Citation: Huimei Duan, Huijuan Wang, Weixin Huang. Influence of Polyvinylpyrrolidone Capping Ligands on Electrocatalytic Oxidation of Methanol and Ethanol over Palladium Nanocrystal Electrocatalysts[J]. Acta Physico-Chimica Sinica, ;2021, 37(10): 200300. doi: 10.3866/PKU.WHXB202003005 shu

Influence of Polyvinylpyrrolidone Capping Ligands on Electrocatalytic Oxidation of Methanol and Ethanol over Palladium Nanocrystal Electrocatalysts

  • Corresponding author: Huimei Duan, duanhm@mail.ustc.edu.cn Weixin Huang, huangwx@ustc.edu.cn
  • Received Date: 2 March 2020
    Revised Date: 2 April 2020
    Available Online: 20 April 2020

    Fund Project: National Natural Science Foundation of China 21525313

  • Direct alcohol fuel cells (DAFCs) have attracted considerable research interest because of their potential application as alternative power sources for automotive systems and portable electronics. Pd-based catalysts represent one of the most popular catalysts for DAFCs due to their excellent electrocatalytic activities in alkaline electrolytes. Thus, it is of great importance to understand the structure-activity relationship of Pd electrocatalysts for alcohol electrocatalysis. Recently, size- and shape- controlled Pd nanocrystals have been successfully synthesized and subsequently used to study the size and shape effects of Pd electrocatalysts on alcohol electrocatalysis, in which the Pd (100) facet exhibited higher electrocatalytic oxidation activity for small alcohol molecules than the Pd (111) and (110) facets. Although it is well known that capping ligands, which are widely used in wet chemistry for the size- and shape-controlled synthesis of metal nanocrystals, likely chemisorb onto the surfaces of the resulting metal nanocrystals and influence their surface structure and surface-mediated properties, such as catalysis, this issue was not considered in previous studies of Pd nanocrystal electrocatalysts for electrocatalytic oxidation of small alcohol molecules. In this study, we prepared polyvinylpyrrolidone (PVP)-capped Pd nanocrystals with different morphologies and sizes and comparatively studied their electrocatalytic activities for methanol and ethanol oxidation in alkaline solutions. The chemisorbed PVP molecules transferred charge to the Pd nanocrystals, and the finer Pd nanocrystals had a higher coverage of chemisorbed PVP, and thus exposed fewer accessible surface sites, experienced more extensive PVP-to-Pd charge transfer, and were more negatively charged. The intrinsic electrocatalytic activity, represented by the electrochemical surface area (ECSA)-normalized electrocatalytic activity, of Pd nanocubes with exposed (100) facets increases with the particle size, indicating that the more negatively-charged Pd surface is less electrocatalytically active. The Pd nanocubes with average sizes between 12 and 19 nm are intrinsically more electrocatalytically active than commercial Pd black electrocatalysts, while the activity of Pd nanocubes with an averages size of 8 nm is less. This suggests that the enhancement effect of the exposed (100) facets surpasses the deteriorative effect of the negatively charged Pd surface for the Pd nanocubes with average sizes between 12 and 19 nm, whereas the deteriorative effect of the negatively charged Pd surface surpasses the enhancement effect of the exposed (100) facets for the Pd nanocubes with average sizes of 8 nm due to the extensive PVP-to-Pd charge transfer. Moreover, the Pd nanocubes with average sizes of 8 nm exhibit similar intrinsic electrocatalytic activity to the Pd nanooctahedra with (111) facets exposed and average sizes of 7 nm, indicating that the electronic structure of Pd electrocatalysts plays a more important role in influencing the electrocatalytic activity than the exposed facet. Since the chemisorbed PVP molecules block the surface sites on Pd nanocrystals that are accessible to the reactants, all Pd nanocrystals exhibit lower mass-normalized electrocatalytic activity than the Pd black electrocatalysts, and the mass-normalized electrocatalytic activity increases with the ECSA. These results clearly demonstrate that the size- and shape-dependent electrocatalytic activity of Pd nanocrystals capped with PVP for methanol and ethanol oxidation should be attributed to both the exposed facets of the Pd nanocrystals and the size-dependent electronic structures of the Pd nanocrystals resulting from the size-dependent PVP coverage and PVP-to-Pd charge transfer. Therefore, capping ligands on capped metal nanocrystals inevitably influence their surface structures and surface-mediated properties, which must be considered for a comprehensive understanding of the structure-activity relationship of capped metal nanocrystals.
  • 加载中
    1. [1]

      Rabis, A.; Rodriguez, P.; Schmidt, T. J. ACS Catal. 2012, 2, 864. doi: 10.1021/cs3000864  doi: 10.1021/cs3000864

    2. [2]

      Zhang, Y. Zhang, J. F.; Chen, Z. L.; Liu, Y. W.; Zhang, M. M.; Han, X. P. Zhong, C.; Hu, W. B.; Deng, Y. D. Sci. China Mater. 2018, 61, 697. doi: 10.1007/s40843-017-9157-9  doi: 10.1007/s40843-017-9157-9

    3. [3]

      Zhao, X. Y.; Zhao, H. C.; Sun, J. F.; Li, G.; Liu, R. Chin. Chem. Lett. 2020, doi: 10.1016/j.cclet.2020.01.005R  doi: 10.1016/j.cclet.2020.01.005R

    4. [4]

      Bianchini, C.; Shen, P. K. Chem. Rev. 2009, 109, 4183. doi: 10.1021/cr9000995  doi: 10.1021/cr9000995

    5. [5]

      Qian, H. H.; Han, X.; Zhao, Y.; Su, Y. Q. Acta Phys. -Chim. Sin. 2017, 33, 1822.  doi: 10.3866/PKU.WHXB201705022

    6. [6]

      Li, X.; Zhang, C.; Du, C.; Zhuang, Z.; Zheng, F.; Li, P.; Zhang, Z.; Chen, W. Sci. China Chem. 2019, 62, 378. doi: 10.1007/s11426-018-9375-2  doi: 10.1007/s11426-018-9375-2

    7. [7]

      Cai, Y. F.; Liu, J. M.; Liao, S. J. Acta Phys. -Chim. Sin. 2007, 23, 92.  doi: 10.1016/S1872-1508(07)60010-2

    8. [8]

      Zhang, H. M. He, J. Zhai, C. Y. Zhu, M. S. Chin. Chem. Lett. 2019, 30, 2338. doi: 10.1016/j.cclet.2019.07.021  doi: 10.1016/j.cclet.2019.07.021

    9. [9]

      Fang, B.; Feng, L. G. Acta Phys. -Chim. Sin. 2020, 36, 1905023.  doi: 10.3866/PKU.WHXB201905023

    10. [10]

      Gao, D. F.; Zhou, H.; Wang, J.; Miao, S.; Yang, F.; Wang, G. X.; Wang, J. G.; Bao, X. H. J. Am. Chem. Soc. 2015, 137, 4288. doi: 10.1021/jacs.5b00046  doi: 10.1021/jacs.5b00046

    11. [11]

      Jin, M.; Zhang, H.; Xie, Z.; Xia, Y. Energy Environ. Sci. 2012, 5, 6352. doi: 10.1039/C2EE02866B  doi: 10.1039/C2EE02866B

    12. [12]

      Shao, M.; Odell, J.; Humbert, M.; Yu, T.; Xia, Y. J. Phys. Chem. C 2013, 117, 4172. doi: 10.1021/jp312859x  doi: 10.1021/jp312859x

    13. [13]

      Wang, E. D.; Xu, J. B.; Zhao, T. S. J. Phys. Chem. C 2010, 114, 10489. doi: 10.1021/jp101244t  doi: 10.1021/jp101244t

    14. [14]

      Ma, X. Y.; Chen, Y. F.; Wang, H.; Li, Q. X.; Lin, W. F.; Cai, W. B. Chem. Commun. 2018, 54, 2562. doi: 10.1039/C7CC08793D  doi: 10.1039/C7CC08793D

    15. [15]

      Cerritos, R. C.; Guerra-Balcázar, M.; Ramírez, R. F.; Ledesma-García, J.; Arriaga, L. G. Materials 2012, 5, 1686. doi: 10.3390/ma5091686  doi: 10.3390/ma5091686

    16. [16]

      Ding, H.; Shi, X. Z.; Shen, C. M.; Hui, C.; Xu, Z. C.; Li, C.; Tian, Y.; Wang, D. K.; Gao, H. J. Chin. Phys. B 2010, 19, 106104. doi: 10.1088/1674-1056/19/10/106104  doi: 10.1088/1674-1056/19/10/106104

    17. [17]

      Roy, P. S.; Bagchi, J.; Bhattacharya, S. K. Catal. Sci. Technol. 2012, 2, 2302. doi: 10.1039/C2CY20264F  doi: 10.1039/C2CY20264F

    18. [18]

      Xia, Y.; Xiong, Y.; Lim, B.; Skrabalak, S. E. Angew. Chem. Int. Ed. 2009, 48, 60. doi: 10.1002/anie.200802248  doi: 10.1002/anie.200802248

    19. [19]

      Masala, O.; Seshadri, R. Annu. Rev. Mater. Res. 2004, 34, 41. doi: 10.1146/annurev.matsci.34.052803.090949  doi: 10.1146/annurev.matsci.34.052803.090949

    20. [20]

      Niu, Z. Q.; Li, Y. D. Chem. Mater. 2014, 26, 72. doi: 10.1021/cm4022479  doi: 10.1021/cm4022479

    21. [21]

      Huang, W. X; Hua, Q.; Cao, T. Catal. Lett. 2014, 144, 1355. doi: 10.1007/s10562-014-1306-5  doi: 10.1007/s10562-014-1306-5

    22. [22]

      Liu, M.; Zhang, J.; Liu, J.; William, W. Y. J. Catal. 2011, 278, 1. doi: 10.1016/j.jcat.2010.11.009  doi: 10.1016/j.jcat.2010.11.009

    23. [23]

      Tsunoyama, H.; Ichikuni, N.; Sakurai, H.; Tsukuda, T. J. Am. Chem. Soc. 2009, 131, 7086. doi: 10.1021/ja810045y  doi: 10.1021/ja810045y

    24. [24]

      Narayanan, R.; El-Sayed, M. A. J. Am. Chem. Soc. 2003, 125, 8340. doi: 10.1021/ja035044x  doi: 10.1021/ja035044x

    25. [25]

      Chen, K.; Wu, H. T.; Hua, Q.; Chang, S. J.; Huang, W. X. Phys. Chem. Chem. Phys. 2013, 15, 2273. doi: 10.1039/C2CP44571A  doi: 10.1039/C2CP44571A

    26. [26]

      Pattabiraman, R. Appl. Catal. A-Gen. 1997, 153, 9. doi: 10.1016/S0926-860X(96)00327-4  doi: 10.1016/S0926-860X(96)00327-4

    27. [27]

      Singh, R.; Singh, A. Int. J. Hydrog. Energy 2009, 34, 2052. doi: 10.1016/j.ijhydene.2008.12.047  doi: 10.1016/j.ijhydene.2008.12.047

    28. [28]

      Noroozifar, M.; Khorasani-Motlagh, M.; Ekrami-Kakhki, M. S. J. Appl. Electrochem. 2014, 44, 233. doi: 10.1007/s10800-013-0635-1  doi: 10.1007/s10800-013-0635-1

    29. [29]

      Moulder, J. F. Handbook of X-Ray Photoelectron Spectroscopy. Physical Electronics Division, Perkin-Elmer Corp.: Eden Prairie, MN, USA, 1995: p. 234.

    30. [30]

      Kibis, L.; Titkov, A.; Stadnichenko, A.; Koscheev, S.; Boronin, A. Appl. Surf. Sci. 2009, 255, 9248. doi: 10.1016/j.apsusc.2009.07.011  doi: 10.1016/j.apsusc.2009.07.011

    31. [31]

      Russo, M.; Furlani, A.; Altamura, P.; Fratoddi, I.; Polzonetti, G. Polymer 1997, 38, 3677. doi: 10.1016/S0032-3861(96)00925-1  doi: 10.1016/S0032-3861(96)00925-1

    32. [32]

      Xue, L.; Zhang L.; Zhang, C.; Zhao, M.; Gong, M. C.; Chen, Y. Q. J. Rare. Earth. 2011, 29, 544. doi: 10.1016/S1002-0721(10)60495-4  doi: 10.1016/S1002-0721(10)60495-4

    33. [33]

      Sohn, Y. Appl. Surf. Sci. 2010, 257, 1692. doi: 10.1016/j.apsusc.2010.08.124  doi: 10.1016/j.apsusc.2010.08.124

    34. [34]

      Moulder, J.; Stickle, W.; Sobol, P.; Bomben, K. Handbook of X-Ray Photoelectron Spectroscopy; Chastain, J., Ed.; Perkin-Elmer Corp.: Eden Prairie, MN, USA, 1992.

    35. [35]

      Xian, J. Y.; Hua, Q.; Jiang, Z. Q.; Ma, Y. S.; Huang, W. X. Langmuir 2012, 28, 6736. doi: 10.1021/la300786w  doi: 10.1021/la300786w

    36. [36]

      An, H.; Pan, L. N.; Cui, H.; Li, B. J. Zhou, D. D.; Zhai, J. P.; Li, Q. Electrochim. Acta 2013, 102, 79. doi: 10.1016/j.electacta.2013.03.142  doi: 10.1016/j.electacta.2013.03.142

    37. [37]

      Zhang, M.; Yan, Z.; Xie, J. Electrochim. Acta 2012, 77, 237. doi: 10.1016/j.electacta.2012.05.098  doi: 10.1016/j.electacta.2012.05.098

    38. [38]

      Xu, C. X.; Hou, J. G.; Pang, X. H.; Li, X. J.; Zhu, M. L.; Tang, B. Y. Int. J. Hydrog. Energy 2012, 37, 10489. doi: 10.1016/j.ijhydene.2012.04.041  doi: 10.1016/j.ijhydene.2012.04.041

    39. [39]

      Umegaki, T.; Yan, J. M.; Zhang, X. B.; Shioyama, H.; Kuriyama, N.; Xu, Q. Int. J. Hydrog. Energy 2009, 34, 3816. doi: 10.1016/j.ijhydene.2009.03.003  doi: 10.1016/j.ijhydene.2009.03.003

  • 加载中
    1. [1]

      Ying XuChengying ShenHailong YuanWei Wu . Mapping multiple phases in curcumin binary solid dispersions by fluorescence contrasting. Chinese Chemical Letters, 2024, 35(9): 109324-. doi: 10.1016/j.cclet.2023.109324

    2. [2]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    3. [3]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    4. [4]

      Liyang ZHANGDongdong YANGNing LIYuanyu YANGQi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079

    5. [5]

      Honglian Liang Xiaozhe Kuang Fuping Wang Yu Chen . Exploration and Practice of Integrating Ideological and Political Education into Physical Chemistry: a Case on Surface Tension and Gibbs Free Energy. University Chemistry, 2024, 39(10): 433-440. doi: 10.12461/PKU.DXHX202405073

    6. [6]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

    7. [7]

      Xinlong WANGZhenguo CHENGGuo WANGXiaokuen ZHANGYong XIANGXinquan WANG . Enhancement of the fragile interface of high voltage LiCoO2 by surface gradient permeation of trace amounts of Mg/F. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 571-580. doi: 10.11862/CJIC.20230259

    8. [8]

      Weihan Zhang Menglu Wang Ankang Jia Wei Deng Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043

    9. [9]

      Zhuomin Zhang Hanbing Huang Liangqiu Lin Jingsong Liu Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034

    10. [10]

      Yukai Jiang Yihan Wang Yunkai Zhang Yunping Wei Ying Ma Na Du . Characterization and Phase Diagram of Surfactant Lyotropic Liquid Crystal. University Chemistry, 2024, 39(4): 114-118. doi: 10.3866/PKU.DXHX202309033

    11. [11]

      Lan Ma Cailu He Ziqi Liu Yaohan Yang Qingxia Ming Xue Luo Tianfeng He Liyun Zhang . Magical Surface Chemistry: Fabrication and Application of Oil-Water Separation Membranes. University Chemistry, 2024, 39(5): 218-227. doi: 10.3866/PKU.DXHX202311046

    12. [12]

      Ruilin Han Xiaoqi Yan . Comparison of Multiple Function Methods for Fitting Surface Tension and Concentration Curves. University Chemistry, 2024, 39(7): 381-385. doi: 10.3866/PKU.DXHX202311023

    13. [13]

      Huan LIShengyan WANGLong ZhangYue CAOXiaohan YANGZiliang WANGWenjuan ZHUWenlei ZHUYang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088

    14. [14]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    15. [15]

      Congying Lu Fei Zhong Zhenyu Yuan Shuaibing Li Jiayao Li Jiewen Liu Xianyang Hu Liqun Sun Rui Li Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097

    16. [16]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    17. [17]

      Juan Yuan Bin Zhang Jinping Wu Mengfan Wang . Design of a Comprehensive Experiment on Preparation and Characterization of Cu2(Salen)2 Nanomaterials with Two Distinct Morphologies. University Chemistry, 2024, 39(10): 420-425. doi: 10.3866/PKU.DXHX202402014

    18. [18]

      Xinyu ZENGGuhua TANGJianming OUYANG . Inhibitory effect of Desmodium styracifolium polysaccharides with different content of carboxyl groups on the growth, aggregation and cell adhesion of calcium oxalate crystals. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1563-1576. doi: 10.11862/CJIC.20230374

    19. [19]

      Yangrui Xu Yewei Ren Xinlin Liu Hongping Li Ziyang Lu . 具有高传质和亲和表面的NH2-UIO-66基疏水多孔液体用于增强CO2光还原. Acta Physico-Chimica Sinica, 2024, 40(11): 2403032-. doi: 10.3866/PKU.WHXB202403032

    20. [20]

      Yongmin Zhang Shuang Guo Mingyue Zhu Menghui Liu Sinong Li . Design and Improvement of Physicochemical Experiments Based on Problem-Oriented Learning: a Case Study of Liquid Surface Tension Measurement. University Chemistry, 2024, 39(2): 21-27. doi: 10.3866/PKU.DXHX202307026

Metrics
  • PDF Downloads(9)
  • Abstract views(459)
  • HTML views(81)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return