Citation: Xie Fan, Xi Ye, Xu Qingda, Liu Jingquan. Utah Neural Electrode Technology for Brain-Computer Interface[J]. Acta Physico-Chimica Sinica, ;2020, 36(12): 200301. doi: 10.3866/PKU.WHXB202003014 shu

Utah Neural Electrode Technology for Brain-Computer Interface

  • Corresponding author: Liu Jingquan, jqliu@sjtu.edu.cn
  • Received Date: 5 March 2020
    Revised Date: 11 May 2020
    Accepted Date: 11 May 2020
    Available Online: 14 May 2020

    Fund Project: the Research Program of Shanghai Science and Technology Committee, China 17JC1402800the Program of Shanghai Academic/Technology Research Leader, China 18XD1401900the National Natural Science Foundation of China 61728402the National Key R & D Program of China 2017YFB1002501The project was supported by the National Key R & D Program of China (2017YFB1002501), the National Natural Science Foundation of China (61728402), the Research Program of Shanghai Science and Technology Committee, China (17JC1402800), the Program of Shanghai Academic/Technology Research Leader, China (18XD1401900)

  • A human brain is composed of a large number of interconnected neurons forming a neural network. To study the functional mechanism of the neural network, it is necessary to record the activity of individual neurons over a large area simultaneously. Brain-computer interface (BCI) refers to the connection established between the human/animal brain and computers/other electronic devices, which enables direct interaction between the brain and external devices. It plays an important role in understanding, protecting, and simulating the brain, especially in helping patients with neurological disorders to restore their impaired motor and sensory functions. Neural electrodes are electrophysiological devices that form the core of BCI, which convert neuronal electrical signals (carried by ions) into general electrical signals (carried by electrons). They can record or interfere with the state of neural activity. The Utah Electrode Array (UEA) designed by the University of Utah is a mainstream neural electrode fabricated by bulk micromachining. Its unique three-dimensional needle-like structure enables each electrode to obtain high spatiotemporal resolution and good insulation between each other. After implantation, the tip of each electrode affects only a small group of neurons around it even allowing to record the action potential of a single neuron. The availability of a large number of electrodes, high quality of signals, and long service life has made UEA the first choice for collecting neuronal signals. Moreover, UEA is the only implantable neural electrode that can record signals in the human cerebral cortex. This article mainly serves as an introduction to the construction, manufacturing process, and functioning of UEA, with a focus on the research progress in fabricating high-density electrode arrays, wireless neural interfaces, and optrode arrays using silicon, glass, and metal as that material of construction. We also discuss the surface modification techniques that can be used to reduce the electrode impedance, minimize the rejection by brain tissue, and improve the corrosion resistance of the electrode. In addition, we summarize the clinical applications where patients can control external devices and get sensory feedback by implanting UEA. Furthermore, we discuss the challenges faced by existing electrodes such as the difficulty in increasing electrode density, poor response of integrated wireless neural interface, and the problems of biocompatibility. To achieve stability and durability of the electrode, advancements in both material science and manufacturing technology are required. We hope that this review can broaden the scope of ideas for the development of UEA. The realization of a fully implantable neural microsystem can contribute to an improved understanding of the functional mechanisms of the neural network and treatment of neurological diseases.
  • 加载中
    1. [1]

      Nair, P. Proc. Natl. Acad. Sci. U. S. A. 2013, 110, 18343. doi: 10.1073/pnas.1319310110  doi: 10.1073/pnas.1319310110

    2. [2]

      Fetz, E. E. Prog. Brain Res. 2015, 218, 241. doi: 10.1016/bs.pbr.2015.01.001  doi: 10.1016/bs.pbr.2015.01.001

    3. [3]

      Hochberg, L. R.; Serruya, M. D.; Friehs, G. M.; Mukand, J. A.; Saleh, M.; Caplan, A. H.; Branner, A.; Chen, D.; Penn, R. D.; Donoghue, J. P. Nature 2006, 442, 164. doi: 10.1038/nature04970  doi: 10.1038/nature04970

    4. [4]

      Hochberg, L. R.; Bacher, D.; Jarosiewicz, B.; Masse, N. Y.; Simeral, J. D.; Vogel, J.; Haddadin, S.; Liu, J.; Cash, S. S.; van der Smagt, P.; et al. Nature 2012, 485, 372. doi: 10.1038/nature11076  doi: 10.1038/nature11076

    5. [5]

      Deuschl, G.; Schade-Brittinger, C.; Krack, P.; Volkmann, J.; Schäfer, H.; Bötzel, K.; Daniels, C.; Deutschländer, A.; Dillmann, U.; Eisner, W.; et al. N. Engl. J. Med. 2006, 355, 896. doi: 10.1056/NEJMoa060281  doi: 10.1056/NEJMoa060281

    6. [6]

      Boon, P.; Vonck, K.; De Herdt, V.; Van Dycke, A.; Goethals, M.; Goossens, L.; Van Zandijcke, M.; De Smedt, T.; Dewaele, I.; Achten, R.; et al. Epilepsia 2007, 48, 1551. doi: 10.1111/j.1528-1167.2007.01005.x  doi: 10.1111/j.1528-1167.2007.01005.x

    7. [7]

      Nicolelis, M. A. L.; Ghazanfar, A. A.; Faggin, B. M.; Votaw, S.; Oliveira, L. M. O. Neuron 1997, 18, 529. doi: 10.1016/S0896-6273(00)80295-0  doi: 10.1016/S0896-6273(00)80295-0

    8. [8]

      Nicolelis, M. A. L.; Dimitrov, D.; Carmena, J. M.; Crist, R.; Lehew, G.; Kralik, J. D.; Wise, S. P. Proc. Natl. Acad. Sci. U. S. A. 2003, 100, 11041. doi: 10.1073/pnas.1934665100  doi: 10.1073/pnas.1934665100

    9. [9]

      Wise, K. D.; Najafi, K. Science 1991, 254, 1335. doi: 10.1126/science.1962192  doi: 10.1126/science.1962192

    10. [10]

      Daryl, R. K.; Rio, J. V.; Justin, C. W.; Jamille, F. H. IEEE Trans. Neural Syst. Rehabil. Eng. 2003, 11, 151. doi: 10.1109/TNSRE.2003.814443  doi: 10.1109/TNSRE.2003.814443

    11. [11]

      Wise, K. D.; Sodagar, A. M.; Yao, Y.; Gulari, M. N.; Perlin, G. E.; Najafi, K. Proc. IEEE 2008, 96, 1184. doi: 10.1109/JPROC.2008.922564  doi: 10.1109/JPROC.2008.922564

    12. [12]

      Normann, R. A.; Campbell, P. K.; Jones, K. E. A silicon-based, Three-dimensional neural Interface: Manufacturing Processes for an Intracortical Electrode array. In: Images of the Twenty-First Century, Proceedings of the Annual International Engineering in Medicine and Biology Society, Seattle, WA, USA, 1989; pp. 939-940.

    13. [13]

      Campbell, P. K.; Jones, K. E.; Huber, R. J.; Horch, K. W.; Normann, R. A. IEEE Trans. Biomed. Eng. 1991, 38, 758. doi: 10.1109/10.83588  doi: 10.1109/10.83588

    14. [14]

      Normann, R. A. Nat. Clin. Pract. Neurol. 2007, 3, 444. doi: 10.1038/ncpneuro0556  doi: 10.1038/ncpneuro0556

    15. [15]

      Bhandari, R.; Negi, S.; Solzbacher, F. Biomed. Microdevices 2010, 12, 797. doi: 10.1007/s10544-010-9434-1  doi: 10.1007/s10544-010-9434-1

    16. [16]

      Branner, A.; Normann, R. A. Brain Res. Bull. 2000, 51, 293. doi: 10.1016/S0361-9230(99)00231-2  doi: 10.1016/S0361-9230(99)00231-2

    17. [17]

      Branner, A.; Stein, R. B.; Normann, R. A. J. Neurophysiol. 2001, 85, 1585. doi: 10.1152/jn.2001.85.4.1585  doi: 10.1152/jn.2001.85.4.1585

    18. [18]

      Bhandari, R.; Negi, S.; Rieth, L.; Normann, R. A.; Solzbacher, F. Sens. Actuator A-Phys. 2008, 145, 123. doi: 10.1016/j.sna.2007.10.072  doi: 10.1016/j.sna.2007.10.072

    19. [19]

      Buzsáki, G. Nat. Neurosci. 2004, 7, 446. doi: 10.1038/nn1233  doi: 10.1038/nn1233

    20. [20]

      House, P. A.; Macdonald, J. D.; Tresco, P. A.; Normann, R. A. Neurosurg. Focus 2006, 20, 1. doi: 10.3171/foc.2006.20.5.5  doi: 10.3171/foc.2006.20.5.5

    21. [21]

      Biran, R.; Martin, D. C.; Tresco, P. A. J. Biomed. Mater. Res. Part A 2007, 82, 169. doi: 10.1002/jbm.a.31138  doi: 10.1002/jbm.a.31138

    22. [22]

      Christensen, M. B.; Pearce, S. M.; Ledbetter, N. M.; Warren, D. J.; Clark, G. A.; Tresco, P. A. Acta Biomater. 2014, 10, 4650. doi: 10.1016/j.actbio.2014.07.010  doi: 10.1016/j.actbio.2014.07.010

    23. [23]

      Pei, W. H. Sci. Technol. Rev. 2018, 36, 77.  doi: 10.3981/j.issn.1000-7857.2018.06.009

    24. [24]

      Wei, C. R.; Pei, W. H. Chin. J. Anal. Chem. 2019, 47, 1455.  doi: 10.19756/j.issn.0253-3820.191430

    25. [25]

      Shandhi, M. M. H.; Leber, M.; Hogan, A.; Bhandari, R.; Negi, S. A Novel Method of Fabricating Hhigh Channel Density Neural Array for Large Neuronal Mapping. In: Transducers, Anchorage, Alaska, USA, June 21-25, 2015; IEEE: New York, 2015.

    26. [26]

      Wark, H. A. C.; Sharma, R.; Mathews, K. S.; Fernandez, E.; Yoo, J.; Christensen, B.; Tresco, P.; Rieth, L.; Solzbacher, F.; Normann, R. A.; et al. J. Neural Eng. 2013, 10, 45003. doi: 10.1088/1741-2560/10/4/045003  doi: 10.1088/1741-2560/10/4/045003

    27. [27]

      Mathews, K. S.; Wark, H. A. C.; Normann, R. A. Muscle Nerve 2014, 50, 417. doi: 10.1002/mus.24171  doi: 10.1002/mus.24171

    28. [28]

      Fujishiro, A.; Kaneko, H.; Kawashima, T.; Ishida, M.; Kawano, T. Sci. Rep. 2014, 4, 1. doi: 10.1038/srep04868  doi: 10.1038/srep04868

    29. [29]

      Kim, S.; Bhandari, R.; Klein, M.; Negi, S.; Rieth, L.; Tathireddy, P.; Toepper, M.; Oppermann, H.; Solzbacher, F. Biomed. Microdevices 2009, 11, 453. doi: 10.1007/s10544-008-9251-y  doi: 10.1007/s10544-008-9251-y

    30. [30]

      Yin, M.; Borton, D. A.; Komar, J.; Agha, N.; Lu, Y.; Li, H.; Laurens, J.; Lang, Y.; Li, Q.; Bull, C.; et al. Neuron 2014, 84, 1170. doi: 10.1016/j.neuron.2014.11.010  doi: 10.1016/j.neuron.2014.11.010

    31. [31]

      Sharma, A.; Rieth, L.; Tathireddy, P.; Harrison, R.; Oppermann, H.; Klein, M.; Töpper, M.; Jung, E.; Normann, R.; Clark, G.; et al. J. Neural Eng. 2011, 8, 45004. doi: 10.1088/1741-2560/8/4/045004  doi: 10.1088/1741-2560/8/4/045004

    32. [32]

      Deisseroth, K. Nat. Methods 2010, 8, 26. doi: 10.1038/NMETH.F.324  doi: 10.1038/NMETH.F.324

    33. [33]

      Boyden, E. S.; Zhang, F.; Bamberg, E.; Nagel, G.; Deisseroth, K. Nat. Neurosci. 2005, 8, 1263. doi: 10.1038/nn1525  doi: 10.1038/nn1525

    34. [34]

      Han, X.; Qian, X.; Bernstein, J. G.; Zhou, H.; Franzesi, G. T.; Stern, P.; Bronson, R. T.; Graybiel, A. M.; Desimone, R.; Boyden, E. S. Neuron 2009, 62, 191. doi: 10.1016/j.neuron.2009.03.011  doi: 10.1016/j.neuron.2009.03.011

    35. [35]

      Goncalves, S. B.; Ribeiro, J. F.; Silva, A. F.; Costa, R. M.; Correia, J. H. J. Neural Eng. 2017, 14, 41001. doi: 10.1088/1741-2552/aa7004  doi: 10.1088/1741-2552/aa7004

    36. [36]

      Abaya, T. V F.; Blair, S.; Tathireddy, P.; Rieth, L.; Solzbacher, F. Biomed. Opt. Express 2012, 3, 3087. doi: 10.1364/BOE.3.003087  doi: 10.1364/BOE.3.003087

    37. [37]

      Abaya, T. V. F.; Diwekar, M.; Blair, S.; Tathireddy, P.; Rieth, L.; Solzbacher, F. J. Biomed. Opt. 2014, 19, 15006. doi: 10.1117/1.JBO.19.1.015006  doi: 10.1117/1.JBO.19.1.015006

    38. [38]

      Scharf, R.; Reiche, C. F.; Mcalinden, N.; Cheng, Y.; Xie, E.; Sharma, R.; Tathireddy, P.; Rieth, L.; Mathieson, K.; Blair, S. A Compact Integrated Device for Spatially Selective Optogenetic Neural Stimulation Based on the Utah Optrode Array. In Proceedings of SPIE, Conference on Optogenetics and Optical Manipulation, San Francisco, CA, January 27-28, 2018; Mohanty, S. K.; Thakor, N. V.; Jansen, E. D., Eds.; SPIE: Bellingham, 2018.

    39. [39]

      Fofonoff, T. A.; Martel, S. M.; Hatsopoulos, N. G.; Donoghue, J. P.; Hunter, I. W. Ieee T Bio-Med Eng. 2004, 51, 890. doi: 10.1109/TBME.2004.826679  doi: 10.1109/TBME.2004.826679

    40. [40]

      Goncalves, S. B.; Peixoto, A. C.; Rodrigues, J. A.; Silva, A. F.; Correia, J. H. Procedia Eng. 2014, 87, 939. doi: 10.1016/j.proeng.2014.11.311  doi: 10.1016/j.proeng.2014.11.311

    41. [41]

      Li, J.; Huang, D.; Chen, Y.; Li, Z. Low-Cost, Metal-Based Micro-Needle Electrode Array (M-MNEA): A Three-Dimensional Intracortical Neural Interface. In Transducers, Berlin, GERMANY, June 23-27, 2019; IEEE: Piscataway, 2019.

    42. [42]

      Barrese, J. C.; Rao, N.; Paroo, K.; Triebwasser, C.; Vargas-Irwin, C.; Franquemont, L.; Donoghue, J. P. J. Neural Eng. 2013, 10, 66014. doi: 10.1088/1741-2560/10/6/066014  doi: 10.1088/1741-2560/10/6/066014

    43. [43]

      Prasad, A.; Xue, Q.; Dieme, R.; Sankar, V.; Mayrand, R. C.; Nishida, T.; Streit, W. J.; Sanchez, J. C. Front. Neuroeng. 2014, 7, 2. doi: 10.3389/fneng.2014.00002  doi: 10.3389/fneng.2014.00002

    44. [44]

      Kozai, T. D. Y.; Catt, K.; Li, X.; Gugel, Z. V.; Olafsson, V. T.; Vazquez, A. L.; Cui, X. T. Biomaterials 2015, 37, 25. doi: 10.1016/j.biomaterials.2014.10.040  doi: 10.1016/j.biomaterials.2014.10.040

    45. [45]

      Ferguson, M.; Sharma, D.; Ross, D.; Zhao, F. Adv. Healthc. Mater. 2019, 8, 1900558. doi: 10.1002/adhm.201900558  doi: 10.1002/adhm.201900558

    46. [46]

      Fernã Ndez, E.; Greger, B.; House, P. A.; Aranda, I.; Botella, C.; Albisua, J.; Soto-Sã Nchez, C.; Alfaro, A.; Normann, R. A. Front. Neuroeng. 2014, 7, 24. doi: 10.3389/fneng.2014.00024  doi: 10.3389/fneng.2014.00024

    47. [47]

      Rui, Y.; Liu, J.; Wang, Y.; Yang, C. Microsyst. Technol. 2011, 17, 437. doi: 10.1007/s00542-011-1279-x  doi: 10.1007/s00542-011-1279-x

    48. [48]

      Heim, M.; Yvert, B.; Kuhn, A. J. Physiol.-Paris 2012, 106, 137. doi: 10.1016/j.jphysparis.2011.10.001  doi: 10.1016/j.jphysparis.2011.10.001

    49. [49]

      Boehler, C.; Stieglitz, T.; Asplund, M. Biomaterials 2015, 67, 346. doi: 10.1016/j.biomaterials.2015.07.036  doi: 10.1016/j.biomaterials.2015.07.036

    50. [50]

      Negi, S.; Bhandari, R.; Rieth, L.; Solzbacher, F. Biomed. Mater. 2010, 5, 15007. doi: 10.1088/1748-6041/5/1/015007  doi: 10.1088/1748-6041/5/1/015007

    51. [51]

      Cogan, S. F.; Ehrlich, J.; Plante, T. D.; Smirnov, A.; Shire, D. B.; Gingerich, M.; Rizzo, J. F. J. Biomed. Mater. Res. Part B 2009, 89, 353. doi: 10.1002/jbm.b.31223  doi: 10.1002/jbm.b.31223

    52. [52]

      Slavcheva, E.; Vitushinsky, R.; Mokwa, W.; Schnakenberg, U. J. Electrochem. Soc. 2004, 151, E226. doi: 10.1149/1.1747881  doi: 10.1149/1.1747881

    53. [53]

      Cui, X.; Lee, V. A.; Raphael, Y.; Wiler, J. A.; Hetke, J. F.; Anderson, D. J.; Martin, D. C. J. Biomed. Mater. Res. 2001, 56, 261. doi: 10.1002/1097-4636(200108)56:2 < 261::AID-JBM1094 > 3.0.CO; 2-I  doi: 10.1002/1097-4636(200108)56:2<261::AID-JBM1094>3.0.CO;2-I

    54. [54]

      Cui, X.; Martin, D. C. Sens. Actuator B-Chem. 2003, 89, 92. doi: 10.1016/s0925-4005(02)00448-3  doi: 10.1016/s0925-4005(02)00448-3

    55. [55]

      Du, Z. J.; Luo, X.; Weaver, C. L.; Cui, X. T. J. Mater. Chem. C 2015, 3, 6515. doi: 10.1039/C5TC00145E  doi: 10.1039/C5TC00145E

    56. [56]

      Wang, L.; Wang, M.; Ge, C.; Ji, B.; Guo, Z.; Wang, X.; Yang, B.; Li, C.; Liu, J. Biosens. Bioelectron. 2019, 145, 111661. doi: 10.1016/j.bios.2019.111661  doi: 10.1016/j.bios.2019.111661

    57. [57]

      Wang, M.; Ji, B.; Gu, X.; Tian, C.; Kang, X.; Yang, B.; Wang, X.; Chen, X.; Li, C.; Liu, J. Biosens. Bioelectron. 2017, 99, 99. doi: 10.1016/j.bios.2017.07.030  doi: 10.1016/j.bios.2017.07.030

    58. [58]

      Kojabad, Z. D.; Shojaosadati, S. A.; Firoozabadi, S. M.; Hamedi, S. J. Solid State Electrochem. 2019, 23, 1533. doi: 10.1007/s10008-019-04245-1  doi: 10.1007/s10008-019-04245-1

    59. [59]

      Abidian, M. R.; Corey, J. M.; Kipke, D. R.; Martin, D. C. Small 2010, 6, 421. doi: 10.1002/smll.200901868  doi: 10.1002/smll.200901868

    60. [60]

      Keefer, E.W.; Botterman, B. R.; Romero, M. I.; Rossi, A.F.; Gross, G. W. Nat. Nanotechnol. 2008, 3, 434. doi: 10.1038/nnano.2008.174  doi: 10.1038/nnano.2008.174

    61. [61]

      Burblies, N.; Schulze, J.; Schwarz, H.; Kranz, K.; Motz, D.; Vogt, C.; Lenarz, T.; Warnecke, A.; Behrens, P. Plos One 2016, 11, e158571. doi: 10.1371/journal.pone.0158571  doi: 10.1371/journal.pone.0158571

    62. [62]

      Cogan, S. F. Annu. Rev. Biomed. Eng. 2008, 10, 275. doi: 10.1146/annurev.bioeng.10.061807.160518  doi: 10.1146/annurev.bioeng.10.061807.160518

    63. [63]

      Luo, X.; Weaver, C. L.; Zhou, D. D.; Greenberg, R.; Cui, X. T. Biomaterials 2011, 32, 5551. doi:10.1016/j.biomaterials.2011.04.051  doi: 10.1016/j.biomaterials.2011.04.051

    64. [64]

      Dee, K. C.; Puleo, D. A.; Bizis, R. An Introduction to Tissue-Biomaterial Interactions, 1st ed.; John Wiley & Sons: NJ, 2002; pp 15-35.

    65. [65]

      Lok, J.; Leung, W.; Murphy, S.; Butler, W.; Noviski, N.; Lo, E. H. Acta Neurochir. 2011, 111, 63. doi: 10.1007/978-3-7091-0693-8_11  doi: 10.1007/978-3-7091-0693-8_11

    66. [66]

      Ceyssens, F.; Deprez, M.; Turner, N.; Kil, D.; van Kuyck, K.; Welkenhuysen, M.; Nuttin, B.; Badylak, S.; Puers, R. J. Neural Eng. 2017, 14, 14001. doi: 10.1088/1741-2552/14/1/014001  doi: 10.1088/1741-2552/14/1/014001

    67. [67]

      Azemi, E.; Lagenaur, C. F.; Cui, X. T. Biomaterials 2011, 32, 681. doi: 10.1016/j.biomaterials.2010.09.033  doi: 10.1016/j.biomaterials.2010.09.033

    68. [68]

      Eles, J. R.; Vazquez, A. L.; Snyder, N. R.; Lagenaur, C.; Murphy, M. C.; Kozai, T. D. Y.; Cui, X. T. Biomaterials 2017, 113, 279. doi: 10.1016/j.biomaterials.2016.10.054  doi: 10.1016/j.biomaterials.2016.10.054

    69. [69]

      Kolarcik, C. L.; Bourbeau, D.; Azemi, E.; Rost, E.; Zhang, L.; Lagenaur, C. F.; Weber, D. J.; Cui, X. T. Acta Biomater. 2012, 8, 3561. doi: 10.1016/j.actbio.2012.06.034  doi: 10.1016/j.actbio.2012.06.034

    70. [70]

      Capeletti, L. B.; Cardoso, M. B.; Dos Santos, J. H. Z.; He, W. ACS Appl. Mater. Interfaces 2016, 8, 27553. doi: 10.1021/acsami.6b09393  doi: 10.1021/acsami.6b09393

    71. [71]

      Lago, N.; Ceballos, D.; J Rodrı́guez, F.; Stieglitz, T.; Navarro, X. Biomaterials 2005, 26, 2021. doi: 10.1016/j.biomaterials.2004.06.025  doi: 10.1016/j.biomaterials.2004.06.025

    72. [72]

      Loeb, G. E.; Bak, M. J.; Salcman, M.; Schmidt, E. M. IEEE Trans. Biomed. Eng. 1977, BME-24, 121. doi: 10.1109/TBME.1977.326115  doi: 10.1109/TBME.1977.326115

    73. [73]

      Hsu, J.; Rieth, L.; Normann, R. A.; Tathireddy, P.; Solzbacher, F. IEEE Trans. Biomed. Eng. 2009, 56, 23. doi: 10.1109/TBME.2008.2002155  doi: 10.1109/TBME.2008.2002155

    74. [74]

      Wu, J.; Pike, R. T.; Wong, C. P.; Kim, N. P.; Tanielian, M. H. IEEE Trans. Adv. Packag. 2000, 23, 721. doi: 10.1109/6040.883764  doi: 10.1109/6040.883764

    75. [75]

      Hsu, J.; Tathireddy, P.; Rieth, L.; Normann, A. R.; Solzbacher, F. Thin Solid Films 2007, 516, 34. doi:10.1016/j.tsf.2007.04.050  doi: 10.1016/j.tsf.2007.04.050

    76. [76]

      Cogan, S. F.; Edell, D. J.; Guzelian, A. A.; Ying, P. L.; Edell, R. J. Biomed. Mater. Res. Part A 2003, 67A, 856. doi: 10.1002/jbm.a.10152  doi: 10.1002/jbm.a.10152

    77. [77]

      Roy, R. K.; Lee, K. J. Biomed. Mater. Res. Part B 2007, 83, 72. doi: 10.1002/jbm.b.30768  doi: 10.1002/jbm.b.30768

    78. [78]

      Winslow, B. D.; Christensen, M. B.; Yang, W.; Solzbacher, F.; Tresco, P. A. Biomaterials 2010, 31, 9163. doi: 10.1016/j.biomaterials.2010.05.050  doi: 10.1016/j.biomaterials.2010.05.050

    79. [79]

      Wang, R.; Zhao, W.; Wang, W.; Li, Z. J. Microelectromech. Syst. 2012, 21, 1084. doi: 10.1109/JMEMS.2012.2203790  doi: 10.1109/JMEMS.2012.2203790

    80. [80]

      Xie, X.; Rieth, L.; Williams, L.; Negi, S.; Bhandari, R.; Caldwell, R.; Sharma, R.; Tathireddy, P.; Solzbacher, F. J. Neural Eng. 2014, 11, 26016. doi: 10.1088/1741-2560/11/2/026016  doi: 10.1088/1741-2560/11/2/026016

    81. [81]

      Joshi-Imre, A.; Black, B. J.; Abbott, J.; Kanneganti, A.; Rihani, R.; Chakraborty, B.; Danda, V. R.; Maeng, J.; Sharma, R.; Rieth, L.; et al. J. Neural Eng. 2019, 16, 46006. doi: 10.1088/1741-2552/ab1bc8  doi: 10.1088/1741-2552/ab1bc8

    82. [82]

      Castellini, C.; Artemiadis, P.; Wininger, M.; Ajoudani, A.; Alimusaj, M.; Bicchi, A.; Caputo, B.; Craelius, W.; Dosen, S.; Englehart, K.; et al. Front. Neurorobotics 2014, 8, 1. doi: 10.3389/fnbot.2014.00022  doi: 10.3389/fnbot.2014.00022

    83. [83]

      Raspopovic, S.; Capogrosso, M.; Petrini, F. M.; Bonizzato, M.; Rigosa, J.; Di Pino, G.; Carpaneto, J.; Controzzi, M.; Boretius, T.; Fernandez, E.; et al. Sci. Transl. Med. 2014, 6, 219r. doi: 10.1126/scitranslmed.3006820  doi: 10.1126/scitranslmed.3006820

    84. [84]

      Andersen, R. A.; Hwang, E. J.; Mulliken, G. H. Annu. Rev. Psychol. 2010, 61, 169. doi: 10.1146/annurev.psych.093008.100503  doi: 10.1146/annurev.psych.093008.100503

    85. [85]

      Collinger, J. L.; Wodlinger, B.; Downey, J. E.; Wang, W.; Tyler-Kabara, E. C.; Weber, D. J.; Mcmorland, A. J.; Velliste, M.; Boninger, M. L.; Schwartz, A. B. The Lancet 2013, 381, 557. doi: 10.1016/S0140-6736(12)61816-9  doi: 10.1016/S0140-6736(12)61816-9

    86. [86]

      Boninger, M. L.; Collinger, J. L.; Weber, D. Brain-Computer Interfaces: Success from the University of Pittsburgh. In EDX and NM Medicine: Looking to the Future as We Address Today's Challenges, AANEM 60th Annual Meeting, San Antonio, Texas, October 2013; Kuiken, T. K., Boninger, M. L., Byrne, B. J., Eds.; 11-13.

    87. [87]

      Wodlinger, B.; Downey, J. E.; Tyler-Kabara, E. C.; Schwartz, A. B.; Boninger, M. L.; Collinger, J. L. J. Neural Eng. 2015, 12, 016011. doi: 10.1088/1741-2560/12/1/016011  doi: 10.1088/1741-2560/12/1/016011

    88. [88]

      Simeral, J. D.; Kim, S. -P.; Black, M. J.; Donoghue, J. P.; Hochberg, L. R. J. Neural Eng. 2010, 8, 025027. doi: 10.1088/1741-2560/8/2/025027  doi: 10.1088/1741-2560/8/2/025027

    89. [89]

      Gilja, V.; Pandarinath, C.; Blabe, C. H.; Nuyujukian, P.; Simeral, J. D.; Sarma, A. A.; Sorice, B. L.; Perge, J. A.; Jarosiewicz, B.; Hochberg, L. R.; et al. Nat. Med. 2015, 21, 1142. doi: 10.1038/nm.3953  doi: 10.1038/nm.3953

    90. [90]

      https://zj.zjol.com.cn/news.html?id=1366170&from=timeline&isappinstalled=0 (accessed Mar 23, 2020).

    91. [91]

      Guger, C.; Allison, B.; Lebedev, M. Brain-Computer Interface Research; Springer, Cham: 2017; pp. 43-54.

    92. [92]

      Branner, A.; Stein, R. B.; Fernandez, E.; Aoyagi, Y.; Normann, R. A. IEEE Trans. Biomed. Eng. 2004, 51, 146. doi: 10.1109/TBME.2003.820321  doi: 10.1109/TBME.2003.820321

    93. [93]

      Wendelken, S.; Page, D. M.; Davis, T.; Wark, H. A. C.; Kluger, D. T.; Duncan, C.; Warren, D. J.; Hutchinson, D. T.; Clark, G. A. J. Neuroeng. Rehabil. 2017, 14, 121. doi: 10.1186/s12984-017-0320-4  doi: 10.1186/s12984-017-0320-4

    94. [94]

      Clark, G. A.; Wendelken, S.; Page, D. M.; Davis, T.; Wark, H. A.; Normann, R. A.; Warren, D. J.; Hutchinson, D. T. Using Multiple High-Count Electrode Arrays in Human Median and Ulnar Nerves to Restore Sensorimotor Function after Previous Transradial Amputation of the Hand. In IEEE Engineering in Medicine and Biology Society Conference Proceedings, EMBC, Chicago, IL, August 26-30, 2014; IEEE: New York, 2014.

    95. [95]

      Davis, T. S.; Wark, H. A. C; Hutchinson, D. T.; Warren, D. J.; Scheinblum, T.; Clark, G. A; Normann, R. A.; Greger, B. J. Neural Eng. 2016, 13, 036001. doi: 10.1088/1741-2560/13/3/036001  doi: 10.1088/1741-2560/13/3/036001

    96. [96]

      Pan, J. W. Largr-scale Neural Ensemble Recording System for Rats. M. S. Dissertation, East China Normal University, Shanghai, 2008.

    97. [97]

      Suner, S.; Fellows, M. R.; Vargas-Irwin, C.; Nakata, G. K.; Donoghue, J. P. IEEE Trans. Neural Syst. Rehabil. Eng. 2005, 13, 524. doi: 10.1109/TNSRE.2005.857687  doi: 10.1109/TNSRE.2005.857687

    98. [98]

      Lago, N.; Cester, A. Appl. Sci.-Base. 2017, 7, 1292. doi: 10.3390/app7121292  doi: 10.3390/app7121292

  • 加载中
    1. [1]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    2. [2]

      Zhenlin Zhou Siyuan Chen Yi Liu Chengguo Hu Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049

    3. [3]

      Tong Zhou Jun Li Zitian Wen Yitian Chen Hailing Li Zhonghong Gao Wenyun Wang Fang Liu Qing Feng Zhen Li Jinyi Yang Min Liu Wei Qi . Experiment Improvement of “Redox Reaction and Electrode Potential” Based on the New Medical Concept. University Chemistry, 2024, 39(8): 276-281. doi: 10.3866/PKU.DXHX202401005

    4. [4]

      Ji-Quan Liu Huilin Guo Ying Yang Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031

    5. [5]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    6. [6]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    7. [7]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    8. [8]

      Hongyun Liu Jiarun Li Xinyi Li Zhe Liu Jiaxuan Li Cong Xiao . Course Ideological and Political Design of a Comprehensive Chemistry Experiment: Constructing a Visual Molecular Logic System Based on Intelligent Hydrogel Film Electrodes. University Chemistry, 2024, 39(2): 227-233. doi: 10.3866/PKU.DXHX202309070

    9. [9]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    10. [10]

      Xiaomei Ning Liang Zhan Xiaosong Zhou Jin Luo Xunfu Zhou Cuifen Luo . Preparation and Electro-Oxidation Performance of PtBi Supported on Carbon Cloth: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 217-224. doi: 10.3866/PKU.DXHX202401085

    11. [11]

      Xiaohui Li Ze Zhang Jingyi Cui Juanjuan Yin . Advanced Exploration and Practice of Teaching in the Experimental Course of Chemical Engineering Thermodynamics under the “High Order, Innovative, and Challenging” Framework. University Chemistry, 2024, 39(7): 368-376. doi: 10.3866/PKU.DXHX202311027

    12. [12]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    13. [13]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    14. [14]

      Suqing Shi Anyang Li Yuan He Jianli Li Xinjun Luan . Exploration and Practice of the “Progressive” Integrated Training Mode for Innovative Chemistry Talents at Comprehensive Universities in Western China. University Chemistry, 2024, 39(6): 42-49. doi: 10.3866/PKU.DXHX202402009

    15. [15]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    16. [16]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    17. [17]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    18. [18]

      Jiantao Zai Hongjin Chen Xiao Wei Li Zhang Li Ma Xuefeng Qian . The Learning-Centered Problem-Oriented Experimental Teaching. University Chemistry, 2024, 39(4): 40-47. doi: 10.3866/PKU.DXHX202309023

    19. [19]

      Chun-Lin Sun Yaole Jiang Yu Chen Rongjing Guo Yongwen Shen Xinping Hui Baoxin Zhang Xiaobo Pan . Construction, Performance Testing, and Practical Applications of a Home-Made Open Fluorescence Spectrometer. University Chemistry, 2024, 39(5): 287-295. doi: 10.3866/PKU.DXHX202311096

    20. [20]

      Fang Niu Rong Li Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102

Metrics
  • PDF Downloads(52)
  • Abstract views(2076)
  • HTML views(840)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return