Citation: Liu Ya, Zheng Lei, Gu Wei, Shen Yanbin, Chen Liwei. Surface Passivation of Lithium Metal via In situ Polymerization[J]. Acta Physico-Chimica Sinica, ;2021, 37(1): 200405. doi: 10.3866/PKU.WHXB202004058 shu

Surface Passivation of Lithium Metal via In situ Polymerization

  • Corresponding author: Shen Yanbin, ybshen2017@sinano.ac.cn Chen Liwei, lwchen2008@sinano.ac.cn
  • Received Date: 21 April 2020
    Revised Date: 14 May 2020
    Accepted Date: 14 May 2020
    Available Online: 20 May 2020

    Fund Project: the National Natural Science Foundation of China 21733012the Ministry of Science and Technology of China 2016YFB0100102The project was supported by the National Natural Science Foundation of China (21625304, 21733012, and 21772190) and the Ministry of Science and Technology of China (2016YFB0100102)the National Natural Science Foundation of China 21772190the National Natural Science Foundation of China 21625304

  • Lithium (Li) metal is considered a promising anode material for high energy density secondary Li metal batteries because it has the highest specific energy (3860 mAh·g-1) and lowest redox potential (-3.04 V compared to standard hydrogen electrodes. However, the development of high-performance Li metal batteries is challenging. Firstly, Li dendrites tend to grow on the surface of Li metal foil, leading to a limited anodic coulombic efficiency (CE), poor cyclability, and even explosion hazards when an internal cell short circuit occurs. Moreover, Li metal suffers from serious surface stability problems and is easily corroded by electrolytes during cycling, further resulting in low CE, thus shortening the life cycle. We have developed a Li-carbon nanotube (Li-CNT) composite microsphere via a facile molten impregnation method. The Li-CNT composite's CNT framework can suppress volume changes during the charge/discharge process and help stabilize the solid electrolyte interphase (SEI), which is typically mechanically fragile. As a result, Li-CNT shows a high specific capacity (2000 mAh·g-1) and can significantly suppress dendrite formation by reducing the current density, resulting in enhanced safety and cycling stability. However, the large specific surface area of the Li-CNT microspheres also enables increased reaction with the air and the electrolyte. A passivation layer is critical for the practical application of Li-CNT during the electrochemical cycling and manufacturing process. LiF is an important component of SEI in the liquid electrolyte system, and a uniform and dense LiF-rich SEI film can enable stable cycling. Moreover, LiF has been widely used as the preferred coating material to protect Li metal anodes through different methods. In this study, we improved the Li-CNT composite stability by constructing a uniform LiF-rich protecting layer on the surface through in situ polymerization of 4-fluorostyrene. The F functional group of 4-fluorostyrene, which is a lithiophilic group, reacts with the Li-CNT to produce a uniform LiF-rich layer on the surface of the Li-CNT via a facile and scalable liquid-phase reaction. The resulting passivation layer effectively suppresses the Li-CNT corrosion by the electrolyte and air, leading to better environmental and electrochemical stability. Consequently, after exposure to dry-air with a dew point -40 ℃ for 24 h, the specific capacity of the surface passivated Li-CNT is still as high as 1129 mAh·g-1, corresponding to a capacity retention of 52.85%. When the surface passivated Li-CNT is paired with a LiFePO4 cathode (the capacity ratio of cathode and anode is 1 : 6), a prolonged lifespan of over 280 cycles at 0.5C was reached, corresponding to a CE of 97.7%. The in situ polymerization passivation is simple and easy to be scale up; thus, it is a promising method for developing Li metal anodes towards the practical Li metal batteries.
  • 加载中
    1. [1]

      Tarascon, J. M.; Armand, M. Nature 2001, 414 (6861), 359. doi: 10.1038/35104644  doi: 10.1038/35104644

    2. [2]

      Goodenough, J. B.; Park, K. S. J. Am. Chem. Soc.2013, 135 (4), 1167. doi: 10.1021/ja3091438  doi: 10.1021/ja3091438

    3. [3]

      Bruce, P. G.; Freunberger, S. A.; Hardwick, L. J.; Tarascon, J. M. Nat. Mater.2012, 11 (1), 19. doi: 10.1038/nmat3191  doi: 10.1038/nmat3191

    4. [4]

      Larcher, D.; Tarascon, J. M. Nat. Chem.2015, 7 (1), 19. doi: 10.1038/nchem.2085v  doi: 10.1038/nchem.2085v

    5. [5]

      Dunn, B.; Kamath, H.; Tarascon, J. M. Science 2011, 334 (6058), 928. doi: 10.1126/science.1212741  doi: 10.1126/science.1212741

    6. [6]

      Albertus, P. Nat. Energy 2018, 3, 16. doi: 10.1038/s41560-017-0047-2  doi: 10.1038/s41560-017-0047-2

    7. [7]

      Cao, Y.; Li, M.; Lu, J.; Amine, K. Nat. Nanotechnol.2019, 14 (3), 200. doi: 10.1038/s41565-019-0371-8  doi: 10.1038/s41565-019-0371-8

    8. [8]

      Shen, Y.; Zhang, Y.; Han, S.; Wang, J.; Peng, Z.; Chen, L. Joule 2018, 2 (9), 1674. doi: 10.1016/j.joule.2018.06.021  doi: 10.1016/j.joule.2018.06.021

    9. [9]

      Sawada, Y.; Dougherty, A.; Gollub, J. P. Phys. Rev. Lett.1986, 56 (12), 1260. doi: 10.1103/PhysRevLett.56.1260  doi: 10.1103/PhysRevLett.56.1260

    10. [10]

      Cheng, X. B.; Zhang, R.; Zhao, C. Z.; Zhang, Q. Chem. Rev.2017, 117 (15), 10403. doi: 10.1021/acs.chemrev.7b00115  doi: 10.1021/acs.chemrev.7b00115

    11. [11]

      Peled, E. J. Electrochem. Soc.1979, 126 (12), 2047. doi: 10.1149/1.2128859  doi: 10.1149/1.2128859

    12. [12]

      Tikekar, M. D.; Choudhury, S.; Tu, Z. Y.; Archer, L. A. Nat. Energy 2016, 1, 1. doi: 10.1038/nenergy.2016.114  doi: 10.1038/nenergy.2016.114

    13. [13]

      Chandrashekar, S.; Trease, N. M.; Chang, H. J.; Du, L. S.; Grey, C. P.; Jerschow, A. Nat. Mater.2012, 11 (4), 311. doi: 10.1038/nmat3246  doi: 10.1038/nmat3246

    14. [14]

      Brissot, C.; Rosso, M.; Chazalviel, J. N.; Lascaud, S. J. Power Sources 1999, 81, 925. doi: 10.1016/s0378-7753(98)00242-0  doi: 10.1016/s0378-7753(98)00242-0

    15. [15]

      Wandt, J.; Marino, C.; Gasteiger, H. A.; Jakes, P.; Eichel, R. A.; Granwehr, J. Energy Environ. Sci.2015, 8 (4), 1358. doi: 10.1039/c4ee02730b  doi: 10.1039/c4ee02730b

    16. [16]

      Lin, D. C.; Liu, Y. Y.; Cui, Y. Nat. Nanotechnol.2017, 12 (3), 194. doi: 10.1038/nnano.2017.16  doi: 10.1038/nnano.2017.16

    17. [17]

      Wang, Y. L.; Shen, Y. B.; Du, Z. L.; Zhang, X. F.; Wang, K.; Zhang, H. Y.; Kang, T.; Guo, F.; Liu, C. H.; Wu, X. D.; Wei, L.; Chen, L. W. J. Mater. Chem. A 2017, 5 (45), 23434. doi: 10.1039/c7ta08531a  doi: 10.1039/c7ta08531a

    18. [18]

      Guo, F.; Wang, Y.; Kang, T.; Liu, C.; Shen, Y.; Lu, W.; Wu, X.; Chen, L. Energy Storage Mater.2018, 15, 116. doi: 10.1016/j.ensm.2018.03.018  doi: 10.1016/j.ensm.2018.03.018

    19. [19]

      Zhang, X. Q.; Cheng, X. B.; Chen, X.; Yan, C.; Zhang, Q. Adv. Funct. Mater. 2017, 27 (10), 1605989. doi: 10.1002/adfm.201605989  doi: 10.1002/adfm.201605989

    20. [20]

      Markevich, E.; Salitra, G.; Aurbach, D. ACS Energy Lett. 2017, 2 (6), 1337. doi: 10.1021/acsenergylett.7b00163  doi: 10.1021/acsenergylett.7b00163

    21. [21]

      Li, W. Y.; Yao, H. B.; Yan, K.; Zheng, G. Y.; Liang, Z.; Chiang, Y. M.; Cui, Y. Nat. Commun. 2015, 6, 7436. doi: 10.1038/ncomms8436  doi: 10.1038/ncomms8436

    22. [22]

      Liang, X.; Wen, Z. Y.; Liu, Y.; Wu, M. F.; Jin, J.; Zhang, H.; Wu, X. W. J. Power Sources 2011, 196 (22), 9839. doi: 10.1016/j.jpowsour.2011.08.027  doi: 10.1016/j.jpowsour.2011.08.027

    23. [23]

      Xiong, S. Z.; Xie, K.; Diao, Y.; Hong, X. B. Electrochim. Acta 2012, 83, 78. doi: 10.1016/j.electacta.2012.07.118  doi: 10.1016/j.electacta.2012.07.118

    24. [24]

      Ding, F.; Xu, W.; Graff, G. L.; Zhang, J.; Sushko, M. L.; Chen, X. L.; Shao, Y. Y.; Engelhard, M. H.; Nie, Z. M.; Xiao, J.; et al. J. Am. Chem. Soc.2013, 135 (11), 4450. doi: 10.1021/ja312241y  doi: 10.1021/ja312241y

    25. [25]

      Shiraishi, S.; Kanamura, K.; Takehara, Z. I. J. Appl. Electrochem. 1999, 29 (7), 869. doi: 10.1023/A:1003565229172  doi: 10.1023/A:1003565229172

    26. [26]

      Zhao, J.; Liao, L.; Shi, F. F.; Lei, T.; Chen, G. X.; Pei, A.; Sun, J.; Yan, K.; Zhou, G. M.; Xie, J.; et al. J. Am. Chem. Soc. 2017, 139 (33), 11550. doi: 10.1021/jacs.7b05251  doi: 10.1021/jacs.7b05251

    27. [27]

      Lin, D. C.; Liu, Y. Y.; Chen, W.; Zhou, G. M.; Liu, K.; Dunn, B.; Cui, Y. Nano Lett. 2017, 17 (6), 3731. doi: 10.1021/acs.nanolett.7b01020  doi: 10.1021/acs.nanolett.7b01020

    28. [28]

      Chen, L.; Chen, K. S.; Chen, X. J.; Ramirez, G.; Huang, Z. N.; Geise, N. R.; Steinruck, H. G.; Fisher, B. L.; Shahbazian-Yassar, R.; Toney, M. F.; et al. ACS Appl. Mater. Interfaces 2018, 10 (32), 26972. doi: 10.1021/acsami.8b04573  doi: 10.1021/acsami.8b04573

    29. [29]

      Zhang, Y. J.; Wang, W.; Tang, H.; Bai, W. Q.; Ge, X.; Wang, X. L.; Gu, C. D.; Tu, J. P. J. Power Sources 2015, 277, 304. doi: 10.1016/j.jpowsour.2014.12.023  doi: 10.1016/j.jpowsour.2014.12.023

    30. [30]

      Li, Y.; Sun, Y.; Pei, A.; Chen, K.; Vailionis, A.; Li, Y.; Zheng, G.; Sun, J.; Cui, Y. ACS Central Sci. 2018, 4 (1), 97. doi: 10.1021/acscentsci.7b00480  doi: 10.1021/acscentsci.7b00480

    31. [31]

      Park, K.; Goodenough, J. B. Adv. Energy Mater. 2017, 7 (19), 1700732. doi: 10.1002/aenm.201700732  doi: 10.1002/aenm.201700732

    32. [32]

      Jing, H. K.; Kong, L. L.; Liu, S.; Li, G. R.; Gao, X. P. J. Mater. Chem. A 2015, 3 (23), 12213. doi: 10.1039/c5ta01490e  doi: 10.1039/c5ta01490e

    33. [33]

      Kazyak, E.; Wood, K. N.; Dasgupta, N. P. Chem. Mat. 2015, 27 (18), 6457. doi: 10.1021/acs.chemmater.5b02789  doi: 10.1021/acs.chemmater.5b02789

    34. [34]

      Mannsfeld, S. C. B.; Tee, B. C. K.; Stoltenberg, R. M.; Chen, C.; Barman, S.; Muir, B. V. O.; Sokolov, A. N.; Reese, C.; Bao, Z. N. Nat. Mater. 2010, 9 (10), 859. doi: 10.1038/nmat2834  doi: 10.1038/nmat2834

    35. [35]

      Zhu, B.; Jin, Y.; Hu, X. Z.; Zheng, Q. H.; Zhang, S.; Wang, Q. J.; Zhu, J. Adv. Mater. 2017, 29 (2), 1603755. doi: 10.1002/adma.201603755  doi: 10.1002/adma.201603755

    36. [36]

      Lee, H.; Lee, D. J.; Kim, Y. J.; Park, J. K.; Kim, H. T. J. Power Sources 2015, 284, 103. doi: 10.1016/j.jpowsour.2015.03.004  doi: 10.1016/j.jpowsour.2015.03.004

    37. [37]

      Kang, T.; Wang, Y.; Guo, F.; Liu, C.; Zhao, J.; Yang, J.; Lin, H.; Qiu, Y.; Shen, Y.; Lu, W.; Chen, L. ACS Central Sci. 2019, 5 (3), 468. doi: 10.1021/acscentsci.8b00845  doi: 10.1021/acscentsci.8b00845

    38. [38]

      Zheng, L.; Guo, F.; Kang, T.; Yang, J.; Liu, Y.; Gu, W.; Zhao, Y. F.; Lin, H. Z.; Shen, Y. B.; Lu, W.; Chen, L. W. Nano Res.2019, 8. doi: 10.1007/s12274-019-2565-7  doi: 10.1007/s12274-019-2565-7

    39. [39]

      Peled, E.; Tow, D. B.; Merson, A.; Gladkich, A.; Burstein, L.; Golodnitsky, D. J. Power Sources 2001, 97(8), 52. doi: 10.1016/s0378-7753(01)00505-5  doi: 10.1016/s0378-7753(01)00505-5

    40. [40]

      Dedryvere, R.; Gireaud, L.; Grugeon, S.; Laruelle, S.; Tarascon, J. M.; Gonbeau, D. J. Phys. Chem. B 2005, 109 (33), 15868. doi: 10.1021/jp051626k  doi: 10.1021/jp051626k

    41. [41]

      Zhou, J. M.; Li, H. Y.; Lin, G. D.; Zhang, H. B. Acta Phys. -Chim. Sin. 2010, 26 (11), 3080.  doi: 10.3866/PKU.WHXB20101108

    42. [42]

      Beamson, G.; Briggs, D. High Resolution XPS of Organic Polymers The Scienta ESCA300 Database; Wiley: Chichester 1992; pp. 72.

    43. [43]

      Ma, Q.; Zeng, X. X.; Yue, J.; Yin, Y. X.; Zuo, T. T.; Liang, J. Y.; Deng, Q.; Wu, X. W.; Guo, Y. G. Adv. Energy Mater. 2019, 9, 1803854. doi: 10.1002/aenm.201803854  doi: 10.1002/aenm.201803854

    44. [44]

      Zuo, T. T.; Shi, Y.; Wu, X. W.; Wang, P. F.; Wang, S. H.; Yin, Y. X.; Wang, W. P.; Ma, Q.; Zeng, X. X.; Ye, H.; et al. ACS Appl. Mater. Interfaces 2018, 10, 30065. doi: 10.1021/acsami.8b12986  doi: 10.1021/acsami.8b12986

    45. [45]

      Zhuang, G. R.; Chen, Y. F.; Ross, P. N. Langmuir 1999, 15 (4), 1470. doi: 10.1021/la980454y  doi: 10.1021/la980454y

    46. [46]

      Zhao, J.; Lu, Z.; Wang, H.; Liu, W.; Lee, H. W.; Yan, K.; Zhuo, D.; Lin, D.; Liu, N.; Cui, Y. J. Am. Chem. Soc. 2015, 137, 8372. doi: 10.1021/jacs.5b04526  doi: 10.1021/jacs.5b04526

  • 加载中
    1. [1]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    2. [2]

      南开大学师唯/华北电力大学(保定)刘景维:二维配位聚合物中有序的亲锂冠醚位点用于无枝晶锂沉积

      . CCS Chemistry, 2025, 7(0): -.

    3. [3]

      Mingyang Men Jinghua Wu Gaozhan Liu Jing Zhang Nini Zhang Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019

    4. [4]

      Xueyu Lin Ruiqi Wang Wujie Dong Fuqiang Huang . 高性能双金属氧化物负极的理性设计及储锂特性. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-. doi: 10.3866/PKU.WHXB202311005

    5. [5]

      Bowen Yang Rui Wang Benjian Xin Lili Liu Zhiqiang Niu . C-SnO2/MWCNTs Composite with Stable Conductive Network for Lithium-based Semi-Solid Flow Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100015-. doi: 10.3866/PKU.WHXB202310024

    6. [6]

      Jiandong Liu Zhijia Zhang Mikhail Kamenskii Filipp Volkov Svetlana Eliseeva Jianmin Ma . Research Progress on Cathode Electrolyte Interphase in High-Voltage Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100011-. doi: 10.3866/PKU.WHXB202308048

    7. [7]

      Jiahe LIUGan TANGKai CHENMingda ZHANG . Effect of low-temperature electrolyte additives on low-temperature performance of lithium cobaltate batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 719-728. doi: 10.11862/CJIC.20250023

    8. [8]

      Haihua Yang Minjie Zhou Binhong He Wenyuan Xu Bing Chen Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100

    9. [9]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    10. [10]

      Zhiyuan TONGZiyuan LIKe ZHANG . Three-dimensional porous collector based on Cu-Li6.4La3Zr1.4Ta0.6O12 composite layer for the construction of stable lithium metal anode. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 499-508. doi: 10.11862/CJIC.20240238

    11. [11]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    12. [12]

      Ziliang KANGJiamin ZHANGHong ANXiaohua LIUYang CHENJinping LILibo LI . Preparation and water adsorption properties of CaCl2@MOF-808 in-situ composite moulded particles. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2133-2140. doi: 10.11862/CJIC.20240282

    13. [13]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    14. [14]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    15. [15]

      Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023

    16. [16]

      Bao Jia Yunzhe Ke Shiyue Sun Dongxue Yu Ying Liu Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121

    17. [17]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    18. [18]

      Xin Han Zhihao Cheng Jinfeng Zhang Jie Liu Cheng Zhong Wenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 100033-. doi: 10.3866/PKU.WHXB202404023

    19. [19]

      Qin Li Huihui Zhang Huajun Gu Yuanyuan Cui Ruihua Gao Wei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 100031-. doi: 10.3866/PKU.WHXB202402016

    20. [20]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

Metrics
  • PDF Downloads(27)
  • Abstract views(1329)
  • HTML views(222)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return