Citation: Wu Jionghua, Li Yiming, Shi Jiangjian, Wu Huijue, Luo Yanhong, Li Dongmei, Meng Qingbo. UV Photodetectors Based on High Quality CsPbCl3 Film Prepared by a Two-Step Diffusion Method[J]. Acta Physico-Chimica Sinica, ;2021, 37(4): 200404. doi: 10.3866/PKU.WHXB202004041 shu

UV Photodetectors Based on High Quality CsPbCl3 Film Prepared by a Two-Step Diffusion Method

  • Corresponding author: Meng Qingbo, qbmeng@iphy.ac.cn
  • Received Date: 13 April 2020
    Revised Date: 2 May 2020
    Accepted Date: 7 May 2020
    Available Online: 13 May 2020

    Fund Project: the National Natural Science Foundation of China 51421002the International Partnership Program of Chinese Academy of Sciences 112111KYSB20170089the National Natural Science Foundation of China 51627803the National Natural Science Foundation of China 91733301the National Key R & D Program of China 2018YFB1500101the National Natural Science Foundation of China 51761145042the National Natural Science Foundation of China 11874402the National Natural Science Foundation of China 51872321The project was supported by the National Key R & D Program of China (2018YFB1500101), the National Natural Science Foundation of China (11874402, 51421002, 51627803, 91733301, 51761145042, 51872321) and the International Partnership Program of Chinese Academy of Sciences (112111KYSB20170089)

  • Visible-blind ultra-violet (UV) photodetectors have great application prospects in military and civilian fields. Hence, it is important to develop high-efficiency UV photodetectors. Perovskite materials have been widely applied in many fields, such as solar cells, light-emitting diodes, and photodetectors, owing to their excellent optical properties. The CsPbCl3 perovskite has a great potential in visible-blind UV photodetectors owing to its stable chemical properties and a suitable band gap. However, due to the extremely poor precursor solubility of CsPbCl3, it is difficult to find a suitable solvent to prepare CsPbCl3 films. In this study, we developed a two-step diffusion method to prepare CsPbCl3 films. PbCl2 and CsCl were dissolved in different solvents to overcome the solubility problem of CsPbCl3. First, the PbCl2 film was spin coated on a soda-lime glass. The CsCl solution was then continually dropwise spin-coated on the PbCl2 film to form the CsPbCl3 film. By controlling the morphology of PbCl2 through different annealing temperatures, the influence of different PbCl2 precursor films on microstructure of the CsPbCl3 film was investigated. The X-ray diffraction and scanning electron microscopy profiles of the PbCl2 precursor film and the CsPbCl3 film suggested that when the annealing temperature was too low, excess dimethyl sulfoxide (DMSO) remained in the PbCl2 precursor film, which hindered the transformation of CsPbCl3. However, when the annealing temperature was too high, voids appeared in the CsPbCl3 film due to excess DMSO volatilization, which caused pinholes in the CsPbCl3 film. Finally, a pinhole-free, smooth CsPbCl3 film with full grains was obtained when PbCl2 was annealed at 80 ℃. To the best of our knowledge, this is the first time a high-quality CsPbCl3 film with 1 μm grains was prepared using a two-step diffusion method. Photoelectrical characterizations, such as ultraviolet-visible absorption, steady-state photoluminescence (PL), and time-resolved PL characterizations, were studied to evaluate the quality of the film. The as-prepared CsPbCl3 film had strong UV absorption and PL intensity, and its longer PL lifetime indicated that the film had fewer defect states. Furthermore, a UV photodetector with a lateral structure based on the CsPbCl3 film was fabricated. The related electrical characterizations, such as current voltage curves, showed a good responsivity of 0.75 A·W-1 and an outstanding detectivity of 7.8 × 1012 Jones, which are better than those of contemporary commercial photodetectors. The findings of this study show that a two-step diffusion method can be used to prepare CsPbCl3 films with better features and that it has a great potential in the development of UV photodetectors in the future.
  • 加载中
    1. [1]

      Nasiri, N.; Bo, R.; Fu, L.; Tricoli, A. Nanoscale 2017, 9, 2059. doi: 10.1039/c6nr08425g  doi: 10.1039/c6nr08425g

    2. [2]

      Salvatore, G. A.; Muenzenrieder, N.; Kinkeldei, T.; Petti, L.; Zysset, C.; Strebel, I.; Buethe, L.; Troester, G. Nat. Commun. 2014, 5, 2982. doi: 10.1038/ncomms3982  doi: 10.1038/ncomms3982

    3. [3]

      Sun, J.; Zhang, B.; Katz, H. E. Adv. Funct. Mater. 2011, 21, 29. doi: 10.1002/adfm.201001530  doi: 10.1002/adfm.201001530

    4. [4]

      Yang, J. W. A study of Ultraviolet Photodetector Based on Epitaxial Graphene on SiC. Ph. D. Dissertation. Institute of Physics Chinese Academy of Sciences, Beijing, 2018.

    5. [5]

      Gedamu, D.; Paulowicz, I.; Kaps, S.; Lupan, O.; Wille, S.; Haidarschin, G.; Mishra, Y. K. Adelung, R. Adv. Mater. 2014, 26, 1541. doi: 10.1002/adma.201304363  doi: 10.1002/adma.201304363

    6. [6]

      Lu, J.; Xu, C.; Dai, J.; Li, J.; Wang, Y.; Lin, Y.; Li, P. Nanoscale 2015, 7, 3396. doi: 10.1039/c4nr07114j  doi: 10.1039/c4nr07114j

    7. [7]

      Order, T. N.; Li, J.; Lin, J. Y.; Jiang, H. X. Appl. Phys. Lett. 2000, 77, 791. doi: 10.1063/1.1306540  doi: 10.1063/1.1306540

    8. [8]

      Xu, L. G.; Xie, X. S.; Lv, Z. Z.; Feng, S. W. Semiconductor Optoelectronics 2004, 25, 411.  doi: 10.16818/j.issn1001-5868.2004.06.001

    9. [9]

      Zhang, X.; Wang, Q.; Jin, Z.; Zhang, J.; Liu, S. F. Nanoscale 2017, 9, 6278. doi: 10.1039/c7nr02010d  doi: 10.1039/c7nr02010d

    10. [10]

      Lin, H. W.; Ku, S. Y.; Su, H. C.; Huang, C. W.; Lin, Y. T.; Wong, K. T.; Wu, C. C. Adv. Mater. 2005, 17, 2489. doi: 10.1002/adma.200401622  doi: 10.1002/adma.200401622

    11. [11]

      Ahmadi, M.; Wu, T.; Hu, B. Adv. Mater. 2017, 29, 1605242. doi: 10.1002/adma.201605242  doi: 10.1002/adma.201605242

    12. [12]

      Zhu, L. F.; Shi, J. J.; Li, D. M.; Meng, Q. B. Acta Chim. Sin. 2015, 73, 261.

    13. [13]

      Huang, P.; Yuan, L. G.; Li, Y. W.; Zhou, Y.; Song, B. Acta Phys. -Chim. Sin. 2018, 34, 1264.  doi: 10.3866/PKU.Whxb201804096

    14. [14]

      Yao, F.; Gui, P.; Zhang, Q.; Lin, Q. Mol. Syst. Des. Eng. 2018, 3, 702. doi: 10.1039/c8me00022k  doi: 10.1039/c8me00022k

    15. [15]

      Lee, M. M.; Teuscher, J.; Miyasaka, T.; Murakami, T. N.; Snaith, H. J. Science 2012, 338, 643. doi: 10.1126/science.1228604  doi: 10.1126/science.1228604

    16. [16]

      Kim, H. S.; Lee, C. R.; Im, J. H.; Lee, K. B.; Moehl, T.; Marchioro, A.; Moon, S. J.; Humphry-Baker, R.; Yum, J. H.; Moser, J. E.; et al. Sci. Rep. 2012, 2, 591. doi: 10.1038/srep00591  doi: 10.1038/srep00591

    17. [17]

      Burschka, J.; Pellet, N.; Moon, S. J.; Humphry-Baker, R.; Gao, P.; Nazeeruddin, M. K.; Grätzel, M. Nature 2013, 499, 316. doi: 10.1038/nature12340  doi: 10.1038/nature12340

    18. [18]

      Behera, R. K.; Das Adhikari, S.; Dutta, S. K.; Dutta, A.; Pradhan, N. J. Phys. Chem. Lett. 2018, 9, 6884. doi: 10.1021/acs.jpclett.8b03047  doi: 10.1021/acs.jpclett.8b03047

    19. [19]

      Hu, Y.; Zhang, X.; Yang, C.; Li, J.; Wang, L. RSC Adv. 2019, 9, 33017. doi: 10.1039/c9ra07069a  doi: 10.1039/c9ra07069a

    20. [20]

      Yang, L.; Tsai, W. L.; Li, C. S.; Hsu, B. W.; Chen, C. Y.; Wu, C. I.; Lin, H. W. ACS Appl. Mater. Interfaces 2019, 11, 47054. doi: 10.1021/acsami.9b16264  doi: 10.1021/acsami.9b16264

    21. [21]

      Zhang, J.; Wang, Q.; Zhang, X.; Jiang, J.; Gao, Z.; Jin, Z.; Liu, S. RSC Adv. 2017, 7, 36722. doi: 10.1039/c7ra06597c  doi: 10.1039/c7ra06597c

    22. [22]

      Gui, P.; Zhou, H.; Yao, F.; Song, Z.; Li, B.; Fang, G. Small 2019, 15, e1902618. doi: 10.1002/smll.201902618  doi: 10.1002/smll.201902618

    23. [23]

      Chen, H. Adv. Funct. Mater. 2017, 27, 1605654. doi: 10.1002/adfm.201605654  doi: 10.1002/adfm.201605654

    24. [24]

      Xu, Y.; Zhu, L.; Shi, J.; Lv, S.; Xu, X.; Xiao, J.; Dong, J.; Wu, H.; Luo, Y.; Li, D.; Meng, Q. ACS Appl. Mater. Interfaces 2015, 7, 2242. doi: 10.1021/am5057807  doi: 10.1021/am5057807

    25. [25]

      Lee, J. W.; Park, N. G. MRS Bull. 2015, 40, 654. doi: 10.1557/mrs.2015.166  doi: 10.1557/mrs.2015.166

    26. [26]

      Shi, J.; Luo, Y.; Wei, H.; Luo, J.; Dong, J.; Lv, S.; Xiao, J.; Xu, Y.; Zhu, L.; Xu, X.; et al. ACS Appl. Mater. Interfaces 2014, 6, 9711 doi: 10.1021/am502131t  doi: 10.1021/am502131t

    27. [27]

      Liu, D.; Wu, L.; Li, C.; Ren, S.; Zhang, J.; Li, W.; Feng, L. ACS Appl. Mater. Interfaces 2015, 7, 16330. doi: 10.1021/acsami.5b03324  doi: 10.1021/acsami.5b03324

    28. [28]

      Bi, D.; El-Zohry, A. M.; Hagfeldt, A.; Boschloo, G. ACS Appl. Mater. Interfaces 2014, 6, 18751. doi: 10.1021/am504320h  doi: 10.1021/am504320h

    29. [29]

      Yu, B.; Zhang, H.; Wu, J.; Li, Y.; Li, H.; Li, Y.; Shi, J.; Wu, H.; Li, D.; Luo, Y.; Meng, Q. J. Mater. Chem. A 2018, 6, 19810. doi: 10.1039/c8ta07968d  doi: 10.1039/c8ta07968d

    30. [30]

      Li, Y.; Li, Y.; Shi, J.; Zhang, H.; Wu, J.; Li, D.; Luo, Y.; Wu, H.; Meng, Q. Adv. Funct. Mater. 2018, 28, 1705220. doi: 10.1002/adfm.201705220  doi: 10.1002/adfm.201705220

    31. [31]

      Jeon, N. J.; Noh, J. H.; Kim, Y. C.; Yang, W. S.; Ryu, S.; Seok, S. I. Nat. Mater. 2014, 13, 897. doi: 10.1038/nmat4014  doi: 10.1038/nmat4014

    32. [32]

      Zhao, Y.; Duan, J.; Wang, Y.; Yang, X.; Tang, Q. Nano Energy 2020, 67, 104286. doi: 10.1016/j.nanoen.2019.104286  doi: 10.1016/j.nanoen.2019.104286

    33. [33]

      Yang, W. S.; Noh, J. H.; Jeon, N. J.; Kin, Y. C.; Ryu, S.; Seok, S. S. Science 2015, 348, 1234. doi: 10.1126/science.aaa9272  doi: 10.1126/science.aaa9272

    34. [34]

      Jiang, Y.; Gao, X.; Zhang, Y.; Wu, W.; Song, H.; Luo, Z.; Cen, K. J. Hazard. Mater. 2014, 274, 270. doi: 10.1016/j.jhazmat.2014.04.026  doi: 10.1016/j.jhazmat.2014.04.026

    35. [35]

      Nie, W.; Tsai, H.; Asadpour, R.; Blancon, J. C.; Neukirch, A. J.; Gupta, G.; Crochet, J. J.; Chhowalla, M.; Tretiak, S.; Alam, M. A.; et al. Science 2015, 347, 522. doi: 10.1126/science.aaa0472  doi: 10.1126/science.aaa0472

    36. [36]

      DeQuilettes, D. W.; Vorpahl, S. M.; Stranks, S. D.; Nagaoka, H.; Eperon, G. E.; Ziffer, M. E.; Snaith, H. J.; Ginger, D. S. Science 2015, 348, 683. doi: 10.1126/science.aaa5333  doi: 10.1126/science.aaa5333

    37. [37]

      Yin, W. J.; Shi, T.; Yan, Y. Adv. Mater. 2014, 26, 4653. doi: 10.1002/adma.201306281  doi: 10.1002/adma.201306281

    38. [38]

      Sebastian, M.; Peters, J. A.; Stoumpos, C. C.; Im, J.; Kostina, S. S.; Liu, Z.; Kanatzidis, M. G.; Freeman, A. J.; Wessels, B. W. Phys. Rev. B 2015, 92, 235210. doi: 10.1103/PhysRevB.92.235210  doi: 10.1103/PhysRevB.92.235210

    39. [39]

      Shi, J.; Li, Y.; Li, Y.; Li, D.; Luo, Y.; Wu, H.; Meng, Q. Joule 2018, 2, 879. doi: 10.1016/j.joule.2018.04.010  doi: 10.1016/j.joule.2018.04.010

    40. [40]

      Wu, J.; Xu, X.; Zhao, Y.; Shi, J.; Xu, Y.; Luo, Y.; Li, D.; Wu, H.; Meng, Q. ACS Appl. Mater. Interfaces 2017, 9, 26937. doi: 10.1021/acsami.7b08504  doi: 10.1021/acsami.7b08504

    41. [41]

      Leroux, M.; Grandjean, N.; Beaumont, B.; Nataf, G.; Semond, F.; Massies, J.; Gibart, P. J. Appl. Phys. 1999, 86, 3721. doi: 10.1063/1.371242  doi: 10.1063/1.371242

    42. [42]

      Wu, D.; Zhou, H.; Song, Z.; Zheng, M.; Liu, R.; Pan, X.; Wan, H.; Zhang, J.; Wang, H.; Li, X.; Zeng, H. ACS Nano 2020. 14, 2777 doi: 10.1021/acsnano.9b09315  doi: 10.1021/acsnano.9b09315

    43. [43]

      Miao, J.; Zhang, F. J. Mate. Chem. C 2019, 7, 1741. doi: 10.1039/c8tc06089d  doi: 10.1039/c8tc06089d

    44. [44]

      https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=1285 (Accessed 18.01.2020)

    45. [45]

      https://www.newport.com.cn/p/818-UV-L-FC--DB (Accessed 18.01.2020)

  • 加载中
    1. [1]

      Xinyuan Shi Chenyangjiang Changyu Zhai Xuemei Lu Jia Li Zhu Mao . Preparation and Photoelectric Performance Characterization of Perovskite CsPbBr3 Thin Films. University Chemistry, 2024, 39(6): 383-389. doi: 10.3866/PKU.DXHX202312019

    2. [2]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    3. [3]

      Lin Song Dourong Wang Biao Zhang . Innovative Experimental Design and Research on Preparing Flexible Perovskite Fluorescent Gels Using 3D Printing. University Chemistry, 2024, 39(7): 337-344. doi: 10.3866/PKU.DXHX202310107

    4. [4]

      Zongpei Zhang Yanyang Li Yanan Si Kai Li Shuangquan Zang . Developing a Chemistry Experiment Center Employing a Multifaceted Approach to Serve High-Quality Laboratory Education. University Chemistry, 2024, 39(7): 13-19. doi: 10.12461/PKU.DXHX202404041

    5. [5]

      Yang Liu Ying Yu Yilei Wang Chao Chen . Building of a High-Quality, Multi-Level Teaching Team in Chemistry Experimental Teaching Center. University Chemistry, 2024, 39(7): 166-171. doi: 10.12461/PKU.DXHX202405069

    6. [6]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    7. [7]

      Rong Lai Jie Li Xianfang Xu Shui Hu Tao Chen Houjin Li Guping Hu Hongyan Chen Fang Zhu . Taking the Overall Relocation as an Opportunity to Accelerate the Development of Chemical Experimental Teaching Centers: A Case Study of the National Demonstration Center for Experimental Chemistry Education at Sun Yat-Sen University. University Chemistry, 2024, 39(4): 33-39. doi: 10.3866/PKU.DXHX202310115

    8. [8]

      Yonghong Ruan Yuhua Weng Pingping Wu Yinyun Lü Zhaobin Chen Zhiqiang Dong Yiru Wang Huijun Zhang Lina Wu Ruming Yuan Yanping Ren Xiaoyu Cao Shunliu Deng . Deepening the Reform of Experimental Teaching System and Promoting the High Quality Development of National Demonstration Center for Experimental Education: Construction and Achievements of National Demonstration Center for Experimental Chemistry Education (Xiamen University). University Chemistry, 2024, 39(7): 237-246. doi: 10.12461/PKU.DXHX202406096

    9. [9]

      Rui Li Huan Liu Yinan Jiao Shengjian Qin Jie Meng Jiayu Song Rongrong Yan Hang Su Hengbin Chen Zixuan Shang Jinjin Zhao . 卤化物钙钛矿的单双向离子迁移. Acta Physico-Chimica Sinica, 2024, 40(11): 2311011-. doi: 10.3866/PKU.WHXB202311011

    10. [10]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    11. [11]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    12. [12]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    13. [13]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    14. [14]

      Yongqing Kuang Jie Liu Jianjun Feng Wen Yang Shuanglian Cai Ling Shi . Experimental Design for the Two-Step Synthesis of Paracetamol from 4-Hydroxyacetophenone. University Chemistry, 2024, 39(8): 331-337. doi: 10.12461/PKU.DXHX202403012

    15. [15]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    16. [16]

      Jianjun LIMingjie RENLili ZHANGLingling ZENGHuiling WANGXiangwu MENG . UV-assisted degradation of tetracycline hydrochloride by MnFe2O4@activated carbon activated persulfate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1869-1880. doi: 10.11862/CJIC.20240187

    17. [17]

      Bingliang Li Yuying Han Dianyang Li Dandan Liu Wenbin Shang . One-Step Synthesis of Benorilate Guided by Green Chemistry Principles and in vivo Dynamic Evaluation. University Chemistry, 2024, 39(6): 342-349. doi: 10.3866/PKU.DXHX202311070

    18. [18]

      Guoxian Zhu Jing Chen Rongkai Pan . Enhancing the Teaching Quality of Atomic Structure: Insights and Strategies. University Chemistry, 2024, 39(3): 376-383. doi: 10.3866/PKU.DXHX202305027

    19. [19]

      Gang Liu Heng Zhang Ying Ma Shiling Yuan Qisheng Song Zhenghu Xu Jichao Sun . Exploration and Practice on Improving the Teaching Quality of Organic Chemistry Laboratory Course. University Chemistry, 2024, 39(4): 70-74. doi: 10.3866/PKU.DXHX202309079

    20. [20]

      Shengjuan Huo Xiaoyan Zhang Xiangheng Li Xiangning Li Tianfang Chen Yuting Shen . Unveiling the Marvels of Titanium: Popularizing Multifunctional Colored Titanium Product Films. University Chemistry, 2024, 39(5): 184-192. doi: 10.3866/PKU.DXHX202310127

Metrics
  • PDF Downloads(15)
  • Abstract views(356)
  • HTML views(95)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return