Citation: Jiuxiang Dai, Zhongmiao Gong, Shitong Xu, Yi Cui, Meiyi Yao. In Situ Study on the Initial Oxidation Behavior of Zirconium Alloys with Near-Ambient Pressure XPS[J]. Acta Physico-Chimica Sinica, ;2022, 38(3): 200302. doi: 10.3866/PKU.WHXB202003026 shu

In Situ Study on the Initial Oxidation Behavior of Zirconium Alloys with Near-Ambient Pressure XPS

  • Corresponding author: Yi Cui, ycui2015@sinano.ac.cn Meiyi Yao, yaomeiyi@shu.edu.cn
  • Received Date: 11 March 2020
    Revised Date: 9 April 2020
    Accepted Date: 10 April 2020
    Available Online: 21 April 2020

    Fund Project: the National Natural Science Foundation of China 51871141the National 111 Project D17002ZDXKFZ XKFZ201711

  • Zirconium alloys are often used to fabricate nuclear fuel cladding and other structural materials because of their low thermal neutron absorption cross section, satisfactory corrosion resistance, and decent mechanical properties. The oxidation rate and hydrogen-absorption fraction of zirconium alloys can be reduced by adding moderate amount of Nb to them, and the corrosion resistance of zirconium alloys can be improved as well. Although the corrosion resistance of zirconium alloys has been widely recognized, the in situ study of zirconium alloys in conditions that resemble real oxidative-corrosion environments has still been a challenging subject. The initial oxidation behavior of zirconium alloys might affect the subsequent generation of oxides in the form of the element valence and type of surface oxides changes, resulting in the long-term corrosion-behavior changes. In addition, the reaction mechanism of Nb in zirconium alloys is still controversial. To investigate the influence of the alloy composition and environmental conditions on the initial oxidation behavior of zirconium alloys, in situ initial oxidation experiments were performed on two different Zr alloys in a near-ambient pressure X-ray photoelectron spectroscopy (NAP-XPS) chamber. The samples were cut to the size of 12 mm × 3 mm, and the primary oxide film was removed via pickling, argon etching and annealing. Oxygen or water vapors with the pressure in the range of 1.3 × 10-8-1.3 × 10-1 mbar (1 mbar = 100 Pa) were gradually introduced into the NAP-XPS chamber after sample-surface cleaning. The experiment was repeated at room temperature (300 K) and 623 K. The results showed that both Nb-containing and Nb-free zirconium-alloy surfaces transitioned from a metallic state to various oxidation states during the initial oxidation process. The oxidation rates of both the alloys were lower in water vapors than those in oxygen. In the presence of water vapors or oxygen, both the alloys oxidized more slowly at room temperature than at 623 K. Compared with 1%Nb zirconium alloys, the Nb-free zirconium alloys were more easily oxidized and had a denser oxide layer, in the oxygen atmosphere at 623 K. To some extent, the presence of Nb would reduce the adsorption capacity of oxygen atoms. The oxidation rate of 1%Nb zirconium alloy was quick at room temperature and also at low water vapor pressures at 623 K; Nb promoted the formation of OH- at the surface. Under the high pressure vapor atmosphere at 623 K, the Nb-free zirconium alloys were more prone to be oxidized; Nb diffused to the surface at high temperatures and inhibited the breaking of the OH- bond; however, the surfaces of both the samples could not be completely oxidized in a short time.
  • 加载中
    1. [1]

      Zinkle, S. J.; Was, G. S. Acta Mater. 2013, 61 (3), 735. doi: 10.1016/j.actamat.2012.11.004  doi: 10.1016/j.actamat.2012.11.004

    2. [2]

      Motta, A. T.; Couet, A.; Comstock, R. J. Annu. Rev. Mater. Res. 2015, 45 (1), 311. doi: 10.1146/annurev-matsci-070214-020951  doi: 10.1146/annurev-matsci-070214-020951

    3. [3]

      Chen, L. Y.; Li, J. X.; Zhang, Y.; Zhang, L. C.; Lu, W. J.; Wang, L. Q.; Zhang, L. F.; Zhang, D. Corros. Sci. 2015, 100, 332. doi: 10.1016/j.corsci.2015.08.005  doi: 10.1016/j.corsci.2015.08.005

    4. [4]

      Yang, H. L.; Shen, J. J.; Matsukawa, Y.; Satoh, Y.; Kano, S.; Zhao, Z. S.; Li, Y. F.; Li, F.; Abe, H. J. Nucl. Sci. Technol. 2015, 52 (9), 1162. doi: 10.1080/00223131.2014.996622  doi: 10.1080/00223131.2014.996622

    5. [5]

      Hong, H. S.; Moon, J. S.; Kim, S. J.; Lee, K. S. J. Nucl. Mater. 2001, 297 (2), 113. doi: 10.1016/S0022-3115(01)00601-8  doi: 10.1016/S0022-3115(01)00601-8

    6. [6]

      Sabol, G. P.; Comstock, R. J.; Nayak, U. P. Effect of Dilute Alloy Additions of Molybdenum, Niobium, and Vanadium on Zirconium Corrosion. In Zirconium in the Nuclear Industry: Twelfth International Symposium; Sabol, G. P., Moan, G. D., Eds.; ASTM International: West Conshohocken, PA, USA, 2000; pp. 525-544.

    7. [7]

      Bell, B. D. C.; Murphy, S. T.; Grimes, R. W.; Wenman, M. R. Acta Mater. 2017, 132, 425. doi: 10.1016/j.actamat.2017.04.063  doi: 10.1016/j.actamat.2017.04.063

    8. [8]

      Bell, B. D. C.; Murphy, S. T.; Burr, P. A.; Comstock, R. J.; Partezana, J. M.; Grimes, R. W.; Wenman, M. R. Corros. Sci. 2016, 105, 36. doi: 10.1016/j.corsci.2015.12.022  doi: 10.1016/j.corsci.2015.12.022

    9. [9]

      Shibata, A.; Kato, Y.; Taguchi, T.; Futakawa, M.; Maekawa, K. Nucl. Technol. 2016, 196 (1), 89. doi: 10.13182/NT16-54  doi: 10.13182/NT16-54

    10. [10]

      Steinbrück, M.; Böttcher, M. J. Nucl. Mater. 2011, 414 (2), 276. doi: 10.1016/j.jnucmat.2011.04.012  doi: 10.1016/j.jnucmat.2011.04.012

    11. [11]

      Wang, Z.; Zhou, B. X.; Chen, B.; Zhu, W.; Wen, B.; Wu, L.; Tang, H. K.; Fang, Z. Q.; Li, Q.; Yao, M. Y. Corros. Sci. 2017, 122, 26. doi: 10.1016/j.corsci.2017.03.017  doi: 10.1016/j.corsci.2017.03.017

    12. [12]

      Wang, Z.; Zhou, B. X.; Wang, B. Y.; Yao, M. Y.; Li, Q.; Huang, J. Corros. Sci. 2016, 105, 141. doi: 10.1016/j.corsci.2016.01.011  doi: 10.1016/j.corsci.2016.01.011

    13. [13]

      Azdad, Z.; Marot, L.; Moser, L.; Steiner, R.; Meyer, E. Sci. Rep. -UK 2018, 8 (1), 16251. doi: 10.1038/s41598-018-34570-w  doi: 10.1038/s41598-018-34570-w

    14. [14]

      Harlow, W.; Ghassemi, H.; Taheri, M. L. J. Nucl. Mater. 2016, 474, 126. doi: 10.1016/j.jnucmat.2016.03.009  doi: 10.1016/j.jnucmat.2016.03.009

    15. [15]

      Yoshitaka, N.; Krauss, A. R.; Yuping, L.; Gruen, D. M. J. Nucl. Mater. 1996, 228 (3), 346. doi: 10.1016/0022-3115(95)00194-8  doi: 10.1016/0022-3115(95)00194-8

    16. [16]

      Bakradze, G.; Jeurgens, L. P. H.; Mittemeijer, E. J. J. Phys. Chem. C 2011, 115 (40), 19841. doi: 10.1021/jp206896m  doi: 10.1021/jp206896m

    17. [17]

      Lyapin, A.; Jeurgens, L. P. H.; Mittemeijer, E. J. Acta Mater. 2005, 53 (10), 2925. doi: 10.1016/j.actamat.2005.03.009  doi: 10.1016/j.actamat.2005.03.009

    18. [18]

      Zhang, H. B.; Liu, G. G.; Shi, L.; Ye, J. H. Adv. Energy Mater. 2018, 8 (1), 1701343. doi: 10.1002/aenm.201701343  doi: 10.1002/aenm.201701343

    19. [19]

      Toyoshima, R.; Yoshida, M.; Monya, Y.; Suzuki, K.; Amemiya, K.; Mase, K.; Mun, B. S.; Kondoh, H. Phys. Chem. Chem. Phys. 2014, 16 (43), 23564. doi: 10.1039/C4CP04318A  doi: 10.1039/C4CP04318A

    20. [20]

      Duan, Y.; Chen, M. S.; Wan, H. L. Acta Phys. -Chim. Sin. 2018, 34 (12), 1358.  doi: 10.3866/PKU.WHXB201803071

    21. [21]

      Bespalov, I.; Datler, M.; Buhr, S.; Drachsel, W.; Rupprechter, G.; Suchorski, Y. Ultramicroscopy 2015, 159, 147. doi: 10.1016/j.ultramic.2015.02.016  doi: 10.1016/j.ultramic.2015.02.016

    22. [22]

      Lyapin, A.; Jeurgens, L. P. H.; Graat, P. C. J.; Mittemeijer, E. J. J. Appl. Phys. 2004, 96 (12), 7126. doi: 10.1063/1.1809773  doi: 10.1063/1.1809773

    23. [23]

      Roustila, A.; Chêne, J.; Séverac, C. J. Alloy. Compd. 2003, 356-357, 330. doi: 10.1016/S0925-8388(03)00356-6  doi: 10.1016/S0925-8388(03)00356-6

    24. [24]

      Zhang, H. H.; Li, X. D.; Xie, Y. P.; Hu, L. J.; Yao, M. Y. Acta Phys. Sin. 2016, 65 (9), 96802.  doi: 10.7498/aps.65.096802

    25. [25]

      Kim, H.; Park, J.; Jeong, Y. J. Nucl. Mater. 2005, 345 (1), 1. doi: 10.1016/j.jnucmat.2005.04.061  doi: 10.1016/j.jnucmat.2005.04.061

    26. [26]

      Jeong, Y. H.; Kim, H. G.; Kim, D. J.; Choi, B. K.; Kim, J. H. J. Nucl. Mater. 2003, 323 (1), 72. doi: 10.1016/j.jnucmat.2003.08.031  doi: 10.1016/j.jnucmat.2003.08.031

    27. [27]

      Sun, G. C.; Zhou, B. X.; Yao, M. Y.; Xie, S. J.; Li, Q. B. Acta Metall Sin. 2012, 48 (7), 1103.  doi: 10.3724/SP.J.1037.2012.00329

    28. [28]

      Luo, L. L.; Su, M.; Yan, P. F.; Zou, L. F.; Schreiber, D. K.; Baer, D. R.; Zhu, Z. H.; Zhou, G. W.; Wang, Y. T.; Bruemmer, S. M.; et al. Nat. Mater. 2018, 17 (6), 514. doi: 10.1038/s41563-018-0078-5  doi: 10.1038/s41563-018-0078-5

    29. [29]

      Yang, Z. B.; Zhao, W. J.; Cheng, Z. Q.; Qiu, J.; Zhang, H.; Zhuo, H. Acta Metall Sin. 2017, 53 (1), 47.  doi: 10.11900/0412.1961.2016.00136

    30. [30]

      Wang, B. Y.; Zhou, B. X.; Wang, Z.; Huang, J.; Yao, M. Y.; Zhou, J. Acta Metall Sin. 2015, 51 (12), 1545.  doi: 10.11900/0412.1961.2015.00254

  • 加载中
    1. [1]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    2. [2]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    3. [3]

      Jianyu Qin Yuejiao An Yanfeng ZhangIn Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-. doi: 10.3866/PKU.WHXB202408002

    4. [4]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    5. [5]

      Xi Xu Chaokai Zhu Leiqing Cao Zhuozhao Wu Cao Guan . Experiential Education and 3D-Printed Alloys: Innovative Exploration and Student Development. University Chemistry, 2024, 39(2): 347-357. doi: 10.3866/PKU.DXHX202308039

    6. [6]

      Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023

    7. [7]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

    8. [8]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    9. [9]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

    10. [10]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    11. [11]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    12. [12]

      Hongwei Ma Fang Zhang Hui Ai Niu Zhang Shaochun Peng Hui Li . Integrated Crystallographic Teaching with X-ray,TEM and STM. University Chemistry, 2024, 39(3): 5-17. doi: 10.3866/PKU.DXHX202308107

    13. [13]

      Wei Li Guoqiang Feng Ze Chang . Teaching Reform of X-ray Diffraction Using Synchrotron Radiation in Materials Chemistry. University Chemistry, 2024, 39(3): 29-35. doi: 10.3866/PKU.DXHX202308060

    14. [14]

      Hongwei Ma Hui Li . Three Methods for Structure Determination from Powder Diffraction Data. University Chemistry, 2024, 39(3): 94-102. doi: 10.3866/PKU.DXHX202310035

    15. [15]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    16. [16]

      Liang TANGJingfei NIKang XIAOXiangmei LIU . Synthesis and X-ray imaging application of lanthanide-organic complex-based scintillators. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1892-1902. doi: 10.11862/CJIC.20240139

    17. [17]

      Yuqiao Zhou Weidi Cao Shunxi Dong Lili Lin Xiaohua Liu . Study on the Teaching Reformation of Practical X-ray Crystallography. University Chemistry, 2024, 39(3): 23-28. doi: 10.3866/PKU.DXHX202303003

    18. [18]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    19. [19]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    20. [20]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

Metrics
  • PDF Downloads(9)
  • Abstract views(695)
  • HTML views(145)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return