Citation: Na Zhao, Jing Peng, Jianping Wang, Maolin Zhai. Novel Carboxy-Functionalized PVP-CdS Nanopopcorns with Homojunctions for Enhanced Photocatalytic Hydrogen Evolution[J]. Acta Physico-Chimica Sinica, ;2022, 38(4): 200404. doi: 10.3866/PKU.WHXB202004046 shu

Novel Carboxy-Functionalized PVP-CdS Nanopopcorns with Homojunctions for Enhanced Photocatalytic Hydrogen Evolution

  • Corresponding author: Maolin Zhai, mlzhai@pku.edu.cn
  • Received Date: 15 April 2020
    Revised Date: 1 May 2020
    Accepted Date: 6 May 2020
    Available Online: 11 May 2020

    Fund Project: the Science Challenge Project, China TZ2018004the National Natural Science Foundation of China 11575009the National Natural Science Foundation of China 11405168

  • Photocatalytic hydrogen evolution is a scalable pathway to generate hydrogen fuels while mitigating environmental crisis. Strategies based on modification of the host photocatalyst surface are key to improve the adsorption/activation ability of the reaction molecules and the efficiency of charge transport, so that high-efficiency photocatalytic systems can be realized. Cadmium sulfide (CdS), a visible light-responsive semiconductor material, is widely used in photocatalysis because of its simple synthesis, low cost, abundant raw materials, and appropriate bandgap structure. Many researchers have focused on improving the photocatalytic efficiency of CdS because the rapid charge recombination in this material limits its applications. Among the various strategies proposed in this regard, surface modification is an effective and simple method used to improve the photocatalytic performance of materials. In this work, polyvinyl pyrrolidone (PVP)-capped CdS (denoted as P-CdS) nanopopcorns with hexagonal wurtzite (WZ)-cubic zinc blende (ZB) homojunctions were fabricated via one-step gamma-ray radiation-induced reduction under ambient conditions. Subsequent alkaline treatment under ambient conditions led to a dramatic improvement in the activity of the alkalized PVP-capped CdS (MP-CdS) photocatalyst. The structure and properties of the photocatalyst were determined by X-ray diffraction (XRD) analysis, field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared (FTIR) analysis, Brunauer-Emmett-Teller (BET) specific surface area measurements, and photoelectric tests. The photocatalytic performance was evaluated based on the photocatalytic H2 evolution under visible-light irradiation. The mechanism underlying the enhancement of the photocatalytic activity is also discussed. The results showed that after the alkaline treatment, the crystal structure of CdS with WZ-ZB homojunctions was preserved, but PVP on the surface of CdS hydrolyzed to form PVP hydrolysis product (MPVP) with carboxyl and amino groups. Owing to the increased alkaline solubility, a portion of MPVP dissolved into the solution and was removed from the surface of MP-CdS, exposing a greater number of active sites of the WZ-ZB phase junctions with a larger specific surface area. On the other hand, the carboxyl groups in MPVP coordinated with CdS could affect the bandgap and valence band position of CdS to facilitate the photocatalysis. Because of the synergistic effects of the exposure of WZ-ZB phase junctions and band structure engineering, the alkalized samples at a 1 mol·L-1 concentration of NaOH showed a H2 evolution rate of 477 μmol·g-1·h-1 under visible-light illumination, which was twice that obtained for the pristine P-CdS photocatalysts. This simple and low-cost post-synthesis strategy can be extended to the preparation of diverse functional photocatalysts. The present work is expected to contribute to the practical application of sulfide photocatalysts.
  • 加载中
    1. [1]

      Ning, X.; Lu, G. Nanoscale 2020, 12, 1213. doi: 10.1039/C9NR09183A  doi: 10.1039/C9NR09183A

    2. [2]

      Zhang, J.; Chen, X.; Bai, Y.; Li, C.; Gao, Y.; Li, R.; Li, C. J. Mater. Chem. A 2019, 7, 10264. doi: 10.1039/C8TA08199A  doi: 10.1039/C8TA08199A

    3. [3]

      Li, R.; Li, C. Adv. Catal. 2017, 60, 1. doi: 10.1016/bs.acat.2017.09.001  doi: 10.1016/bs.acat.2017.09.001

    4. [4]

      Cao, P. F.; Hu, Y.; Zhang, Y. W.; Peng, J.; Zhai, M. L. Acta Phys. -Chim. Sin. 2017, 33, 2542.  doi: 10.3866/pku.whxb201706151

    5. [5]

      Wang, Z.; Wang, L. Chin. J. Catal. 2018, 39, 369. doi: 10.1016/S1872-2067(17)62998-X  doi: 10.1016/S1872-2067(17)62998-X

    6. [6]

      Chen, J. Z.; Wu, X. J.; Yin, L. S.; Li, B.; Hong, X.; Fan, Z. X.; Chen, B.; Xue, C.; Zhang, H. Angew. Chem. -Int. Edit. 2015, 54, 1210. doi: 10.1002/anie.201410172  doi: 10.1002/anie.201410172

    7. [7]

      Jang, J. S.; Joshi, U. A.; Lee, J. S. J. Phys. Chem. C 2007, 111, 13280. doi: 10.1021/jp072683b  doi: 10.1021/jp072683b

    8. [8]

      Jing, D. W.; Guo, L. J. J. Phys. Chem. B 2006, 110, 11139. doi: 10.1021/jp060905k  doi: 10.1021/jp060905k

    9. [9]

      Yuan, Y. J.; Li, Z.; Wu, S.; Chen, D.; Yang, L. X.; Cao, D.; Tu, W. G.; Yu, Z. T.; Zou, Z. G. Chem. Eng. J. 2018, 350, 335. doi: 10.1016/j.cej.2018.05.172  doi: 10.1016/j.cej.2018.05.172

    10. [10]

      Li, L.; Wu, J.; Liu, B.; Liu, X.; Li, C.; Gong, Y.; Huang, Y.; Pan, L. Catal. Today 2018, 315, 110. doi: 10.1016/j.cattod.2018.03.072  doi: 10.1016/j.cattod.2018.03.072

    11. [11]

      Low, J.; Dai, B.; Tong, T.; Jiang, C.; Yu, J. Adv. Mater. 2019, 31, 1802981. doi: 10.1002/adma.201802981  doi: 10.1002/adma.201802981

    12. [12]

      Wang, P.; Yi, X.; Lu, Y.; Yu, H.; Yu, J. J. Colloid Interface Sci. 2018, 532, 272. doi: 10.1016/j.jcis.2018.07.139  doi: 10.1016/j.jcis.2018.07.139

    13. [13]

      Zhao, D.; Chen, C.; Yu, C.; Ma, W.; Zhao, J. J. Phys. Chem. C 2009, 113, 13160. doi: 10.1021/jp9002774  doi: 10.1021/jp9002774

    14. [14]

      Ai, Z. Z.; Zhao, G.; Zhong, Y. Y.; Shao, Y. L.; Huang, B. B.; Wu, Y. Z.; Hao, X. P. Appl. Catal. B-Environ. 2018, 221, 179. doi: 10.1016/j.apcatb.2017.09.002  doi: 10.1016/j.apcatb.2017.09.002

    15. [15]

      Li, K.; Han, M.; Chen, R.; Li, S. L.; Xie, S. L.; Mao, C.; Bu, X.; Cao, X. L.; Dong, L. Z.; Feng, P.; et al. Adv. Mater. 2016, 28, 8906. doi: 10.1002/adma.201601047  doi: 10.1002/adma.201601047

    16. [16]

      Zhao, N.; Peng, J.; Liu, G.; Zhang, Y.; Lei, W.; Yin, Z.; Li, J.; Zhai, M. J. Mater. Chem. A 2018, 6, 18458. doi: 10.1039/C8TA03414A  doi: 10.1039/C8TA03414A

    17. [17]

      Wang, J.; Cui, W.; Chen, R.; He, Y.; Yuan, C.; Sheng, J.; Li, J.; Zhang, Y.; Dong, F.; Sun, Y. Catal. Sci. Technol. 2020, 10, 529. doi: 10.1039/C9CY02048A  doi: 10.1039/C9CY02048A

    18. [18]

      Chen, S.; Qi, Y.; Li, C.; Domen, K.; Zhang, F. Joule 2018, 2, 2260. doi: 10.1016/j.joule.2018.07.030  doi: 10.1016/j.joule.2018.07.030

    19. [19]

      Liao, Y.; Cao, S. W.; Yuan, Y.; Gu, Q.; Zhang, Z.; Xue, C. Chem. -A Eur. J. 2014, 20, 10220. doi: 10.1002/chem.201403321  doi: 10.1002/chem.201403321

    20. [20]

      Zhong, W.; Wu, X.; Wang, P.; Fan, J.; Yu, H. ACS Sustain. Chem. Eng. 2020, 8, 543. doi: 10.1021/acssuschemeng.9b06046  doi: 10.1021/acssuschemeng.9b06046

    21. [21]

      Meng, X.; Ouyang, S.; Kako, T.; Li, P.; Yu, Q.; Wang, T.; Ye, J. Chem. Commun. 2014, 50, 11517. doi: 10.1039/C4CC04848B  doi: 10.1039/C4CC04848B

    22. [22]

      Zhang, H.; Yang, Z.; Shangguan, L.; Song, X.; Sun, J.; Lei, W. Nanotechnology 2020, 31, 145716. doi: 10.1088/1361-6528/ab6750  doi: 10.1088/1361-6528/ab6750

    23. [23]

      Zhao, F.; Feng, Y.; Wang, Y.; Zhang, X.; Liang, X.; Li, Z.; Zhang, F.; Wang, T.; Gong, J.; Feng, W. Nat. Commun. 2020, 11, 1443. doi: 10.1038/s41467-020-15262-4  doi: 10.1038/s41467-020-15262-4

    24. [24]

      Muruganandam, S.; Anbalagan, G.; Murugadoss, G. Optik 2017, 131, 826. doi: 10.1016/j.ijleo.2016.12.001  doi: 10.1016/j.ijleo.2016.12.001

    25. [25]

      Aisida, S. O.; Ahmad, I.; Ezema, F. I. Phys. B: Conden. Matter 2020, 579, 411907. doi: 10.1016/j.physb.2019.411907  doi: 10.1016/j.physb.2019.411907

    26. [26]

      Senthil, S.; Srinivasan, S.; Thangeeswari, T.; Ratchagar, V. J. Mater. Sci. -Mater. Electron. 2019, 30, 19841. doi: 10.1007/s10854-019-02351-4  doi: 10.1007/s10854-019-02351-4

    27. [27]

      Bibi, R.; Huang, H.; Kalulu, M.; Shen, Q.; Wei, L.; Oderinde, O.; Li, N.; Zhou, J. ACS Sustain. Chem. Eng. 2019, 7, 4868. doi: 10.1021/acssuschemeng.8b05352  doi: 10.1021/acssuschemeng.8b05352

    28. [28]

      Kour, G.; Gupta, M. Dalton Trans. 2017, 46, 7039. doi: 10.1039/C7DT00822H  doi: 10.1039/C7DT00822H

    29. [29]

      Huang, P.; Jiang, Q.; Yu, P.; Yang, L.; Mao, L. ACS Appl. Mater. Interfaces 2013, 5, 5239. doi: 10.1021/am401082n  doi: 10.1021/am401082n

    30. [30]

      Kumar, D. P.; Hong, S.; Reddy, D. A.; Kim, T. K. J. Mater. Chem. A 2016, 4, 18551. doi: 10.1039/C6TA08628D  doi: 10.1039/C6TA08628D

    31. [31]

      Xiong, J.; Liu, Y.; Wang, D.; Liang, S.; Wu, W.; Wu, L. J. Mater. Chem. A 2015, 3, 12631. doi: 10.1039/C5TA02438B  doi: 10.1039/C5TA02438B

    32. [32]

      Li, Y. H.; Zhang, F.; Chen, Y.; Li, J. Y.; Xu, Y. J. Green Chem. 2020, 22, 163. doi: 10.1039/C9GC03332G  doi: 10.1039/C9GC03332G

    33. [33]

      Abdelghany, A. M.; Abdelrazek, E. M.; Rashad, D. S. Spectrochim. Acta A 2014, 130, 302. doi: 10.1016/j.saa.2014.04.049  doi: 10.1016/j.saa.2014.04.049

    34. [34]

      Guo, Y.; Shi, W.; Zhu, Y.; Xu, Y.; Cui, F. Appl. Catal. B-Environ. 2020, 262, 118262. doi: 10.1016/j.apcatb.2019.118262  doi: 10.1016/j.apcatb.2019.118262

    35. [35]

      Waehayee, A.; Watthaisong, P.; Wannapaiboon, S.; Chanlek, N.; Nakajima, H.; Wittayakun, J.; Suthirakun, S.; Siritanon, T. Catal. Sci. Technol. 2020, 10, 978. doi: 10.1039/C9CY01782H  doi: 10.1039/C9CY01782H

    36. [36]

      Buxton, G. V.; Greenstock, C. L.; Helman, W. P.; Ross, A. B. J. Phys. Chem. Ref. Data 1988, 17, 513. doi: 10.1063/1.555805  doi: 10.1063/1.555805

    37. [37]

      Rossetti, R.; Nakahara, S.; Brus, L. E. J. Chem. Phys. 1983, 79, 1086. doi: 10.1063/1.445834  doi: 10.1063/1.445834

    38. [38]

      Zhang, L.; Cheng, Z. Q.; Wang, D. F.; Li, J. F. Mater. Lett. 2015, 158, 439. doi: 10.1016/j.matlet.2015.06.042  doi: 10.1016/j.matlet.2015.06.042

    39. [39]

      Chava, R. K.; Son, N.; Kim, Y. S.; Kang, M. Nanomaterials 2020, 10, 619. doi: 10.3390/nano10040619  doi: 10.3390/nano10040619

    40. [40]

      Wang, L.; Gao, Z.; Li, Y.; She, H.; Huang, J.; Yu, B.; Wang, Q. Appl. Surf. Sci. 2019, 492, 598. doi: 10.1016/j.apsusc.2019.06.222  doi: 10.1016/j.apsusc.2019.06.222

    41. [41]

      Jiang, Z.; Zhang, X.; Yang, G.; Yuan, Z.; Ji, X.; Kong, F.; Huang, B.; Dionysiou, D. D.; Chen, J. Chem. Eng. J. 2019, 373, 814. doi: 10.1016/j.cej.2019.05.112  doi: 10.1016/j.cej.2019.05.112

    42. [42]

      Sun, Q.; Wang, N.; Yu, J.; Yu, J. C. Adv. Mater. 2018, 30, 1804368. doi: 10.1002/adma.201804368  doi: 10.1002/adma.201804368

    43. [43]

      Wu, Y.; Wang, H.; Tu, W.; Wu, S.; Liu, Y.; Tan, Y. Z.; Luo, H.; Yuan, X.; Chew, J. W. Appl. Catal. B-Environ. 2018, 229, 181. doi: 10.1016/j.apcatb.2018.02.029  doi: 10.1016/j.apcatb.2018.02.029

    44. [44]

      Ruan, D.; Fujitsuka, M.; Majima, T. Appl. Catal. B-Environ. 2020, 264, 118541. doi: 10.1016/j.apcatb.2019.118541  doi: 10.1016/j.apcatb.2019.118541

    45. [45]

      Xing, P.; Chen, Z.; Chen, P.; Lin, H.; Zhao, L.; Wu, Y.; He, Y. J. Colloid Interface Sci. 2019, 552, 622. doi: 10.1016/j.jcis.2019.05.098  doi: 10.1016/j.jcis.2019.05.098

    46. [46]

      Qin, Y.; Li, H.; Lu, J.; Meng, F.; Ma, C.; Yan, Y.; Meng, M. Chem. Eng. J. 2020, 384, 123275. doi: 10.1016/j.cej.2019.123275  doi: 10.1016/j.cej.2019.123275

    47. [47]

      Moniruddin, M.; Oppong, E.; Stewart, D.; McCleese, C.; Roy, A.; Warzywoda, J.; Nuraje, N. Inorg. Chem. 2019, 58, 12325. doi: 10.1021/acs.inorgchem.9b01854  doi: 10.1021/acs.inorgchem.9b01854

  • 加载中
    1. [1]

      Kaihui Huang Boning Feng Xinghua Wen Lei Hao Difa Xu Guijie Liang Rongchen Shen Xin Li . Effective photocatalytic hydrogen evolution by Ti3C2-modified CdS synergized with N-doped C-coated Cu2O in S-scheme heterojunctions. Chinese Journal of Structural Chemistry, 2023, 42(12): 100204-100204. doi: 10.1016/j.cjsc.2023.100204

    2. [2]

      Fei Jin Bolin Yang Xuanpu Wang Teng Li Noritatsu Tsubaki Zhiliang Jin . Facilitating efficient photocatalytic hydrogen evolution via enhanced carrier migration at MOF-on-MOF S-scheme heterojunction interfaces through a graphdiyne (CnH2n-2) electron transport layer. Chinese Journal of Structural Chemistry, 2023, 42(12): 100198-100198. doi: 10.1016/j.cjsc.2023.100198

    3. [3]

      Zongyi HuangCheng GuoQuanxing ZhengHongliang LuPengfei MaZhengzhong FangPengfei SunXiaodong YiZhou Chen . Efficient photocatalytic biomass-alcohol conversion with simultaneous hydrogen evolution over ultrathin 2D NiS/Ni-CdS photocatalyst. Chinese Chemical Letters, 2024, 35(7): 109580-. doi: 10.1016/j.cclet.2024.109580

    4. [4]

      Haibin Yang Duowen Ma Yang Li Qinghe Zhao Feng Pan Shisheng Zheng Zirui Lou . Mo doped Ru-based cluster to promote alkaline hydrogen evolution with ultra-low Ru loading. Chinese Journal of Structural Chemistry, 2023, 42(11): 100031-100031. doi: 10.1016/j.cjsc.2023.100031

    5. [5]

      Minying WuXueliang FanWenbiao ZhangBin ChenTong YeQian ZhangYuanyuan FangYajun WangYi Tang . Highly dispersed Ru nanospecies on N-doped carbon/MXene composite for highly efficient alkaline hydrogen evolution. Chinese Chemical Letters, 2024, 35(4): 109258-. doi: 10.1016/j.cclet.2023.109258

    6. [6]

      Jing CaoDezheng ZhangBianqing RenPing SongWeilin Xu . Mn incorporated RuO2 nanocrystals as an efficient and stable bifunctional electrocatalyst for oxygen evolution reaction and hydrogen evolution reaction in acid and alkaline. Chinese Chemical Letters, 2024, 35(10): 109863-. doi: 10.1016/j.cclet.2024.109863

    7. [7]

      Kaihui Huang Dejun Chen Xin Zhang Rongchen Shen Peng Zhang Difa Xu Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020

    8. [8]

      Ping WangTing WangMing XuZe GaoHongyu LiBowen LiYuqi WangChaoqun QuMing Feng . Keplerate polyoxomolybdate nanoball mediated controllable preparation of metal-doped molybdenum disulfide for electrocatalytic hydrogen evolution in acidic and alkaline media. Chinese Chemical Letters, 2024, 35(7): 108930-. doi: 10.1016/j.cclet.2023.108930

    9. [9]

      Wengao ZengYuchen DongXiaoyuan YeZiying ZhangTuo ZhangXiangjiu GuanLiejin Guo . Crystalline carbon nitride with in-plane built-in electric field accelerates carrier separation for excellent photocatalytic hydrogen evolution. Chinese Chemical Letters, 2024, 35(4): 109252-. doi: 10.1016/j.cclet.2023.109252

    10. [10]

      Xiuzheng DengYi KeJiawen DingYingtang ZhouHui HuangQian LiangZhenhui Kang . Construction of ZnO@CDs@Co3O4 sandwich heterostructure with multi-interfacial electron-transfer toward enhanced photocatalytic CO2 reduction. Chinese Chemical Letters, 2024, 35(4): 109064-. doi: 10.1016/j.cclet.2023.109064

    11. [11]

      Xingyan LiuChaogang JiaGuangmei JiangChenghua ZhangMingzuo ChenXiaofei ZhaoXiaocheng ZhangMin FuSiqi LiJie WuYiming JiaYouzhou He . Single-atom Pd anchored in the porphyrin-center of ultrathin 2D-MOFs as the active center to enhance photocatalytic hydrogen-evolution and NO-removal. Chinese Chemical Letters, 2024, 35(9): 109455-. doi: 10.1016/j.cclet.2023.109455

    12. [12]

      Zhi WangLingpeng YanYelin HaoJingxia ZhengYongzhen YangXuguang Liu . Highly efficient and photothermally stable CDs@ZIF-8 for laser illumination. Chinese Chemical Letters, 2024, 35(10): 109430-. doi: 10.1016/j.cclet.2023.109430

    13. [13]

      Ziyang YinLingbin XieWeinan YinTing ZhiKang ChenJunan PanYingbo ZhangJingwen LiLonglu Wang . Advanced development of grain boundaries in TMDs from fundamentals to hydrogen evolution application. Chinese Chemical Letters, 2024, 35(5): 108628-. doi: 10.1016/j.cclet.2023.108628

    14. [14]

      Binyang QinMengqi WangShimei WuYining LiChilin LiuYufei ZhangHaosen Fan . Carbon dots confined nanosheets assembled NiCo2S4@CDs cross-stacked architecture for enhanced sodium ion storage. Chinese Chemical Letters, 2024, 35(7): 108921-. doi: 10.1016/j.cclet.2023.108921

    15. [15]

      Jie WuXiaoqing YuGuoxing LiSu Chen . Engineering particles towards 3D supraballs-based passive cooling via grafting CDs onto colloidal photonic crystals. Chinese Chemical Letters, 2024, 35(4): 109234-. doi: 10.1016/j.cclet.2023.109234

    16. [16]

      Asif Hassan Raza Shumail Farhan Zhixian Yu Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020

    17. [17]

      Mengjun Zhao Yuhao Guo Na Li Tingjiang Yan . Deciphering the structural evolution and real active ingredients of iron oxides in photocatalytic CO2 hydrogenation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100348-100348. doi: 10.1016/j.cjsc.2024.100348

    18. [18]

      Abiduweili Sikandaier Yukun Zhu Dongjiang Yang . In-situ decorated cobalt phosphide cocatalyst on Hittorf's phosphorus triggering efficient photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2024, 43(2): 100242-100242. doi: 10.1016/j.cjsc.2024.100242

    19. [19]

      Fabrice Nelly HabarugiraDucheng YaoWei MiaoChengcheng ChuZhong ChenShun Mao . Synergy of sodium doping and nitrogen defects in carbon nitride for promoted photocatalytic synthesis of hydrogen peroxide. Chinese Chemical Letters, 2024, 35(8): 109886-. doi: 10.1016/j.cclet.2024.109886

    20. [20]

      Deqi FanYicheng TangYemei LiaoYan MiYi LuXiaofei Yang . Two birds with one stone: Functionalized wood composites for efficient photocatalytic hydrogen production and solar water evaporation. Chinese Chemical Letters, 2024, 35(9): 109441-. doi: 10.1016/j.cclet.2023.109441

Metrics
  • PDF Downloads(18)
  • Abstract views(281)
  • HTML views(27)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return