magnetic properties of complex 6 in the temperature range of 2–300 K are studied under an applied magnetic field of 1000 Oe.
  • 加载中
    1. [1]

      Janicki, R.; Mondry, A.; Starynowicz, P. Coordin. Chem. Rev. 2017, 340, 98. doi: 10.1016/j.ccr.2016.12.001  doi: 10.1016/j.ccr.2016.12.001

    2. [2]

      Allendorf, M. D.; Bauer, C. A.; Bhakta, R. K.; Houk, R. J. Chem. Soc. Rev. 2009, 38 (5), 1330. doi: 10.1039/b802352m  doi: 10.1039/b802352m

    3. [3]

      Ahmed, Z.; Iftikhar, K. Inorg. Chem. 2015, 54 (23), 11209. doi: 10.1021/acs.inorgchem.5b01630  doi: 10.1021/acs.inorgchem.5b01630

    4. [4]

      Bradberry, S. J.; Savyasachi, A. J.; Martinez-Calvo, M.; Gunnlaugsson, T. Coordin. Chem. Rev. 2014, 273-274, 226. doi: 10.1016/j.ccr.2014.03.023  doi: 10.1016/j.ccr.2014.03.023

    5. [5]

      Bunzli, J. C.; Piguet, C. Chem. Soc. Rev. 2005, 34 (12), 1048. doi: 10.1039/b406082m  doi: 10.1039/b406082m

    6. [6]

      Hiller, M.; Krieg, S.; Ishikawa, N.; Enders, M. Inorg. Chem. 2017, 56 (24), 15285. doi: 10.1021/acs.inorgchem.7b02704  doi: 10.1021/acs.inorgchem.7b02704

    7. [7]

      Lin, P. H.; Burchell, T. J.; Clerac, R.; Murugesu, M. Angew. Chem. Int. Ed. Engl. 2008, 47 (46), 8848. doi: 10.1002/anie.200802966  doi: 10.1002/anie.200802966

    8. [8]

      Reis, S. G.; Briganti, M.; Soriano, S.; Guedes, G. P.; Calancea, S.; Tiseanu, C. Inorg. Chem. 2016, 55 (22), 11676. doi: 10.1021/acs.inorgchem.6b01616  doi: 10.1021/acs.inorgchem.6b01616

    9. [9]

      Rinehart, J. D.; Long, J. R. Chem. Sci. 2011, 2 (11), 2078. doi: 10.1039/c1sc00513h  doi: 10.1039/c1sc00513h

    10. [10]

      Wang, G.; Song, T.; Fan, Y.; Xu, J.; Wang, M.; Wang, L. Inorg. Chem. Commun. 2010, 13 (1), 95. doi: 10.1016/j.inoche.2009.10.026  doi: 10.1016/j.inoche.2009.10.026

    11. [11]

      Niu, Y.; Xu, Q.; Wang, Y.; Li, Z.; Lu, J.; Ma, P. Dalton Trans. 2018, 47 (29), 9677. doi: 10.1039/c8dt01243a  doi: 10.1039/c8dt01243a

    12. [12]

      Wang, W.; Wang, X.; Zhou, S.; Xu, X.; Du, J.; Zhang, L. Inorg. Chem. 2018, 57 (16), 10390. doi: 10.1021/acs.inorgchem.8b01556  doi: 10.1021/acs.inorgchem.8b01556

    13. [13]

      Li, Y. J.; Yan, B. Inorg. Chem. 2009, 48 (17), 8276. doi: 10.1021/ic900971h  doi: 10.1021/ic900971h

    14. [14]

      Heffern, M. C.; Matosziuk, L. M.; Meade, T. J. Chem. Rev. 2014, 114 (8), 4496. doi: 10.1021/cr400477t  doi: 10.1021/cr400477t

    15. [15]

      Bünzli, J. C. G. J. Lumin. 2016, 170, 866. doi: 10.1016/j.jlumin.2015.07.033  doi: 10.1016/j.jlumin.2015.07.033

    16. [16]

      Zhao, Q. Q.; Zhu, M. M.; Ren, N.; Zhang, J. J. J. Mol. Struct. 2017, 1149, 171. doi: 10.1016/j.molstruc.2017.07.080  doi: 10.1016/j.molstruc.2017.07.080

    17. [17]

      Monteiro, J. H. S. K.; Sigoli, F. A.; de Bettencourt-Dias, A. Can. J. Chem. 2018, 96 (9), 859. doi: 10.1139/cjc-2017-0436  doi: 10.1139/cjc-2017-0436

    18. [18]

      Jin, C. W.; Wang, Y.; Ren, N.; Geng, L. N.; Zhang, J. J. J. Chem. Thermodyn. 2016, 103, 181. doi: 10.1016/j.jct.2016.08.011  doi: 10.1016/j.jct.2016.08.011

    19. [19]

      Wu, J.; Li, H.; Ren, N.; Zhang, J.; Wang, S. J. Rare Earths 2016, 34 (11), 1083. doi: 10.1016/s1002-0721(16)60138-2  doi: 10.1016/s1002-0721(16)60138-2

    20. [20]

      Xia, C. K.; Sun, W.; Min, Y. Y.; Yang, K.; Wu, Y. L. Polyhedron 2018, 141, 377. doi: 10.1016/j.poly.2017.11.011  doi: 10.1016/j.poly.2017.11.011

    21. [21]

      Utochnikova, V. V.; Grishko, A.; Vashchenko, A.; Goloveshkin, A.; Averin, A.; Kuzmina, N. Eur. J. Inorg. Chem. 2017, 2017 (48), 5635. doi: 10.1002/ejic.201700896  doi: 10.1002/ejic.201700896

    22. [22]

      He, S. M.; Sun, S. J.; Zheng, J. R.; Zhang, J. J. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2014, 123, 211. doi: 10.1016/j.saa.2013.12.023  doi: 10.1016/j.saa.2013.12.023

    23. [23]

      Carter, K. P.; Pope, S. J. A.; Cahill, C. L. CrystEngComm 2014, 16 (10), 1873. doi: 10.1039/c3ce42267d  doi: 10.1039/c3ce42267d

    24. [24]

      Zapała, L.; Kosińska, M.; Woźnicka, E.; Byczyński, Ł.; Zapała, W.; Kalembkiewicz, J. J. Anal. Appl. Pyrol. 2017, 123, 1. doi: 10.1016/j.jaap.2017.01.010  doi: 10.1016/j.jaap.2017.01.010

    25. [25]

      Gao, H. L.; Huang, S. X.; Zhou, X. P.; Liu, Z.; Cui, J. Z. Dalton Trans. 2018, 47 (10), 3503. doi: 10.1039/c8dt00063h  doi: 10.1039/c8dt00063h

    26. [26]

      Kariem, M.; Yawer, M.; Kumar, M.; Nawaz Sheikh, H.; Sood, P.; Kolekar, S. S. J. Solid. State. Chem. 2017, 255, 61. doi: 10.1016/j.jssc.2017.08.001  doi: 10.1016/j.jssc.2017.08.001

    27. [27]

      Shen, P. P.; Zhu, M. M.; Ren, N.; Zhang, J. J.; Wang, S. P. Appl. Organomet. Chem. 2017, 31 (12), e3886, doi: 10.1002/aoc.3886  doi: 10.1002/aoc.3886

    28. [28]

      Xie, H.; Lu, G. J. Rare Earths 2013, 31 (6), 639. doi: 10.1016/s1002-0721(12)60334-2  doi: 10.1016/s1002-0721(12)60334-2

    29. [29]

      Zhao, Y. F.; Chu, H. B.; Bai, F.; Gao, D. Q.; Zhang, H. X.; Zhou, Y. S. J. Organomet. Chem. 2012, 716, 167. doi: 10.1016/j.jorganchem.2012.06.031  doi: 10.1016/j.jorganchem.2012.06.031

    30. [30]

      Shen, C. Q.; Yan, T. L.; Wang, Y. T.; Ye, Z. J.; Xu, C. J.; Zhou, W. J. J. Lumin. 2017, 184, 48. doi: 10.1016/j.jlumin.2016.12.018  doi: 10.1016/j.jlumin.2016.12.018

    31. [31]

      Zhu, M. M.; Ren, N.; Zhang, J. J. Inorg. Chim. Acta 2018, 480, 140. doi: 10.1016/j.ica.2018.05.022  doi: 10.1016/j.ica.2018.05.022

    32. [32]

      Bünzli, J. C. G.; Chauvin, A. S.; Kim, H. K.; Deiters, E.; Eliseeva, S. V. Coordin. Chem. Rev. 2010, 254 (21-22), 2623. doi: 10.1016/j.ccr.2010.04.002  doi: 10.1016/j.ccr.2010.04.002

    33. [33]

      Wei, X. H.; Yang, L. Y.; Liao, S. Y.; Zhang, M.; Tian, J. L.; Du, P. Y. Dalton Trans. 2014, 43 (15), 5793. doi: 10.1039/c3dt53112k  doi: 10.1039/c3dt53112k

  • 加载中
    1. [1]

      Ke-Ai Zhou Lian Huang Xing-Ping Fu Li-Ling Zhang Yu-Ling Wang Qing-Yan Liu . Fluorinated metal-organic framework for methane purification from a ternary CH4/C2H6/C3H8 mixture. Chinese Journal of Structural Chemistry, 2023, 42(11): 100172-100172. doi: 10.1016/j.cjsc.2023.100172

    2. [2]

      Tiantian LiRuochen JinBin WuDongming LanYunjian MaYonghua Wang . A novel insight of enhancing the hydrogen peroxide tolerance of unspecific peroxygenase from Daldinia caldariorum based on structure. Chinese Chemical Letters, 2024, 35(4): 108701-. doi: 10.1016/j.cclet.2023.108701

    3. [3]

      Xinyi CaoYucheng JinHailong WangXu DingXiaolin LiuBaoqiu YuXiaoning ZhanJianzhuang Jiang . A tetraaldehyde-derived porous organic cage and covalent organic frameworks: Syntheses, structures, and iodine vapor capture. Chinese Chemical Letters, 2024, 35(9): 109201-. doi: 10.1016/j.cclet.2023.109201

    4. [4]

      Lu LIUHuijie WANGHaitong WANGYing LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489

    5. [5]

      Jiakun Bai Junhui Jia Aisen Li . An elastic organic crystal with piezochromic luminescent behavior. Chinese Journal of Structural Chemistry, 2024, 43(6): 100323-100323. doi: 10.1016/j.cjsc.2024.100323

    6. [6]

      Jinfeng Chu Lan Jin Yu-Fei Song . Exploration and Practice of Flipped Classroom in Inorganic Chemistry Experiment: a Case Study on the Preparation of Inorganic Crystalline Compounds. University Chemistry, 2024, 39(2): 248-254. doi: 10.3866/PKU.DXHX202308016

    7. [7]

      Yan Liu Yuexiang Zhu Luhua Lai . Introduction to Blended and Small-Class Teaching in Structural Chemistry: Exploring the Structure and Properties of Crystals. University Chemistry, 2024, 39(3): 1-4. doi: 10.3866/PKU.DXHX202306084

    8. [8]

      Junqiao Zhuo Xinchen Huang Qi Wang . Symbol Representation of the Packing-Filling Model of the Crystal Structure and Its Application. University Chemistry, 2024, 39(3): 70-77. doi: 10.3866/PKU.DXHX202311100

    9. [9]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    10. [10]

      Hai-Ling Wang Zhong-Hong Zhu Hua-Hong Zou . Structure and assembly mechanism of high-nuclear lanthanide-oxo clusters. Chinese Journal of Structural Chemistry, 2024, 43(9): 100372-100372. doi: 10.1016/j.cjsc.2024.100372

    11. [11]

      Wenyan Dan Weijie Li Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060

    12. [12]

      Hao Jiang Yuan-Yuan He Hai-Chao Liang Meng-Jia Shang Han-Han Lu Chun-Hua Liu Yin-Shan Meng Tao Liu Yuan-Yuan Zhu . Tuning lanthanide luminescence from bipyridine-bis(oxazoline/thiazoline) tetradentate ligands. Chinese Journal of Structural Chemistry, 2024, 43(9): 100354-100354. doi: 10.1016/j.cjsc.2024.100354

    13. [13]

      Juan GuoMingyuan FangQingsong LiuXiao RenYongqiang QiaoMingju ChaoErjun LiangQilong Gao . Zero thermal expansion in Cs2W3O10. Chinese Chemical Letters, 2024, 35(7): 108957-. doi: 10.1016/j.cclet.2023.108957

    14. [14]

      Pan LiuYanming SunAlberto J. Fernández-CarriónBowen ZhangHui FuLunhua HeXing MingCongling YinXiaojun Kuang . Bismuth-based halide double perovskite Cs2KBiCl6: Disorder and luminescence. Chinese Chemical Letters, 2024, 35(5): 108641-. doi: 10.1016/j.cclet.2023.108641

    15. [15]

      Chao LIUJiang WUZhaolei JIN . Synthesis, crystal structures, and antibacterial activities of two zinc(Ⅱ) complexes bearing 5-phenyl-1H-pyrazole group. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1986-1994. doi: 10.11862/CJIC.20240153

    16. [16]

      Weizhong LINGXiangyun CHENWenjing LIUYingkai HUANGYu LI . Syntheses, crystal structures, and catalytic properties of three zinc(Ⅱ), cobalt(Ⅱ) and nickel(Ⅱ) coordination polymers constructed from 5-(4-carboxyphenoxy)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1803-1810. doi: 10.11862/CJIC.20240068

    17. [17]

      Ruizhi Yang Xia Li Weiping Guo Zixuan Chen Hongwei Ming Zhong-Zhen Luo Zhigang Zou . New thermoelectric semiconductors Pb5Sb12+xBi6-xSe32 with ultralow thermal conductivity. Chinese Journal of Structural Chemistry, 2024, 43(3): 100268-100268. doi: 10.1016/j.cjsc.2024.100268

    18. [18]

      Huizhong WuRuiheng LiangGe SongZhongzheng HuXuyang ZhangMinghua Zhou . Enhanced interfacial charge transfer on Bi metal@defective Bi2Sn2O7 quantum dots towards improved full-spectrum photocatalysis: A combined experimental and theoretical investigation. Chinese Chemical Letters, 2024, 35(6): 109131-. doi: 10.1016/j.cclet.2023.109131

    19. [19]

      Zhenghua ZHAOQin ZHANGYufeng LIUZifa SHIJinzhong GU . Syntheses, crystal structures, catalytic and anti-wear properties of nickel(Ⅱ) and zinc(Ⅱ) coordination polymers based on 5-(2-carboxyphenyl)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 621-628. doi: 10.11862/CJIC.20230342

    20. [20]

      Xiaofei NIUKe WANGFengyan SONGShuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057

Metrics
  • PDF Downloads(8)
  • Abstract views(256)
  • HTML views(21)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return