Citation: Liu Lu, Xu Yuping, Chen Xia, Hong Mei, Tong Jing. Thermogravimetric Analysis of Enthalpy Variation of 1-Alkyl-3-methylimidazole Chloride[J]. Acta Physico-Chimica Sinica, ;2020, 36(11): 200401. doi: 10.3866/PKU.WHXB202004014 shu

Thermogravimetric Analysis of Enthalpy Variation of 1-Alkyl-3-methylimidazole Chloride

  • Corresponding author: Tong Jing, tongjinglnu@sina.com
  • Received Date: 4 April 2020
    Revised Date: 23 April 2020
    Accepted Date: 24 April 2020
    Available Online: 28 April 2020

    Fund Project: This project is supported by the National Natural Science Foundation of China (21773100)the National Natural Science Foundation of China 21773100

  • The structures of ionic liquids (ILs) based on 1-alkyl-3-methylimidazolium chloride [Cnmim]Cl (n = 2, 4, 6), (1-ethyl-3-methylimidazolium chloride [C2mim]Cl, 1-butyl-3-methylimidazolium chloride [C4mim]Cl, and 1-hexyl-3-methylimidazolium chloride [C6mim]Cl) were elucidated by 1H NMR and 13C NMR experiments. The vaporization characteristics of these ILs were studied by thermogravimetric analysis. Dynamic and isothermal thermogravimetric experiments were conducted in this study. The purpose of the dynamic experiments was to determine the initial decomposition temperature of the experimental sample and the temperature range for the isothermal thermogravimetric experiments. The purpose of the isothermal experiments was to record the mass dependence of the sample on time in the experimental temperature range. The Langmuir equation and Clausius-Clapeyron equation were used to fit the experimental data and obtain the vaporization enthalpies of these ILs at the average temperature within the experimental temperature range. However, in order to expand the applicability of the estimated values and to compare them with the literature data, the vaporization enthalpy ΔHvap(Tav) measured at the average temperature was converted into vaporization enthalpy ΔHvap(298) at ambient temperature. The difference between the heat capacities of the ILs in the gaseous and liquid states at constant pressure, ΔlgCpmө proposed by Verevkin, was used in this conversion process. The experimental data for substance density and surface tension at other temperatures were obtained by referring to the literature. In addition, the data for density and surface tension at T = 298.15 K were obtained by applying the extrapolation method to the literature values for other temperatures. The vaporization enthalpy of the 1-octyl-3-methylimidazolium chloride IL [C8mim]Cl was estimated by using the new vaporization model we had proposed in our previous work and compared with the reference value. The estimated value for [C8mim]Cl was on the same order of magnitude as the reference value. We compared the vaporization enthalpies in the present study with those for the carboxylic acid imidazolium and amino acid imidazolium ILs ([Cnmim]Pro (n = 2-6) and [Cnmim]Thr (n = 2-6), respectively in our previous work. The results revealed that a change in the anion type affects the vaporization enthalpy of the ILs in the order amino acid imidazolium > carboxylic acid imidazolium > halogen imidazolium, when the cation is the same. Considering the structural differences between the three kinds of ILs, the abovementioned order may be related to the intermolecular hydrogen bonds. There were no intermolecular hydrogen bonds in the [Cnmim]Cl (n = 2, 4, 6) ILs studied here. Therefore, the vaporization enthalpy of [Cnmim]Cl (n = 2, 4, 6) was the lowest among the three kinds of ILs considered.
  • 加载中
    1. [1]

      Yang, K.; Shuai, X. R.; Yang, H. C.; Yan, J. H.; Cen, K. F. Acta Phys. -Chim. Sin. 2019, 35, 765.  doi: 10.3866/PKU.WHXB201810009

    2. [2]

      Chen, F. F.; Dong, Y.; Sang, X. Y.; Zhou, Y.; Tao, D. J. Acta Phys. -Chim. Sin. 2016, 32, 610.  doi: 10.3866/PKU.WHXB201512241

    3. [3]

      Heym, F.; Korth, W.; Etzold, B. J. M.; Kern, C.; Jess, A. Thermochim. Acta 2015, 622, 17. doi: 10.1016/j.tca.2015.03.020  doi: 10.1016/j.tca.2015.03.020

    4. [4]

      Heym, F.; Etzold, B. J. M.; Kern, C.; Jess, A. Green Chem. 2011, 13, 1466. doi: 10.1039/c0gc00876a  doi: 10.1039/c0gc00876a

    5. [5]

      Wei, J.; Dong, H. X.; Chen, X.; Yang, Y. X.; Fang, D. W.; Guan, W.; Yang, J. Z. Acta Phys. -Chim. Sin. 2018, 34, 932.  doi: 10.3866/PKU.WHXB201801112

    6. [6]

      Chen, W. J.; Xue, Z. M.; Wang, J. F.; Jiang, J. Y.; Zhao, X. H.; Mu, T. C. Acta Phys. -Chim. Sin. 2018, 34, 911.  doi: 10.3866/PKU.WHXB201712281

    7. [7]

      Hinks, D.; Rafiq, M. I.; Price, D. M.; Montero, G. A.; Smith, B. Color. Technol. 2003, 119, 90. doi: 10.1111/j.1478-4408.2003.tb00155.x  doi: 10.1111/j.1478-4408.2003.tb00155.x

    8. [8]

      De Kruif, C. G.; Kuipers, T.; Van Miltenburg, J. C.; Schaake, R. C. F.; Stevens G. J. Chem. Thermodyn. 1981, 13, 1081. doi: 10.1016/0021-9614(81)90006-9  doi: 10.1016/0021-9614(81)90006-9

    9. [9]

      McDowell, W. J. Soc. Dyers Colour. 1973, 89, 177. doi: 10.1111/j.1478-4408.1973.tb03146.x  doi: 10.1111/j.1478-4408.1973.tb03146.x

    10. [10]

      Riberio da Silva, M. A. V.; Monte, M. J. S. Thermochim. Acta 1990, 171, 169. doi: 10.1016/0040-6031(90)87017-7  doi: 10.1016/0040-6031(90)87017-7

    11. [11]

      Nishida, K.; Ishihara, E.; Osaka, T.; Koukitu, M. J. Soc. Dyers Colour. 1977, 93, 52. doi: 10.1111/j.1478-4408.1977.tb03324.x  doi: 10.1111/j.1478-4408.1977.tb03324.x

    12. [12]

      Shimizu, T.; Ohkubo, S.; Kimura, M.; Tabata, I.; Hori, T. J. Soc. Dyers Colour. 1987, 103, 137. doi: 10.1111/j.1478-4408.1987.tb01103.x  doi: 10.1111/j.1478-4408.1987.tb01103.x

    13. [13]

      Casserino, M.; Belvins, D. R.; Sanders, R. N. Thermochim. Acta 1996, 284, 145. doi: 10.1016/0040-6031(96)02923-1  doi: 10.1016/0040-6031(96)02923-1

    14. [14]

      Goodrum, J. W.; Siesel, E. M. J. Therm. Anal. 1996, 46, 1258. doi: 10.1007/BF01979239  doi: 10.1007/BF01979239

    15. [15]

      Gückel, W.; Synnatschke, G.; Ritting, R. Pestic. Sci. 1973, 4, 147. doi: 10.1002/ps.2780040119  doi: 10.1002/ps.2780040119

    16. [16]

      Gückel, W.; Ritting, F. R.; Synnatschke, G. Pestic. Sci. 1974, 5, 400. doi: 10.1002/ps.2780050404  doi: 10.1002/ps.2780050404

    17. [17]

      Gückel, W.; Kästel, R.; Lewerenz, J.; Synnatschke, G. Pestic. Sci. 1982, 13, 168. doi: 10.1002/ps.2780130208  doi: 10.1002/ps.2780130208

    18. [18]

      Gückel, W.; Kästel, R.; Kröhl, T.; Parg, A. Pestic. Sci. 1995, 45, 31. doi: 10.1002/ps.2780450105  doi: 10.1002/ps.2780450105

    19. [19]

      Elder, J. P. J. Therm. Anal. 1997, 49, 905. doi: 10.1007/BF01996775  doi: 10.1007/BF01996775

    20. [20]

      Aggarwal, P.; Dollimore, D.; Alexander, K. S. J. Therm. Anal. 1997, 49, 599. doi: 10.1007/BF01996741  doi: 10.1007/BF01996741

    21. [21]

      Phang, P.; Dollimore, D. Instrum. Sci. Technol. 1999, 27, 74. doi: 10.1080/10739149908085831  doi: 10.1080/10739149908085831

    22. [22]

      Lerdkanaporn, S.; Dollimore, D. J. Therm. Anal. 1997, 49, 886. doi: 10.1007/BF01996773  doi: 10.1007/BF01996773

    23. [23]

      Phang, P.; Dollimore, D.; Evans, S. J. Thermochim. Acta 2002, 392, 125. doi: 10.1016/S0040-6031(02)00092-8  doi: 10.1016/S0040-6031(02)00092-8

    24. [24]

      Tong, J.; Yang, H. X.; Liu, R. J.; Li, C.; Xia, L. X.; Yang, J. Z. J. Phys. Chem. B 2014, 118, 12978. doi: 10.1021/jp509240w  doi: 10.1021/jp509240w

    25. [25]

      Tong, J.; Liu, L.; Li, H.; Guan, W.; Chen, X. J. Chem. Thermodyn. 2017, 112, 298. doi: 10.1016/j.jct.2017.05.015  doi: 10.1016/j.jct.2017.05.015

    26. [26]

      Liu, L.; Jing, L. Q.; Liu, H. C.; Fang, D. W.; Tong, J. J. Therm. Anal. Calorim. 2018, 134, 2254. doi: 10.1007/s10973-018-7607-y  doi: 10.1007/s10973-018-7607-y

    27. [27]

      Tong, J.; Qu, Y.; Jing, L. Q.; Liu, L.; Liu, C. H. Acta Phys. -Chim. Sin. 2018, 34, 200.  doi: 10.3866/PKU.WHXB201707262

    28. [28]

      Wright, S. F.; Phang, P.; Dollimore, D.; Alexander, K. S. Thermochim. Acta 2002, 392, 257. doi: 10.1016/S0040-6031(02)00108-9  doi: 10.1016/S0040-6031(02)00108-9

    29. [29]

      Wang, C. H.; Yang, S. H.; Chen, Y. M. R. Soc. Open Sci. 2019, 6, 181193. doi: 10.1098/rsos.181193  doi: 10.1098/rsos.181193

    30. [30]

      Verevkin, S. P.; Ralys, R. V.; Zaitsau, D. H.; Emel'yanenko, V. N.; Schick, C. Thermochim. Acta 2012, 538, 62. doi: 10.1016/j.tca.2012.03.018  doi: 10.1016/j.tca.2012.03.018

    31. [31]

      Stewart, L. N. Proceedings of Third Toronto Symposium on Thermal Analysis; McAdie, H. G., Ed.; Chemical Institute of Canada: Toronto, Canada, 1969; p. 205.

    32. [32]

      Senol, A. J. Chem. Thermodyn. 2013, 67, 39. doi: 10.1016/j.jct.2013.07.018  doi: 10.1016/j.jct.2013.07.018

    33. [33]

      Langmuir, I. Soil Sci. 1950, 69, 417. doi: 10.1097/00010694-195005000-00015  doi: 10.1097/00010694-195005000-00015

    34. [34]

      Menon, D.; Dollimore, D.; Alexander, K. S. Thermochim. Acta 2002, 392, 241. doi: 10.1016/S0040-6031(02)00106-5  doi: 10.1016/S0040-6031(02)00106-5

    35. [35]

      Silverstein, R. M.; Bassler, G. C. Spectrometric Identification of Organic Compounds; John Wiley and Sons: New York, NY, USA, 1963; p. 3316.

    36. [36]

      Myers, R. T. J. Colloid Interf. Sci. 2004, 274, 236. doi: 10.1016/j.jcis.2003.12.048  doi: 10.1016/j.jcis.2003.12.048

    37. [37]

      Rideal, E. K. J. Electroanal. Chem. Interf. Electrochem. 1968, 18, 474. doi: 10.1016/S0022-0728(68)80016-6  doi: 10.1016/S0022-0728(68)80016-6

    38. [38]

      Zaitsau, D. H.; Yermalaeu, A. V.; Emel'yanenko, V. N.; Verevkin, S. P.; Welz-Biermann, U.; Sxhubert, T. Sci. China Chem. 2012, 55, 1531. doi: 10.1007/s11426-012-4662-2  doi: 10.1007/s11426-012-4662-2

    39. [39]

      Součková, M.; Klomfar, J.; Pátek, J. Fluid Phase Equilibr. 2017, 454, 56. doi: 10.1016/j.fluid.2017.08.022  doi: 10.1016/j.fluid.2017.08.022

    40. [40]

      Zaitsau, D. H.; Kabo, G. J.; Strechan, A. A.; Paulechka, Y. U.; Anna, T.; Verevkin, S. P. J. Phys. Chem. A 2006, 110, 7306. doi: 10.1021/jp060896f  doi: 10.1021/jp060896f

    41. [41]

      Ma, H.; Liao, C. Y.; Fan, M. L.; Liu, X. E.; Teng, J. J.; Li, N. Chin. J. Appl. Chem. 2018, 35, 456.  doi: 10.11944/j.issn.1000-0518.2018.04.170108

  • 加载中
    1. [1]

      Yinglian LIChengcheng ZHANGXinyu ZHANGXinyi WANG . Spin crossover in [Co(pytpy)2]2+ complexes modified by organosulfonate anions. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1162-1172. doi: 10.11862/CJIC.20240087

    2. [2]

      Liyang ZHANGDongdong YANGNing LIYuanyu YANGQi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079

    3. [3]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    4. [4]

      Keweiyang Zhang Zihan Fan Liyuan Xiao Haitao Long Jing Jing . Unveiling Crystal Field Theory: Preparation, Characterization, and Performance Assessment of Nickel Macrocyclic Complexes. University Chemistry, 2024, 39(5): 163-171. doi: 10.3866/PKU.DXHX202310084

    5. [5]

      Xinyuan Shi Chenyangjiang Changyu Zhai Xuemei Lu Jia Li Zhu Mao . Preparation and Photoelectric Performance Characterization of Perovskite CsPbBr3 Thin Films. University Chemistry, 2024, 39(6): 383-389. doi: 10.3866/PKU.DXHX202312019

    6. [6]

      Jinfeng Chu Yicheng Wang Ji Qi Yulin Liu Yan Li Lan Jin Lei He Yufei Song . Comprehensive Chemical Experiment Design: Convenient Preparation and Characterization of an Oxygen-Bridged Trinuclear Iron(III) Complex. University Chemistry, 2024, 39(7): 299-306. doi: 10.3866/PKU.DXHX202310105

    7. [7]

      Aidang Lu Yunting Liu Yanjun Jiang . Comprehensive Organic Chemistry Experiment: Synthesis and Characterization of Triazolopyrimidine Compounds. University Chemistry, 2024, 39(8): 241-246. doi: 10.3866/PKU.DXHX202401029

    8. [8]

      Haiyu Nie Chenhui Zhang Fengpei Du . Ideological and Political Design for the Preparation, Characterization and Particle Size Control Experiment of Nanoemulsion. University Chemistry, 2024, 39(2): 41-46. doi: 10.3866/PKU.DXHX202306055

    9. [9]

      Yongming Guo Jie Li Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057

    10. [10]

      Yukai Jiang Yihan Wang Yunkai Zhang Yunping Wei Ying Ma Na Du . Characterization and Phase Diagram of Surfactant Lyotropic Liquid Crystal. University Chemistry, 2024, 39(4): 114-118. doi: 10.3866/PKU.DXHX202309033

    11. [11]

      Lei Shu Zhengqing Hao Kai Yan Hong Wang Lihua Zhu Fang Chen Nan Wang . Development of a Double-Carbon Related Experiment: Preparation, Characterization and Carbon-Capture Ability of Eggshell-Derived CaO. University Chemistry, 2024, 39(4): 149-156. doi: 10.3866/PKU.DXHX202310134

    12. [12]

      Fei Liu Dong-Yang Zhao Kai Sun Ting-Ting Yu Xin Wang . Comprehensive Experimental Design for Photochemical Synthesis, Analysis, and Characterization of Seleno-Containing Medium-Sized N-Heterocycles. University Chemistry, 2024, 39(3): 369-375. doi: 10.3866/PKU.DXHX202309047

    13. [13]

      Zunyuan Xie Lijin Yang Zixiao Wan Xiaoyu Liu Yushan He . Exploration of the Preparation and Characterization of Nano Barium Titanate and Its Application in Inorganic Chemistry Laboratory Teaching. University Chemistry, 2024, 39(4): 62-69. doi: 10.3866/PKU.DXHX202310137

    14. [14]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    15. [15]

      Kai Yang Gehua Bi Yong Zhang Delin Jin Ziwei Xu Qian Wang Lingbao Xing . Comprehensive Polymer Chemistry Experiment Design: Preparation and Characterization of Rigid Polyurethane Foam Materials. University Chemistry, 2024, 39(4): 206-212. doi: 10.3866/PKU.DXHX202308045

    16. [16]

      Juan Yuan Bin Zhang Jinping Wu Mengfan Wang . Design of a Comprehensive Experiment on Preparation and Characterization of Cu2(Salen)2 Nanomaterials with Two Distinct Morphologies. University Chemistry, 2024, 39(10): 420-425. doi: 10.3866/PKU.DXHX202402014

    17. [17]

      Tingting Yu Si Chen Lianglong Sun Tongtong Shi Kai Sun Xin Wang . Comprehensive Experimental Design for the Photochemical Synthesis, Analysis, and Characterization of Difluoropyrroles. University Chemistry, 2024, 39(11): 196-203. doi: 10.3866/PKU.DXHX202401022

    18. [18]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    19. [19]

      Rong-Nan YiWei-Min He . Photocatalytic Minisci-type multicomponent reaction for the synthesis of 1-(halo)alkyl-3-heteroaryl bicyclo[1.1.1]pentanes. Chinese Chemical Letters, 2024, 35(10): 110115-. doi: 10.1016/j.cclet.2024.110115

    20. [20]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

Metrics
  • PDF Downloads(9)
  • Abstract views(765)
  • HTML views(77)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return