Citation: Chengyu Ye, Xiaofei Yu, Wencui Li, Lei He, Guangping Hao, Anhui Lu. Engineering of Bifunctional Nickel Phosphide@Ni-N-C Catalysts for Selective Electroreduction of CO2-H2O to Syngas[J]. Acta Physico-Chimica Sinica, ;2022, 38(4): 200405. doi: 10.3866/PKU.WHXB202004054 shu

Engineering of Bifunctional Nickel Phosphide@Ni-N-C Catalysts for Selective Electroreduction of CO2-H2O to Syngas

  • Corresponding author: Guangping Hao, guangpinghao@dlut.edu.cn Anhui Lu, anhuilu@dlut.edu.cn
  • Received Date: 17 April 2020
    Revised Date: 3 June 2020
    Accepted Date: 5 June 2020
    Available Online: 11 June 2020

    Fund Project: the National Natural Science Foundation of China 21975037the Cheung Kong Scholars Programme of China T2015036the Fundamental Research Funds for the Central Universities, China DUT18RC(3)075the Liao Ning Revitalization Talents Program, China XLYC1807205

  • Electroreduction of CO2 is one of the most promising CO2 conversion pathways because of its moderate reaction conditions, controllable product composition, and environment-friendliness. However, most of the current CO2 electroreduction technologies have not reached the techno-economic threshold for a competitively profitable electrochemical process. Based on a simple two-electron transfer process, the electroreduction of CO2 to CO, which is further processed into syngas with the reduction of H2O to H2, is postulated to be the most promising pathway for a profitable electrochemical process. Such a process urgently requires nonprecious electrocatalysts that can precisely control the CO/H2 ratio. Herein, we present a tailored synthesis of bifunctional electrocatalysts with high activity, which can realize the preparation of syngas with controlled compositions via molecular engineering of a ternary nanocomposite. Specifically, a mixture of melamine, triphenylphosphine, and nickel acetate was milled and dissolved in ethanol; the ternary nanocomposite was obtained after rotary evaporation of the mixture. We prepared the catalysts by pyrolyzing the obtained composites at 850 ℃ for 2 h. The synthesis strategy was facile and easy to scale. The specific surface area and pore volume of the bifunctional electrocatalyst were both significantly enhanced upon increasing the concentration of the phosphorus source, triphenylphosphine, during the precursor preparation. The obtained bifunctional electrocatalysts had hierarchically porous structures, which had well-dispersed active sites and could promote mass transport. Raman spectra revealed higher degrees of disorder with higher P/Ni ratios in the precursor. X-ray photoelectron spectroscopy verified the presence of Ni-Px and Ni-Nx functionalities, which were the active sites for hydrogen evolution and CO2 reduction, respectively. Hence, the electrocatalytic performance of this series of bifunctional electrocatalysts can be tuned from CO-dominant to H2-dominant. The electrochemical performance was evaluated using a CO2-saturated 0.5 mol·L-1 KHCO3 aqueous solution at ambient temperature by linear sweep voltammetry and potentiostatic electrolysis. Through these experiments, we determined that the activity of the catalysts was influenced by the surface phosphorus/Ni-Nx site ratio. The highest CO faradaic efficiency (91%) was achieved at -0.8 V (vs a reversible hydrogen electrode, RHE) with Ni-N-C in the absence of Ni-P. The CO/H2 molar ratio in the syngas stream was tunable from 2 : 5 to 10 : 1 in the potential range from -0.7 to -1.1 V (vs RHE) with a total faradic efficiency of 100%. The syngas composition directly links to the molar ratio of the two integrated components, nickel phosphide and Ni-N-C. Additionally, the stability of the optimized bifunctional electrocatalyst at -0.7 V for 8 h was tested, in which the CO/H2 ratio was maintained between 1.2 and 1.3, indicating excellent stability. This study provides a new perspective for the engineering of bifunctional electrocatalysts for the conversion of abundant CO2 and water into syngas with tailorable CO/H2 ratios.
  • 加载中
    1. [1]

      Lindsey, R. Climate Change: Atmospheric Carbon Dioxide. https://www.climate.gov/news-features/understanding-climate/climate-change-atmospheric-carbon-dioxide.

    2. [2]

      Hao, G. P.; Li, W. C.; Qian, D.; Lu, A. H. Adv. Mater. 2010, 22, 853. doi: 10.1002/adma.200903765  doi: 10.1002/adma.200903765

    3. [3]

      Hao, G. P.; Jin, Z. Y.; Sun, Q.; Zhang, X. Q.; Zhang, J. T.; Lu, A. H. Energy Environ. Sci. 2013, 6, 3740. doi: 10.1039/C3EE41906A  doi: 10.1039/C3EE41906A

    4. [4]

      Jin, Z. Y.; Xu, Y. Y.; Sun, Q.; Lu, A. H. Small 2015, 11, 5151. doi: 10.1002/smll.201501692  doi: 10.1002/smll.201501692

    5. [5]

      Hao, G. P.; Li, W. C.; Qian, D.; Wang, G. H.; Zhang, W. P.; Zhang, T.; Wang, A. Q.; Schuth, F.; Bongard, H. J.; Lu, A. H. J. Am. Chem. Soc. 2011, 133, 11378. doi: 10.1021/ja203857g  doi: 10.1021/ja203857g

    6. [6]

      Singh, G.; Lakhi, K. S.; Ramadass, K.; Sathish, C. I.; Vinu, A. ACS Sustain. Chem. Eng. 2019, 7, 7412. doi: 10.1021/acssuschemeng.9b00921  doi: 10.1021/acssuschemeng.9b00921

    7. [7]

      Jouny, M.; Luc, W.; Jiao, F. Ind. Eng. Chem. Res. 2018, 57, 2165. doi: 10.1021/acs.iecr.7b03514  doi: 10.1021/acs.iecr.7b03514

    8. [8]

      Diaz, L. A.; Gao, N.; Adhikari, B.; Lister, T. E.; Dufek, E. J.; Wilson, A. D. Green Chem. 2018, 20, 620. doi: 10.1039/C7GC03069J  doi: 10.1039/C7GC03069J

    9. [9]

      Hernández, S.; Farkhondehfal, M. A.; Sastre, F.; Makkee, M.; Saracco, G.; Russo, N. Green Chem. 2017, 19, 2326. doi: 10.1039/C7GC00398F  doi: 10.1039/C7GC00398F

    10. [10]

      Song, X.; Zhang, H.; Yang, Y.; Zhang, B.; Zuo, M.; Cao, X.; Sun, J.; Lin, C.; Li, X.; Jiang, Z. Adv. Sci. 2018, 5, 1800177. doi: 10.1002/advs.201800177  doi: 10.1002/advs.201800177

    11. [11]

      Ross, M. B.; Li, Y.; Luna, P. D.; Kim, D.; Sargent, E. H.; Yang, P. Joule 2019, 3, 257. doi: 10.1016/j.joule.2018.09.013  doi: 10.1016/j.joule.2018.09.013

    12. [12]

      Yang, D.; Zhu, Q.; Sun, X.; Chen, C.; Guo, W.; Yang, G.; Han, B. Angew. Chem. Int. Ed. 2020, 6, 2354. doi: 10.1002/anie.201914831  doi: 10.1002/anie.201914831

    13. [13]

      He, R.; Zhang, A.; Ding, Y.; Kong, T.; Xiao, Q.; Li, H.; Liu, Y.; Zeng, J. Adv. Mater. 2018, 30, 1705872. doi: 10.1002/adma.201705872  doi: 10.1002/adma.201705872

    14. [14]

      Ross, M. B.; Dinh, C. T.; Li, Y.; Kim, D.; Luna, P. D.; Sargent, E. H.; Yang, P. J. Am. Chem. Soc. 2017, 139, 9359. doi: 10.1021/jacs.7b04892  doi: 10.1021/jacs.7b04892

    15. [15]

      Daiyan, R.; Chen, R.; Kumar, P. V.; Bedford, N. M.; Qu, J.; Cairney, J. M.; Lu, X.; Amal, R. ACS Appl. Mater. Interfaces 2020, 12, 9307. doi: 10.1021/acsami.9b21216  doi: 10.1021/acsami.9b21216

    16. [16]

      Lee, J. H.; Kattel, S.; Jiang, Z.; Xie, Z.; Yao, S.; Tackett, B. M.; Xu, W.; Marinkovic, N. S.; Chen, J. G. Nat. Commun. 2019, 10, 3724. doi: 10.1038/s41467-019-11352-0  doi: 10.1038/s41467-019-11352-0

    17. [17]

      Hjorth, I.; Nord, M.; Rønning, M.; Yang, J.; Chen, D. Catal. Today 2019, doi: 10.1016/j.cattod.2019.02.045  doi: 10.1016/j.cattod.2019.02.045

    18. [18]

      Chen, H.; Li, Z.; Zhang, Z.; Jie, K.; Li, J.; Li, H.; Mao, S.; Wang, D.; Lu, X.; Fu, J. Ind. Eng. Chem. Res. 2019, 58, 15425. doi: 10.1021/acs.iecr.9b02192  doi: 10.1021/acs.iecr.9b02192

    19. [19]

      Mota, M. F.; Nguyen, D. L. T.; Lee, J. E.; Piao, H.; Choy, J. H.; Hwang, Y. J.; Kim, D. H. ACS Catal. 2018, 8, 4364. doi: 10.1021/acscatal.8b00647  doi: 10.1021/acscatal.8b00647

    20. [20]

      Farkhondehfal, M. A.; Hernández, S.; Rattalino, M.; Makkee, M.; Lamberti, A.; Chiodoni, A.; Bejtka, K.; Sacco, A.; Pirri, F. C.; Russo, N. Int. J. Hydrogen Energy 2019, doi: 10.1016/j.ijhydene.2019.04.180  doi: 10.1016/j.ijhydene.2019.04.180

    21. [21]

      Li, H.; Xiao, N.; Wang, Y.; Li, C.; Ye, X.; Guo, Z.; Pan, X.; Liu, C.; Bai J.; Xiao, J. et al. J. Mater. Chem. A 2019, 7, 18852. doi: 10.1039/C9TA05904K  doi: 10.1039/C9TA05904K

    22. [22]

      Vasileff, A.; Zheng, Y.; Qiao, S. Z. Adv. Energy Mater. 2017, 7, 1700759. doi: 10.1002/aenm.201700759  doi: 10.1002/aenm.201700759

    23. [23]

      Zhang, W.; Zeng, J.; Liu, H.; Shi, Z.; Tang, Y.; Gao, Q. J. Catal. 2019, 372, 277. doi: 10.1016/j.jcat.2019.03.014  doi: 10.1016/j.jcat.2019.03.014

    24. [24]

      Ning, H.; Wang, W.; Mao, Q.; Zheng, S.; Yang, Z.; Zhao, Q.; Wu, M. Acta Phys. -Chim. Sin. 2018, 34, 938.  doi: 10.3866/PKU.WHXB201801263

    25. [25]

      Chen, Z.; Mou, K.; Yao, S.; Liu, L. ChemSusChem 2018, 11, 2944. doi: 10.1002/cssc.201800925  doi: 10.1002/cssc.201800925

    26. [26]

      Ning, M.; Li, J.; Kuang, B.; Wang, C.; Su, D.; Zhao, Y.; Jin, H.; Cao, M. Appl. Surf. Sci. 2018, 447, 244. doi: 10.1016/j.apsusc.2018.03.242  doi: 10.1016/j.apsusc.2018.03.242

    27. [27]

      Yang, F.; Song, P.; Liu, X.; Mei, B.; Xing, W.; Jiang, Z.; Gu, L.; Xu, W. Angew. Chem. Int. Ed. 2018, 57, 12303. doi: 10.1002/anie.201805871  doi: 10.1002/anie.201805871

    28. [28]

      Hu, X. M.; Hval, H. H.; Bjerglund, E. T.; Dalgaard, K. J.; Madsen, M. R.; Pohl, M. M.; Welter, E.; Lamagni, P.; Buhl, K. B.; Bremholm, M.; et al. ACS Catal. 2018, 8, 6255. doi: 10.1021/acscatal.8b01022  doi: 10.1021/acscatal.8b01022

    29. [29]

      Varela, A. S.; Ju, W.; Bagger, A.; Franco, P.; Rossmeisl, J.; Strasser, P. ACS Catal. 2019, 9, 7270. doi: 10.1021/acscatal.9b01405  doi: 10.1021/acscatal.9b01405

    30. [30]

      Wang, X.; Pan, Y.; Ning, H.; Wang, H.; Guo, D.; Wang, W.; Yang, Z.; Zhao, Q.; Zhang B.; Zheng, L.; et al. Appl. Catal. B: Environ. 2020, 266, 118630. doi: 10.1016/j.apcatb.2020.118630  doi: 10.1016/j.apcatb.2020.118630

    31. [31]

      Möller, T.; Ju, W.; Bagger, A.; Wang, X.; Luo, F.; Thanh, T. N.; Varela, A. S.; Rossmeisl, J.; Strasser, P. Energy Environ. Sci. 2019, 12, 640. doi: 10.1039/c8ee02662a  doi: 10.1039/c8ee02662a

    32. [32]

      Xie, A.; Zhang, J.; Tao, X.; Zhang, J.; Wei, B.; Peng, W.; Tao, Y.; Luo, S. Electrochim. Acta 2019, 324, 134814. doi: 10.1016/j.electacta.2019.134814  doi: 10.1016/j.electacta.2019.134814

    33. [33]

      Li, X.; Bi W.; Chen, M.; Sun, Y.; Ju, H.; Yan, W.; Zhu, J.; Wu, X.; Chu, W.; Wu, C.; et al. J. Am. Chem. Soc. 2017, 139, 14889. doi: 10.1021/jacs.7b09074  doi: 10.1021/jacs.7b09074

    34. [34]

      Yuan, C. Z.; Liang, K.; Xia, X. M.; Yang, Z. K.; Jiang, Y. F.; Zhao, T.; Lin, C.; Cheang, T. Y.; Zhong, S. L.; Xu, A. W. Catal. Sci. Technol. 2019, 9, 3669. doi: 10.1039/c9cy00363k  doi: 10.1039/c9cy00363k

    35. [35]

      Wang, X.; Zhao, Q.; Yang, B.; Li, Z.; Bo, Z.; Lam, K. H.; Adli, N. M.; Lei, L.; Wen, Z.; Wu, G.; et al. J. Mater. Chem. A 2019, 7, 25191. doi: 10.1039/c9ta09681g  doi: 10.1039/c9ta09681g

    36. [36]

      Koshy, D. M.; Chen, S.; Lee, D. U.; Stevens, M. B.; Abdellah, A. M.; Dull, S. M.; Chen, G.; Nordlund, D.; Gallo, A.; Hahn, C.; et al. Angew. Chem. Int. Ed. 2020, 59, 4043. doi: 10.1002/anie.201912857  doi: 10.1002/anie.201912857

    37. [37]

      Yang, H.; Lin, Q.; Zhang, C.; Yu, X.; Cheng, Z.; Li, G.; Hu, Q.; Ren, X.; Zhang, Q.; Liu, J.; et al. Nat. Commun. 2020, 11, 593. doi: 10.1038/s41467-020-14402-0  doi: 10.1038/s41467-020-14402-0

    38. [38]

      Daems, N.; Mot, B. D.; Choukroun, D.; Daele, K. V.; Li, C.; Hubin, A.; Bals, S.; Hereijgers, J.; Breugelmans, T. Sustain. Energy Fuels 2020, 4, 1296. doi: 10.1039/c9se00814d  doi: 10.1039/c9se00814d

    39. [39]

      Daiyan, R.; Lu, X.; Tan, X.; Zhu, X.; Chen, R.; Smith, S. C.; Amal, R. ACS Appl. Energy Mater. 2019, 2, 8002. doi: 10.1021/acsaem.9b01470  doi: 10.1021/acsaem.9b01470

    40. [40]

      Ju, W.; Bagger, A.; Hao, G. P.; Varela, A. S.; Sinev, I.; Bon, V.; Roldan Cuenya, B.; Kaskel, S.; Rossmeisl, J.; Strasser, P. Nat. Commun. 2017, 8, 944. doi: 10.1038/s41467-017-01035-z  doi: 10.1038/s41467-017-01035-z

    41. [41]

      Zhao, S.; Cheng, Y.; Veder, J. P.; Johannessen, B.; Saunders, M.; Zhang, L.; Liu, C.; Chisholm, M. F.; Marco, R. D.; Liu, J.; et al. ACS Appl. Energy Mater. 2018, 1, 5286. doi: 10.1021/acsaem.8b00903  doi: 10.1021/acsaem.8b00903

    42. [42]

      Lin, Z.; Shen, L.; Qu, X.; Zhang, J.; Jiang, Y.; Sun, S. Acta Phys. -Chim. Sin. 2019, 35, 523.  doi: 10.3866/PKU.WHXB201806191

    43. [43]

      Diao, J.; Qiu, Y.; Liu, S.; Wang, W.; Chen, K.; Li, H.; Yuan, W.; Qu, Y.; Guo, X. Adv. Mater. 2019, 32, 1905679. doi: 10.1002/adma.201905679  doi: 10.1002/adma.201905679

    44. [44]

      Song, Y. J.; Yuan, Z. Y. Electrochim. Acta 2017, 246, 536. doi: 10.1016/j.electacta.2017.06.086  doi: 10.1016/j.electacta.2017.06.086

    45. [45]

      Gong, Y.; Lin, J.; Wang, X.; Shi, G.; Lei, S.; Lin, Z.; Zou, X.; Ye, G.; Vajtai, R.; Yakobson, B. I.; et al. Nat. Mater. 2014, 13, 1135. doi: 10.1038/NMAT4091  doi: 10.1038/NMAT4091

    46. [46]

      Attanayake, N. H.; Abeyweera, S. C.; Thenuwara, A. C.; Anasori, B.; Gogotsi, Y.; Sun, Y.; Strongin, D. R. J. Mater. Chem. A 2018, 6, 16882. doi: 10.1039/c8ta05033c  doi: 10.1039/c8ta05033c

    47. [47]

      Faber, M. S.; Dziedzic, R.; Lukowski, M. A.; Kaiser, N. S.; Ding, Q.; Jin, S. J. Am. Chem. Soc. 2014, 136, 28, 10053. doi: 10.1021/ja504099w  doi: 10.1021/ja504099w

    48. [48]

      Yang, J. Acta Phys. -Chim. Sin. 2018, 34, 453.  doi: 10.3866/PKU.WHXB201710272

    49. [49]

      Zhou, Z.; Mahmood, N.; Zhang, Y.; Pan, L.; Wang, L.; Zang, X.; Zou, J. J. J. Energy Chem. 2017, 26, 1223. doi: 10.1016/j.jechem.2017.07.021  doi: 10.1016/j.jechem.2017.07.021

    50. [50]

      Chang, J. F.; Xiao, Y.; Luo, Z. Y.; Ge, J. J.; Liu, C. P.; Xing, W. Acta Phys. -Chim. Sin. 2016, 32, 1556.  doi: 10.3866/PKU.WHXB201604291

    51. [51]

      Zeng, L.; Sun, K.; Wang, X.; Liu, Y.; Pan, Y.; Liu, Z.; Cao, D.; Song, Y.; Liu, S.; Liu, C. Nano Energy 2018, 51, 26. doi: 10.1016/j.nanoen.2018.06.048  doi: 10.1016/j.nanoen.2018.06.048

    52. [52]

      Yu, L.; Zhang, J.; Dang, Y.; He, J.; Tobin, Z.; Kerns, P.; Dou, Y.; Jiang, Y.; He, Y.; Suib, S. L. ACS Catal. 2019, 9, 6919. doi: 10.1021/acscatal.9b00494  doi: 10.1021/acscatal.9b00494

    53. [53]

      Wang, Y.; Liu, L.; Zhang, X.; Yan, F.; Zhu, C.; Chen, Y. J. Mater. Chem. A 2019, 7, 22412. doi: 10.1039/c9ta07859b  doi: 10.1039/c9ta07859b

    54. [54]

      Shi, Y.; Zhang, B. Chem. Soc. Rev. 2016, 45, 1529. doi: 10.1039/c5cs00434a  doi: 10.1039/c5cs00434a

    55. [55]

      Yu, X. F.; Tian, D. X.; Li, W. C.; He, B.; Zhang, Y.; Chen, Z. Y.; Lu, A. H. Nano Res. 2019, 12, 1193. doi: 10.1007/s12274-019-2381-0  doi: 10.1007/s12274-019-2381-0

    56. [56]

      Wang, Z.; Ogata, H.; Morimoto, S.; Ortiz-Medina, J.; Fujishige, M.; Takeuchi, K.; Muramatsu, H.; Hayashi, T.; Terrones, M.; Hashimoto, Y.; et al. Carbon 2015, 94, 479. doi: 10.1016/j.carbon.2015.07.037  doi: 10.1016/j.carbon.2015.07.037

    57. [57]

      Atchudan, R.; Joo, J.; Pandurangan, A. Mater. Res. Bull. 2013, 48, 2205. doi: 10.1016/j.materresbull.2013.02.048  doi: 10.1016/j.materresbull.2013.02.048

    58. [58]

      Zhao, C.; Wang, Y.; Li, Z.; Chen, W.; Xu, Q.; He, D.; Xi, D.; Zhang, Q.; Yuan, T.; Qu, Y.; et al. Joule 2019, 3 (2), 584. doi: 10.1016/j.joule.2018.11.008  doi: 10.1016/j.joule.2018.11.008

    59. [59]

      Wang, F.; Liu, Y. M.; Zhang, C. Y. New J. Chem. 2019, 43, 4160. doi: 10.1039/c9nj00059c  doi: 10.1039/c9nj00059c

    60. [60]

      Zhang, Y.; Liu, Y.; Ma, M.; Ren, X.; Liu, Z.; Du, G.; Asiri, A. M.; Sun, X. Chem. Commun. 2017, 53, 11048. doi: 10.1039/c7cc06278h  doi: 10.1039/c7cc06278h

    61. [61]

      Zhang, W.; Zheng, J.; Gu, X.; Tang, B.; Li, J.; Wang, X. Nanoscale 2019, 11, 9353. doi: 10.1039/c8nr08039a  doi: 10.1039/c8nr08039a

    62. [62]

      Wan, H.; Li, L.; Chen, Y.; Gong, J.; Duan, M.; Liu, C.; Zhang, J.; Wang, H. Electrochim. Acta 2017, 229, 380. doi: 10.1016/j.electacta.2017.01.169  doi: 10.1016/j.electacta.2017.01.169

    63. [63]

      Yuan, C. Z.; Li, H. B.; Jiang, Y. F.; Liang, K.; Zhao, S. J.; Fang, X. X.; Ma, L. B.; Zhao, T.; Lin, C.; Xu, A. W. J. Mater. Chem. A 2019, 7, 6894. doi: 10.1039/c8ta11500a  doi: 10.1039/c8ta11500a

    64. [64]

      Edwards, J. P.; Xu, Y.; Gabardo, C. M.; Dinh, C. T.; Li, J.; Qi, Z.; Ozden, A.; Sargent, E. H.; Sinton, D. Appl. Energy 2020, 261, 114305. doi: 10.1016/j.apenergy.2019.114305  doi: 10.1016/j.apenergy.2019.114305

    65. [65]

      Chen, C.; Khosrowabadi, J. F. K.; Sheehan, S. W. Chem 2018, 4, 2571. doi: 10.1016/j.chempr.2018.08.019  doi: 10.1016/j.chempr.2018.08.019

    66. [66]

      He, Q.; Liu, D.; Lee, J. H.; Liu, Y.; Xie, Z.; Hwang, S.; Kattel, S.; Song, L.; Chen, J. G. Angew. Chem. Int. Ed. 2020, 59, 3033. doi: 10.1002/anie.201912719  doi: 10.1002/anie.201912719

  • 加载中
    1. [1]

      Qian-Qian TangLi-Fang FengZhi-Peng LiShi-Hao WuLong-Shuai ZhangQing SunMei-Feng WuJian-Ping Zou . Single-atom sites regulation by the second-shell doping for efficient electrochemical CO2 reduction. Chinese Chemical Letters, 2024, 35(9): 109454-. doi: 10.1016/j.cclet.2023.109454

    2. [2]

      Yajun HouChuanzheng ZhuQiang WangXiaomeng ZhaoKun LuoZongshuai GongZhihao Yuan . ~2.5 nm pores in carbon-based cathode promise better zinc-iodine batteries. Chinese Chemical Letters, 2024, 35(5): 108697-. doi: 10.1016/j.cclet.2023.108697

    3. [3]

      Jun-Ming CaoKai-Yang ZhangJia-Lin YangZhen-Yi GuXing-Long Wu . Differential bonding behaviors of sodium/potassium-ion storage in sawdust waste carbon derivatives. Chinese Chemical Letters, 2024, 35(4): 109304-. doi: 10.1016/j.cclet.2023.109304

    4. [4]

      Maomao Liu Guizeng Liang Ningce Zhang Tao Li Lipeng Diao Ping Lu Xiaoliang Zhao Daohao Li Dongjiang Yang . Electron-rich Ni2+ in Ni3S2 boosting electrocatalytic CO2 reduction to formate and syngas. Chinese Journal of Structural Chemistry, 2024, 43(8): 100359-100359. doi: 10.1016/j.cjsc.2024.100359

    5. [5]

      Ziruo Zhou Wenyu Guo Tingyu Yang Dandan Zheng Yuanxing Fang Xiahui Lin Yidong Hou Guigang Zhang Sibo Wang . Defect and nanostructure engineering of polymeric carbon nitride for visible-light-driven CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100245-100245. doi: 10.1016/j.cjsc.2024.100245

    6. [6]

      Yuhao Guo Na Li Tingjiang Yan . Tandem catalysis for photoreduction of CO2 into multi-carbon fuels on atomically thin dual-metal phosphochalcogenides. Chinese Journal of Structural Chemistry, 2024, 43(7): 100320-100320. doi: 10.1016/j.cjsc.2024.100320

    7. [7]

      Xiuzheng DengChanghai LiuXiaotong YanJingshan FanQian LiangZhongyu Li . Carbon dots anchored NiAl-LDH@In2O3 hierarchical nanotubes for promoting selective CO2 photoreduction into CH4. Chinese Chemical Letters, 2024, 35(6): 108942-. doi: 10.1016/j.cclet.2023.108942

    8. [8]

      Ziyi Zhu Yang Cao Jun Zhang . CO2-switched porous metal-organic framework magnets. Chinese Journal of Structural Chemistry, 2024, 43(2): 100241-100241. doi: 10.1016/j.cjsc.2024.100241

    9. [9]

      Uttam Pandurang Patil . Porous carbon catalysis in sustainable synthesis of functional heterocycles: An overview. Chinese Chemical Letters, 2024, 35(8): 109472-. doi: 10.1016/j.cclet.2023.109472

    10. [10]

      Zixuan GuoXiaoshuai HanChunmei ZhangShuijian HeKunming LiuJiapeng HuWeisen YangShaoju JianShaohua JiangGaigai Duan . Activation of biomass-derived porous carbon for supercapacitors: A review. Chinese Chemical Letters, 2024, 35(7): 109007-. doi: 10.1016/j.cclet.2023.109007

    11. [11]

      Wenda WANGJinku MAYuzhu WEIShuaishuai MA . Waste biomass-derived carbon modified porous graphite carbon nitride heterojunction for efficient photodegradation of oxytetracycline in seawater. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 809-822. doi: 10.11862/CJIC.20230353

    12. [12]

      Yuchen WangYaoyu LiuXiongfei HuangGuanjie HeKai Yan . Fe nanoclusters anchored in biomass waste-derived porous carbon nanosheets for high-performance supercapacitor. Chinese Chemical Letters, 2024, 35(8): 109301-. doi: 10.1016/j.cclet.2023.109301

    13. [13]

      Xiaxia XingXiaoyu ChenZhenxu LiXinhua ZhaoYingying TianXiaoyan LangDachi Yang . Polyethylene imine functionalized porous carbon framework for selective nitrogen dioxide sensing with smartphone communication. Chinese Chemical Letters, 2024, 35(9): 109230-. doi: 10.1016/j.cclet.2023.109230

    14. [14]

      Zeyu XUTongzhou LUHaibo SHAOJianming WANG . Preparation and electrochemical lithium storage performance of porous silicon microsphere composite with metal modification and carbon coating. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1995-2008. doi: 10.11862/CJIC.20240164

    15. [15]

      Peng Wang Daijie Deng Suqin Wu Li Xu . Cobalt-based deep eutectic solvent modified nitrogen-doped carbon catalyst for boosting oxygen reduction reaction in zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(1): 100199-100199. doi: 10.1016/j.cjsc.2023.100199

    16. [16]

      Muhammad Humayun Mohamed Bououdina Abbas Khan Sajjad Ali Chundong Wang . Designing single atom catalysts for exceptional electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100193-100193. doi: 10.1016/j.cjsc.2023.100193

    17. [17]

      Hong Dong Feng-Ming Zhang . Covalent organic frameworks for artificial photosynthetic diluted CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100307-100307. doi: 10.1016/j.cjsc.2024.100307

    18. [18]

      Ping Wang Tianbao Zhang Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328

    19. [19]

      Zixuan ZhuXianjin ShiYongfang RaoYu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954

    20. [20]

      Zhenghua ZHAOQin ZHANGYufeng LIUZifa SHIJinzhong GU . Syntheses, crystal structures, catalytic and anti-wear properties of nickel(Ⅱ) and zinc(Ⅱ) coordination polymers based on 5-(2-carboxyphenyl)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 621-628. doi: 10.11862/CJIC.20230342

Metrics
  • PDF Downloads(8)
  • Abstract views(335)
  • HTML views(33)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return