Methanol Synthesis by COx Hydrogenation over Cu/ZnO/Al2O3 Catalyst via Hydrotalcite-Like Precursors: the Role of CO in the Reactant Mixture
- Corresponding author: Hui Wang, wanghh@sari.ac.cn Yuhan Sun, sunyh@sari.ac.cn
Citation: Ying Liu, Xiaofang Liu, Lin Xia, Chaojie Huang, Zhaoxuan Wu, Hui Wang, Yuhan Sun. Methanol Synthesis by COx Hydrogenation over Cu/ZnO/Al2O3 Catalyst via Hydrotalcite-Like Precursors: the Role of CO in the Reactant Mixture[J]. Acta Physico-Chimica Sinica, ;2022, 38(3): 200201. doi: 10.3866/PKU.WHXB202002017
Song, C. S. Catal. Today 2017, 115, 2. doi: 10.1016/j.cattod.2006.02.029
doi: 10.1016/j.cattod.2006.02.029
Aas, N.; Li, Y. X.; Bowker, M. Phys. Condes. Matter 1991, 3, S281. doi: 10.1088/0953-8984/3/S/044
doi: 10.1088/0953-8984/3/S/044
Choi, E. J.; Lee, Y. H.; Lee, D. W.; Moon, D. J.; Lee, K. Y. Mol. Catal. 2017, 434, 146. doi: 10.1016/j.mcat.2017.02.005
doi: 10.1016/j.mcat.2017.02.005
Ortelli, E. E.; Wambach. J.; Wokaun, A. Appl. Catal. A: Gen. 2001, 216, 227. doi: 10.1016/s0926-860x(01)00569-5
doi: 10.1016/s0926-860x(01)00569-5
Liu, X. M; Lu, G. Q. Ind. Eng. Chem. Res. 2003, 42, 6518. doi: 10.1021/ie020979s
doi: 10.1021/ie020979s
Olah, G, A. Appl. Catal. A: Gen. 2005, 44, 2636. doi: 10.1002/anie.200462121
doi: 10.1002/anie.200462121
Melián-Cabrera, I.; Granados, M. L.; Fierro, J. L. G. Catal. Lett. 2002, 79, 165. doi: 10.1023/A:1015316610657
doi: 10.1023/A:1015316610657
Jadhav, S. G.; Vaidya, P. D.; Bhanage, B. M.; Joshi, J. B. Chem. Eng. Res. Des. 2014, 92, 2557. doi: 10.1016/j.cherd.2014.03.005
doi: 10.1016/j.cherd.2014.03.005
Gao, P.; Li, F.; Xiao, F. K.; Zhao, N.; Sun, N. N.; Wei, W.; Zhong, L. S.; Sun, Y. H. Catal. Sci. Technol. 2012, 2, 1447. doi: 10.1039/C2CY00481J
doi: 10.1039/C2CY00481J
Alejandre, A.; Medina, F.; Rodriguez, X.; Salagre, P.; Sueiras, J. E. J. Catal. 1999, 188, 311. doi: 10.1006/jcat.1999.2625
doi: 10.1006/jcat.1999.2625
Bhattacharyya, A.; Chang, V. W.; Schumacher, D. J. Appl. Clay Sci. 1998, 13, 317. doi: 10.1016/S0169-1317(98)00030-1
doi: 10.1016/S0169-1317(98)00030-1
Cavani, F.; Trifiro, F.; Vaccari, A. Catal. Today 1991, 11, 173. doi: 10.1016/0920-5861(91)80068-K
doi: 10.1016/0920-5861(91)80068-K
Climent, M. J.; Corma, A.; Iborra, S.; Primo, J. J. Catal. 1995, 151, 60. doi: 10.1006/jcat.1995.1008
doi: 10.1006/jcat.1995.1008
Constantino, V. R. L.; Pinnavaia, T. J. Inorg. Chem. 1995, 34, 883. doi: 10.1021/ic00108a020
doi: 10.1021/ic00108a020
Corma, A.; Fornes, V.; Martinaranda, R. M.; Rey, F. J. Catal. 1992, 134, 58. doi: 10.1016/0021-9517(92)90209-Z
doi: 10.1016/0021-9517(92)90209-Z
Fornasari, G.; Gazzano, M.; Matteuzzi, D.; Trifiro, F. Appl. Clay Sci. 1995, 10, 69. doi: 10.1016/0169-1317(95)00022-V
doi: 10.1016/0169-1317(95)00022-V
Gao, P.; Li, F.; Zhao, N.; Wang, H.; Wei, W.; Sun, Y. H. Acta Phys. -Chim. Sin. 2014, 30, 1155.
doi: 10.3866/PKU.WHXB201401252
Gao, P.; Li, F.; Xiao, F. K.; Zhao, N.; Wei, W.; Zhong, L. S.; Sun, Y. H. Catal. Today 2012, 194, 9. doi: 10.1016/j.cattod.2012.06.012
doi: 10.1016/j.cattod.2012.06.012
Gao, P.; Li, F.; Zhan, H. J.; Zhao, N.; Xiao, F. K.; Wei, W.; Zhong, L. S.; Wang, H.; Sun, Y. H. J. Catal. 2013, 298, 51. doi: 10.1016/j.jcat.2012.10.030
doi: 10.1016/j.jcat.2012.10.030
Gao, P.; Li, F.; Zhan, H. J.; Zhao, N.; Xiao, F. K.; Wei, W.; Zhong, L. S.; Sun, Y. H. Catal. Commun. 2014, 50, 78. doi: 10.1016/j.catcom.2014.03.006
doi: 10.1016/j.catcom.2014.03.006
Gao, P.; Li, F.; Zhao, N.; Xiao, F. K.; Wei, W.; Zhong, L. S.; Sun, Y. H. Appl. Catal. A: Gen. 2013, 468, 442. doi: 10.1016/j.apcata.2013.09.026
doi: 10.1016/j.apcata.2013.09.026
Gao, P.; Zhong, L. S.; Zhang, L. N.; Wang, H.; Zhao, N.; Wei, W.; Sun, Y. H. Catal. Sci. Technol. 2015, 5, 4365. doi: 10.1039/C5CY00372E
doi: 10.1039/C5CY00372E
Sahibzada, M.; Metcalfe, I. S.; Chadwick, D. J. Catal. 1998, 174, 111. doi: 10.1006/jcat.1998.1964
doi: 10.1006/jcat.1998.1964
Lee, J. S.; Lee, K. H.; Lee, S. Y. J. Catal. 1993, 144, 414. doi: 10.1006/jcat.1993.1342
doi: 10.1006/jcat.1993.1342
Yuan, Z.; Wang, L.; Wang, J.; Xia, S.; Chen, P.; Hou, Z.; Zheng, X. Appl. Catal. B: Environ. 2011, 101, 431. doi: 10.1016/j.apcatb.2010.10.013
doi: 10.1016/j.apcatb.2010.10.013
Evans, J. W.; Wainwright, M. S.; Bridgewater, A. J.; Young, D. J. Appl. Catal. 1983, 7, 75. doi:10.1016/0166-9834(83)80239-5
doi: 10.1016/0166-9834(83)80239-5
Cheng, J.; Wang, X.; Yu, J.; Hao, Z.; Xu, Z. P. J. Phys. Chem. C 2011, 115, 6651. doi: 10.1021/jp112031e
doi: 10.1021/jp112031e
Xiao, S.; Zhang, Y. F.; Gao, P.; Zhong, L. S.; Li, X. P.; Zhang, Z. Z.; Wang, H.; Wei, W.; Sun, Y. H. Catal. Today 2017, 281, 327. doi: 10.1016/j.cattod.2016.02.004
doi: 10.1016/j.cattod.2016.02.004
Liao, P. Y.; Zhang, C.; Zhang, L. J.; Yang, Y. Z.; Zhong, L. S.; Guo, X. Y.; Wang, H.; Sun, Y. H. Acta Phys. -Chim. Sin. 2017, 33, 1672.
doi: 10.3866/PKU.WHXB201704143
Velu, S.; Sabde, D. P.; Shah, N.; Sivasanker, S. Chem. Mater. 1998, 10, 3451. doi: 10.1021/cm980185x
doi: 10.1021/cm980185x
Zhang, C.; Yang, H. Y.; Gao, P.; Zhu, H.; Zhong, L. S.; Wang, H.; Wei, W.; Sun, Y. H. J. CO2 Util. 2017, 17, 263. doi: 10.1016/j.jcou.2016.11.015
doi: 10.1016/j.jcou.2016.11.015
Guo, X.; Mao, D.; Lu, G.; Wang, S.; Wu, G. J. Catal. 2010, 271, 178. doi: 10.1016/j.jcat.2010.01.009
doi: 10.1016/j.jcat.2010.01.009
Zhang, L. H.; Li, F.; Evans, D. G.; Duan, X. Mater. Chem. Phys. 2004, 87, 402. doi: 10.1016/j.matchemphys.2004.06.010
doi: 10.1016/j.matchemphys.2004.06.010
Kuhl, S.; Tarasov, A.; Zander, S.; Kasatkin, I.; Behrens, M. Chem. Eur. J. 2014, 20, 3782. doi: 10.1002/chem.201302599
doi: 10.1002/chem.201302599
Wu, G. D.; Wang, X. L.; Wei, W.; Sun, Y. H. Appl. Catal. A: Gen. 2010, 377, 107. doi: 10.1016/j.apcata.2010.01.023
doi: 10.1016/j.apcata.2010.01.023
Di Cosimo, J. I.; Diez, V. K.; Xu, M.; Iglesia, E.; Apesteguia, C. R. J. Catal. 1998, 178, 499. doi: 10.1006/jcat.1998.2161
doi: 10.1006/jcat.1998.2161
Klier, K.; Chatikavanij, V.; Herman, R. G.; Simmons, G. W. J. Catal. 1982, 74, 343. doi: 10.1016/0021-9517(82)90040-9
doi: 10.1016/0021-9517(82)90040-9
Burch, R.; Golunski, S. E.; Spencer, M. S. Catal. Lett. 1990, 5, 55. doi: 10.1007/BF00772093
doi: 10.1007/BF00772093
Fujitani, T.; Saito, M.; Kanai, Y.; Kakumoto, T.; Watanabe, T.; Nakamura, J.; Uchijima, T. Catal. Lett. 1994, 25, 271. doi: 10.1007/BF00816307
doi: 10.1007/BF00816307
Yang, C.; Ma, Z.Y.; Zhao, N.; Wei, W.; Hu, T. D.; Sun, Y. H. Catal. Today 2006, 115, 222. doi: 10.1016/j.cattod.2006.02.077
doi: 10.1016/j.cattod.2006.02.077
Chinchen, G. C.; Denny, P. J.; Parker, D. G.; Spencer, M. S.; Whan, D. A. Appl. Catal. 1987, 30, 333. doi: 10.1016/S0166-9834(00)84123-8
doi: 10.1016/S0166-9834(00)84123-8
Chinchen, G. C.; Waugh, K. C. J. Catal. 1986, 97, 280. doi: 10.1016/0021-9517(86)90063-1
doi: 10.1016/0021-9517(86)90063-1
Chinchen, G. C.; Waugh, K. C.; Whan, D. A. Appl. Catal. 1986, 25, 101. doi: 10.1016/S0166-9834(00)81226-9
doi: 10.1016/S0166-9834(00)81226-9
Sun, J. T.; Metcalfe, I. S.; Sahibzada, M. Ind. Eng. Chem. Res. 1999, 38, 3868. doi: 10.1021/ie990078s
doi: 10.1021/ie990078s
Mengjun Zhao , Yuhao Guo , Na Li , Tingjiang Yan . Deciphering the structural evolution and real active ingredients of iron oxides in photocatalytic CO2 hydrogenation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100348-100348. doi: 10.1016/j.cjsc.2024.100348
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421
Zixuan Zhu , Xianjin Shi , Yongfang Rao , Yu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954
Qian-Qian Tang , Li-Fang Feng , Zhi-Peng Li , Shi-Hao Wu , Long-Shuai Zhang , Qing Sun , Mei-Feng Wu , Jian-Ping Zou . Single-atom sites regulation by the second-shell doping for efficient electrochemical CO2 reduction. Chinese Chemical Letters, 2024, 35(9): 109454-. doi: 10.1016/j.cclet.2023.109454
Yuxiang Zhang , Jia Zhao , Sen Lin . Nitrogen doping retrofits the coordination environment of copper single-atom catalysts for deep CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100415-100415. doi: 10.1016/j.cjsc.2024.100415
Liang Ma , Zhou Li , Zhiqiang Jiang , Xiaofeng Wu , Shixin Chang , Sónia A. C. Carabineiro , Kangle Lv . Effect of precursors on the structure and photocatalytic performance of g-C3N4 for NO oxidation and CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100416-100416. doi: 10.1016/j.cjsc.2023.100416
Shu-Ran Xu , Fang-Xing Xiao . Metal halide perovskites quantum dots: Synthesis, and modification strategies for solar CO2 conversion. Chinese Journal of Structural Chemistry, 2023, 42(12): 100173-100173. doi: 10.1016/j.cjsc.2023.100173
Xiuzheng Deng , Yi Ke , Jiawen Ding , Yingtang Zhou , Hui Huang , Qian Liang , Zhenhui Kang . Construction of ZnO@CDs@Co3O4 sandwich heterostructure with multi-interfacial electron-transfer toward enhanced photocatalytic CO2 reduction. Chinese Chemical Letters, 2024, 35(4): 109064-. doi: 10.1016/j.cclet.2023.109064
Ping Wang , Tianbao Zhang , Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328
Muhammad Humayun , Mohamed Bououdina , Abbas Khan , Sajjad Ali , Chundong Wang . Designing single atom catalysts for exceptional electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100193-100193. doi: 10.1016/j.cjsc.2023.100193
Hong Dong , Feng-Ming Zhang . Covalent organic frameworks for artificial photosynthetic diluted CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100307-100307. doi: 10.1016/j.cjsc.2024.100307
Xiuzheng Deng , Changhai Liu , Xiaotong Yan , Jingshan Fan , Qian Liang , Zhongyu Li . Carbon dots anchored NiAl-LDH@In2O3 hierarchical nanotubes for promoting selective CO2 photoreduction into CH4. Chinese Chemical Letters, 2024, 35(6): 108942-. doi: 10.1016/j.cclet.2023.108942
Yufei Jia , Fei Li , Ke Fan . Surface reconstruction of Cu-based bimetallic catalysts for electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100255-100255. doi: 10.1016/j.cjsc.2024.100255
Yi YANG , Shuang WANG , Wendan WANG , Limiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434
Tianbo Jia , Lili Wang , Zhouhao Zhu , Baikang Zhu , Yingtang Zhou , Guoxing Zhu , Mingshan Zhu , Hengcong Tao . Modulating the degree of O vacancy defects to achieve selective control of electrochemical CO2 reduction products. Chinese Chemical Letters, 2024, 35(5): 108692-. doi: 10.1016/j.cclet.2023.108692
Xuejiao Wang , Suiying Dong , Kezhen Qi , Vadim Popkov , Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005
Maomao Liu , Guizeng Liang , Ningce Zhang , Tao Li , Lipeng Diao , Ping Lu , Xiaoliang Zhao , Daohao Li , Dongjiang Yang . Electron-rich Ni2+ in Ni3S2 boosting electrocatalytic CO2 reduction to formate and syngas. Chinese Journal of Structural Chemistry, 2024, 43(8): 100359-100359. doi: 10.1016/j.cjsc.2024.100359
Ziruo Zhou , Wenyu Guo , Tingyu Yang , Dandan Zheng , Yuanxing Fang , Xiahui Lin , Yidong Hou , Guigang Zhang , Sibo Wang . Defect and nanostructure engineering of polymeric carbon nitride for visible-light-driven CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100245-100245. doi: 10.1016/j.cjsc.2024.100245
Qin Cheng , Ming Huang , Qingqing Ye , Bangwei Deng , Fan Dong . Indium-based electrocatalysts for CO2 reduction to C1 products. Chinese Chemical Letters, 2024, 35(6): 109112-. doi: 10.1016/j.cclet.2023.109112
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037