Structure Investigations on 100LiO1/2-(100-x)PO5/2-xTeO2 Fast Ionic Conducting Glasses Using Solid-State Nuclear Magnetic Resonance Spectroscopy
- Corresponding author: Ren Jinjun, renjinjunsiom@163.com Hu Lili, hulili@siom.ac.cn
Citation:
Zhang Zonghui, Ren Jinjun, Hu Lili. Structure Investigations on 100LiO1/2-(100-x)PO5/2-xTeO2 Fast Ionic Conducting Glasses Using Solid-State Nuclear Magnetic Resonance Spectroscopy[J]. Acta Physico-Chimica Sinica,
;2020, 36(11): 200104.
doi:
10.3866/PKU.WHXB202001048
Phosphate glasses have been widely applied in high power laser devices 1-3, biological materials 4-7, and fast ionic conducting glasses 8, 9. Phosphate ionic conducting glasses, which can be used in "all-solid-state" batteries, are attracting more attention. "All-solid-state" battery is considered to be a very important solution for next-generation rechargeable batteries due to the simple structure, high energy density, and great safety. The properties of phosphate ionic conducting glasses, as potential solid-state electrolyte or cathode materials, can be improved by incorporating various components due to the flexible compositions and admirable vitrification abilities 10, 11. For instance, a series of Na2O-FeO-P2O5 glasses were evaluated as the cathodes for sodium-ion batteries, the conductivity increased with the increase of FeO and 30Na2O-40FeO-30P2O5 glass exhibited high reversible discharge capacity as 115 mAh∙g−1 with a Na anode 12. In the AgI-P2O5 conducting glass system, the addition of tungsten oxide (WO3) can adjust the glass transition temperature, thermal expansion coefficient, refractive index, optical band edge, electrical conductivity, and improve considerably glass stability against water and humidity in the environment, which are important for drawing conductive fibers 13, 14.
The properties of fast ionic conducting glasses are strongly related to the glass network structures. The structure investigations can help to establish the connection between the glass structure and the composition. However, further structural investigations are rarely reported. With the help of mature vibration spectroscopy technologies, such as FTIR and Raman spectra, the structures of ionic conducting glasses can be analyzed. FTIR and Raman spectroscopy was used to study the structures of solid-state glass electrolytes with the compositions of xLi2O-(1−x)[yB2O3-(1−y)P2O5], in which more P2O5 could convert the [BO3] into [BO4] and reduce the Li+ ion conductivity, while more B2O3 could increase [BO3] thus increasing the Li+ ion conductivity of glass electrolyte 15.
Recent years, advanced solid-state nuclear magnetic resonance (SSNMR) spectroscopy technologies have shown outstanding advantages on probing the structures of vitreous materials, due to their flexible and powerful capabilities on detecting the glass networks within short- and medium-range 16-20. The structures of AgI-AgPO3-Ag2WO4 ionic conducting glasses were investigated using multiple SSNMR technologies, the successive conversion from P—O—P into P—O—W linkages were observed, and the Q(2)-like chain were broken into Q(1) and Q(0) species linked tungsten species and this structural transformation increased the glass rigidity and stability against hydrolysis reactions 19.
In this work, the structures of the glasses with the compositions of 100LiO1/2-(100−x)PO5/2-xTeO2 (x = 0, 10, 20, 25, 30) are investigated using Raman spectroscopy and multiple SSNMR technologies. The evolution of phosphorus species is tracked using 31P MAS NMR and Raman spectra. The connectivities between phosphorus species are identified by 2D refocused INADEQUATE spectra. 125Te WURST-QCPMG experiments are employed to probing the local chemical environments of Te atoms. The correlations between different structure units are discussed based on a random distribution model. Summarized from all discussions, a comprehensive depiction of glass networks is presented.
All these glass samples with the compositions of 100LiO1/2-(100−x)PO5/2-xTeO2 (x = 0, 10, 20, 25, 30) were prepared from LiPO3 (99.9%), Li2CO3 (99.9%) and TeO2 (99.99%). These raw materials were weighed according to the compositions with a total weight of 5 g, and then mixed in a platinum crucible. All these glasses were melted at 800 ℃ for 20 min and then the melts were cast on a preheated stainless-steel mold. These glass samples are labeled as 0Te, 10Te, 20Te, 25Te and 30Te for x = 0, 10, 20, 25, 30, respectively. The differential scanning calorimetry (DSC) curves were obtained using a METTLER TOLEDO TGA/DSC-1600 differential scanning calorimeter. During these measurements, glass samples were heated under N2 atmosphere with a heating rate of 10 K∙min−1. Raman spectra were obtained by a Renishaw in via Raman microscope with an excitation wavelength of 488 nm.
In this work, all NMR measurements were operated on a Bruker Avance Ⅲ HD 500 MHz spectrometer (11.7 T). All 31P single pulse MAS NMR spectra were obtained at 202.5 MHz using a 4 mm probe with experimental conditions as followed: the spinning rate is 12 kHz, the length of 90° pulse is 2.5 μs, the recycle delays are 320 s for all samples. And crystalline NH4H2PO4 (chemical shift = 1.12 ppm) were employed to calibrate the chemical shifts of 31P.
To identify different 31P spices and obtain the correlations between these 31P species, two-dimensional (2D) refocused INADEQUATE experiments were adopted, in which the 31P species involved in P—O—P linkages can be detected by a double quantum (DQ) coherence process created based on J-coupling effect through P—O—P bond, while the isolated 31P species will be filtered out 21, 22. Fig. 1 shows the pulse scheme of the refocused INADEQUATE and homologous coherence transfer pathway. In 2D refocused INADEQUATE spectra, the F2 dimension and the F1 dimension show the regular one quantum coherence spectrum and double quantum coherence resonance frequency, respectively. The double quantum coherence resonance frequency in the F1 dimension equals the sum of their offset frequencies and autocorrelation peaks will appear at both sides of the diagonal. In this work, 2D refocused INADEQUATE experiments were done using a 2.5 mm probe with a spinning rate of 25 kHz. The length of π/2 pulse is 2.0 μs and the recycle delay is 60 s. The DQ filtered coherence was created using an excitation sequence of 90°–τ–180°– τ– 90°, and the mixing time τ was optimized to be 3.32 ms.
The chemical environment of 125Te nuclei was detected using the static wideband uniform-rate smooth truncation quadrupolar Carr-Purcell-Meiboom-Gill (WURST-QCPMG) technique 23. The WURST-80 pulse shape was employed using an 8-step phase cycling. The pulses length of WURST excitation and refocusing were both 50 μs, and the excitation bandwidth was 700 kHz. To compensate the line shape distortions, which originate from transverse relaxation during the formation of frequency-dispersed echoes, the frequency was swept twice in two opposite directions and these two spectra after Fourier transformation were summed into a final spectrum 23. The recycle delays were 100 s for all glass samples. The chemical shifts of 125Te are calibrated by CdTe. All processing and deconvolutions of solid-state NMR spectra were done by DMFIT software package 24.
Fig. 2 shows the DSC curves of 100LiO1/2-(100−x)PO5/2-xTeO2 (x = 0, 10, 20, 25, 30) glasses. The glass transition temperature (Tg) of these glasses is almost constant within a measurement error of 10 ℃, which is due to the little change of bridging oxygen fractions in these glasses (as discussed below). Fig. 3 shows the Raman spectra of glass 0Te, 10Te, 20Te, 25Te and 30Te. The assignments of Raman vibration bands in this work refer to the previous literature 25-30. In glass 0Te (i.e. LiPO3), all phosphorus species should be metaphosphate Q0Te(2) species, where the QmTe(n) represents the phosphorus species with n bridging oxygen atoms (the oxygen atoms in P—O—P and P—O—Te linkages are both considered to be bridging oxygen atoms) and m Te atoms are connected to this [PO4] tetrahedron. The band at 1175 cm−1 corresponds to the symmetric stretching vibration of (PO2) units involving two P—O—Li linkages (v(PO2)sym). And the shoulder at 1255 cm−1 can be assigned to the asymmetric stretching vibration of (PO2) units (v(PO2)asym). The bands at 695 cm−1 are ascribed to the symmetric stretching vibration of the bridging oxygen between P—O—P linkages (v(POP)sym) in long-chain phosphate structures, while the bands at 745 cm−1 are ascribed to v(POP)sym in short-chain phosphate structures. After TeO2 is incorporated into glasses, a minor band at 1035 cm−1 can be observed, which is the symmetric stretching vibrations of (PO3) involving three P—O—Li linkages in Q0Te(1) species. The vibration bands associated with (TeO) structural units can be found at 480 and 635 cm−1, which are due to the symmetric stretching vibration of Te—O—Te (v(TeOTe)sym) and the asymmetric stretching of the continuous network composed of [TeO4] trigonal bipyramid (tbp), respectively. The vibration band at 820 cm−1 is ascribed to the [TeO3] trigonal pyramid (tp) 25, 29.
With the increase of TeO2, the intensity of v(POP)sym in long chains is gradually suppressed, while the band of v(POP)sym in short chains is raised, indicating that long P—O—P chains are broken into short P—O—P chains and more Q0Te(2) species transform into Q0Te(1) and Q1Te(2) species. Simultaneously, the transformation from Q0Te(2) species to Q1Te(2) species results in a slight broadening and shifting to lower wavenumber of v(PO2)sym and v(PO2)asym bands, since the symmetric and asymmetric v(PO2) in Q1Te(2) species have lower vibration frequency than that in Q0Te(2) species. Besides, when TeO2 is added into glasses, both three- and four-coordinated Te can be observed. Te-correlated vibration bands gradually rise as TeO2 increases.
Fig. 4 shows the 31P MAS NMR spectra and deconvolution models of all these glasses. For glass 0Te (i.e. LiPO3), a main peak at −22.7 ppm is observed, which is assigned to Q0Te(2) species. There is also a very small signal at −4.9 ppm corresponding to Q0Te(1) species. This is because the excess Li2O, due to a small number of volatilization of P2O5 during the melting, provides more nonbridging oxygen atoms to form Q0Te(1) species. When TeO2 is added into the glass, a new peak (at −13.6 ppm for 10Te glass) appears between the positions of Q0Te(2) and Q0Te(1), which can be ascribed to Q1Te(2) species according to the chemical shift position. With the increase of TeO2, Q0Te(2) species decrease significantly while Q1Te(2) and Q0Te(1) species increase, which is consistent with the results of Raman spectra.
31P refocused INADEQUATE spectra are employed to identify the 31P species and detect the correlations between 31P species. Fig. 5 shows 2D 31P refocused INADEQUATE spectrum of glass 30Te. In the F2 dimension, all peaks observed in ordinary 31P single pulse MAS NMR spectra (see Fig. 4) can also be found, which indicates that there are no isolated 31P species in 30Te glass. Six connectivities Q0Te(1)-Q0Te(1), Q0Te(1)-Q1Te(2), Q0Te(1)-Q0Te(2), Q1Te(2)-Q1Te(2), Q1Te(2)-Q0Te(2) and Q0Te(2)-Q0Te(2) can be observed, corresponding to nine correlation peaks marked by nine translucent red dots in Fig. 5. These results indicate that all the phosphorus species are connected with each other through P—O—P bond.
Static 125Te WURST-QCPMG spectra are generally preferred to probe the chemical environment of 125Te rather than magic angle spinning due to the very wide 125Te NMR chemical shift distributions 18. Fig. 6 illustrates the 125Te WURST-QCPMG spectra and deconvolution models. The deconvolution parameters are list in Table 1. There are two components in each spectrum. For 10Te glass, the positions of two components are 2898 and 2262 ppm, which can be assigned to three- and four-coordinated Te ([TeO3] and [TeO4] species), respectively. [TeO4] species are dominant when the concentration of TeO2 is low, but as more PO5/2 is substituted by TeO2, the relative proportion of [TeO3] gradually increases.
Sample | Unit | Position (ppm) (±5) | δcs (ppm) (±5) | ηcs | Area (%) (±5) |
10Te | [TeO3] | 2955 | −668 | 0 | 27.7 |
[TeO4] | 2237 | −766 | 0.5 | 72.3 | |
20Te | [TeO3] | 2968 | −671 | 0 | 35.0 |
[TeO4] | 2382 | −761 | 0.45 | 65.0 | |
25Te | [TeO3] | 2953 | −671 | 0 | 37.6 |
[TeO4] | 2392 | −791 | 0.45 | 62.4 | |
30Te | [TeO3] | 2945 | −668 | 0 | 44.9 |
[TeO4] | 2423 | −798 | 0.4 | 55.1 |
The deconvolution parameters of the 31P MAS NMR spectra (shown in Fig. 4) are summarized in Table 2. With the increase of x value, the proportion of Q0Te(2) species decreases while that of Q0Te(1) and Q1Te(2) species continuously increase. All the structures of phosphorus and tellurium units are shown in Fig. 7. Both Q0Te(2) and Q1Te(2) species have one Li+ ion on average while Q0Te(1) has two Li+ ions. The increase of Q0Te(1) with TeO2 indicates that Li+ ions prefer to stay around [PO4] units rather than tellurium oxygen polyhedrons. However, a minor number of Li+ ions still interact with tellurium oxygen polyhedrons to form [TeO3]. With the increase of TeO2, more Li+ ions interact with tellurium oxygen polyhedrons and resulting in the formation of more [TeO3].
Sample | Unit | δ (ppm) (±0.5) | FWHM (ppm) (±0.5) | Area (%) (±2) |
0Te | Q0Te(2) | −22.7 | 8.9 | 99.3 |
Q0Te(1) | −4.9 | 6.2 | 0.7 | |
10Te | Q0Te(2) | −22.1 | 9.2 | 65.2 |
Q1Te(2) | −13.6 | 10.5 | 25.5 | |
Q0Te(1) | −4.1 | 6.5 | 9.3 | |
20Te | Q0Te(2) | −20.9 | 9.5 | 36.9 |
Q1Te(2) | −12.3 | 10.5 | 45.2 | |
Q0Te(1) | −3.8 | 6.5 | 17.9 | |
25Te | Q0Te(2) | −20.3 | 9.5 | 25.3 |
Q1Te(2) | −11.6 | 11.0 | 52.9 | |
Q0Te(1) | −3.5 | 6.7 | 21.8 | |
30Te | Q0Te(2) | −20.0 | 11.3 | 16.0 |
Q1Te(2) | −10.6 | 9.5 | 57.9 | |
Q0Te(1) | −3.1 | 6.8 | 26.2 |
The oxygen atoms in P—O—P, P—O—Te and Te—O—Te are all considered to be bridging oxygen (BO). Thus, the content of Te—BO— bond can be obtained as follows:
N(Te—BO—)=[F(TeO3)×1+F(TeO4)×4]×N(Te) |
(1) |
where F(TeOn) is the relative fraction of TeOn species listed in Table 1, N(Te) is the total content of Te under the stoichiometry of 100LiO1/2- (100−x)PO5/2-xTeO2. Similarly, the content of P—BO— bond can be calculated as follows:
N(P—BO—)={F[Q(2)0Te]×2+F[Q(2)1Te]×2+F[Q(1)0Te]×1}×N(P) |
(2) |
Thus, the fractions of P—BO— and Te—BO— bonds can be calculated as follows:
F(P—BO—)=N(P—BO—)/[N(P—BO—)+N(Te—BO—)] |
(3) |
F(Te—BO—)=N(Te—BO—)/[N(P—BO—)+N(Te—BO—)] |
(4) |
Here, we propose a random distribution model. We assume that all P—BO— and Te—BO— randomly bond to form P—O—P, P—O—Te and Te—O—Te linkages, then the probabilities to form P—O—P, P—O—Te and Te—O—Te linkages are:
P(P—O—P)=F(P—BO—)2 |
(5) |
P(P—O—Te)=F(P—BO—)×F(Te—BO—)×2 |
(6) |
P(Te—O—Te)=F(Te—BO—)2 |
(7) |
And the total content of these three kinds of linkages is equal to the total content of BO as follows:
N(linkages)=N(BO)=[N(P—BO—)+N(Te—BO—)]/2 |
(8) |
Thus, the theoretical contents of P—O—P, P—O—Te and Te—O—Te (under the stoichiometry of 100LiO1/2-(100−x)PO5/2-xTeO2.) can be calculated according to the random distribution model as follows:
N(P—O—P)=N(BO)×P(P—O—P) |
(9) |
N(P—O—Te)=N(BO)×P(P—O—Te) |
(10) |
N(Te—O—Te)=N(BO)×P(Te—O—Te) |
(11) |
Simultaneously, the experimental contents of P—O—P, P—O—Te, Te—O—Te can be calculated from the deconvolutions of 125Te WURST-QCPMG and 31P MAS NMR spectra (list in Table 1 and Table 2) as follows:
N(P—O—P)={F[Q(2)0Te]×1+F[Q(2)1Te]×0.5+F[Q(1)0Te]×0.5}×N(P) |
(12) |
N(P—O—Te)=F[Q(2)1Te]×1×N(P) |
(13) |
N(Te—O—Te)=N(BO)−N(P—O—P)−N(P—O—Te) |
(14) |
Fig. 8 shows the comparisons between the theoretical (red) and experimental (black) contents of P—O—P, P—O—Te and Te—O—Te linkages. For both P—O—P and Te—O—Te linkages, the experimental values are slightly higher than the theoretical ones. And for P—O—Te linkage, it is inverse. These indicate that P and Te atoms slightly prefer homonuclear connectivity than heteronuclear connectivity.
In this glass system, the fractions of BO in total oxygen atoms can be calculated:
F(BO)=N(BO)/N(O) |
(15) |
Fig. 9 shows the change trends of the total fractions of BO and the Tg values. With the increase of TeO2, the fraction of BO and Tg have similar change trends that they almost remain constant within errors. This is not unexpected since the strength of the glass network depends on the fraction of BO. The similar BO fractions indicate the similar glass network connectivities and similar Tg in this glass system.
The structures of the glasses in 100LiO1/2-(100−x)PO5/2-xTeO2 (x = 0, 10, 20, 25, 30) system are investigated by solid-state NMR technologies and Raman spectroscopy. When TeO2 is incorporated into these glasses, long P—O—P chains involved in glass networks are broken into short chains and Q0Te(2) species gradually transform into Q1Te(2) and Q0Te(1) species. Q0Te(2), Q1Te(2) and Q0Te(1) species are connected with each other through P—O—P. With the addition of TeO2, a minor number of Li+ ions interact with tellurium oxygen polyhedrons resulting in the formation of [TeO3]. However, Li+ ions prefer to stay around [PO4] units rather than tellurium oxygen polyhedrons. Therefore, only a small fraction of [TeO3] is formed, which increases with the content of TeO2. Most Te atoms exist as [TeO4] in all these glasses. With PO5/2 being gradually replaced by TeO2, both the Tg and the fraction of bridging oxygen are almost unchanged, which means the glass network connectivity has no obvious change. The homonuclear connectivities P—O—P and Te—O—Te show slight priority over the heteronuclear connectivity P—O—Te. In summary, this study presents a comprehensive structure study of Li-doped tellurium phosphate ionic conducting glasses. This work could promote the understanding of the glass structure dependence on compositions and the development of new ionic conducting glasses.
We thank Yujing Shen (Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences) and Sasa Yan (Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences) for their assistance on the DSC and Raman measurements, respectively.
He, D.; Kang, S.; Zhang, L.; Chen, L.; Ding, Y.; Yin, Q.; Hu, L. High Power Laser Sci. Eng. 2017, 5, e1. doi: 10.1017/hpl.2016.46
doi: 10.1017/hpl.2016.46
Hu, L.; Chen, S.; Tang, J.; Wang, B.; Meng, T.; Chen, W.; Wen, L.; Hu, J.; Li, S.; Xu, Y.; et al. High Power Laser Sci. Eng. 2014, 2, e1. doi: 10.1017/hpl.2014.4
doi: 10.1017/hpl.2014.4
Campbell, J. H.; Suratwala, T. I. J. Non. Cryst. Solids 2000, 263, 318. doi: 10.1016/S0022-3093(99)00645-6
doi: 10.1016/S0022-3093(99)00645-6
Kim, Y. P.; Lee, G. S.; Kim, J. W.; Kim, M. S.; Ahn, H. S.; Lim, J. Y.; Kim, H. W.; Son, Y. J.; Knowles, J. C.; Hyun, J. K. J. Tissue Eng. Regen. Med. 2015, 9 (3), 236. doi: 10.1002/term.1626
doi: 10.1002/term.1626
Ahmed, I.; Lewis, M.; Olsen, I.; Knowles, J. C. Biomaterials 2004, 25 (3), 491. doi: 10.1016/S0142-9612(03)00546-5
doi: 10.1016/S0142-9612(03)00546-5
Shah, R.; Sinanan, A. C. M.; Knowles, J. C.; Hunt, N. P.; Lewis, M. P. Biomaterials 2005, 26 (13), 1497. doi: 10.1016/j.biomaterials.2004.04.049
doi: 10.1016/j.biomaterials.2004.04.049
Ahmed, I.; Collins, C. A.; Lewis, M. P.; Olsen, I.; Knowles, J. C. Biomaterials 2004, 25 (16), 3223. doi: 10.1016/j.biomaterials.2003.10.013
doi: 10.1016/j.biomaterials.2003.10.013
Mangion, M.; Johari, G. P. Phys. Rev. B 1987, 36 (16), 8845. doi: 10.1103/PhysRevB.36.8845
doi: 10.1103/PhysRevB.36.8845
Martin, S. W. J. Am. Ceram. Soc. 1991, 74 (8), 1767. doi: 10.1111/j.1151-2916.1991.tb07788.x
doi: 10.1111/j.1151-2916.1991.tb07788.x
Brow, R. K. J. Non. Cryst. Solids 2000, 263, 1. doi: 10.1016/S0022-3093(99)00620-1
doi: 10.1016/S0022-3093(99)00620-1
Brow, R. K.; Click, C. A.; Alam, T. M. J. Non. Cryst. Solids 2000, 274 (1–3), 9. doi: 10.1016/S0022-3093(00)00178-2
doi: 10.1016/S0022-3093(00)00178-2
Nakata, S.; Togashi, T.; Honma, T.; Komatsu, T. J. Non. Cryst. Solids 2016, 450, 109. doi: 10.1016/j.jnoncrysol.2016.08.005
doi: 10.1016/j.jnoncrysol.2016.08.005
Rioux, M.; Ledemi, Y.; Viens, J.; Morency, S.; Ghaffari, S. A.; Messaddeq, Y. RSC Adv. 2015, 5 (50), 40236. doi: 10.1039/C5RA00681C
doi: 10.1039/C5RA00681C
Rioux, M.; Ledemi, Y.; Messaddeq, Y. J. Non. Cryst. Solids 2017, 459, 169. doi: 10.1016/j.jnoncrysol.2017.01.011
doi: 10.1016/j.jnoncrysol.2017.01.011
Cho, K. I.; Lee, S. H.; Shin, D. W.; Sun, Y. K. Electrochim. Acta 2006, 52 (4), 1576. doi: 10.1016/j.electacta.2006.02.065
doi: 10.1016/j.electacta.2006.02.065
de Oliveira, M.; Oliveira, J. S.; Kundu, S.; Machado, N. M. P.; Rodrigues, A. C. M.; Eckert, H. J. Non. Cryst. Solids 2018, 482, 14. doi: 10.1016/j.jnoncrysol.2017.11.052
doi: 10.1016/j.jnoncrysol.2017.11.052
Larink, D.; Rinke, M. T.; Eckert, H. J. Phys. Chem. C 2015, 119 (31), 17539. doi: 10.1021/acs.jpcc.5b04074
doi: 10.1021/acs.jpcc.5b04074
de Oliveira, M.; Amjad, R. J.; de Camargo, A. S. S.; Eckert, H. J. Phys. Chem. C 2018, 122 (41), 23698. doi: 10.1021/acs.jpcc.8b07827
doi: 10.1021/acs.jpcc.8b07827
Blais-Roberge, M.; Santagneli, S. H.; Messaddeq, S. H.; Rioux, M.; Ledemi, Y.; Eckert, H.; Messaddeq, Y. J. Phys. Chem. C 2017, 121 (25), 13823. doi: 10.1021/acs.jpcc.7b03684
doi: 10.1021/acs.jpcc.7b03684
Dongbei, L.; Shuai, X.; Zhiwu, Y. Chin. J. Magn. Reson. 2017, 34 (1), 115. doi: 10.11938/cjmr20170114
doi: 10.11938/cjmr20170114
Lesage, A.; Bardet, M.; Emsley, L. J. Am. Chem. Soc. 1999, 121 (47), 10987. doi: 10.1021/ja992272b
doi: 10.1021/ja992272b
Guerry, P.; Smith, M. E.; Brown, S. P. J. Am. Chem. Soc. 2009, 131 (33), 11861. doi: 10.1021/ja902238s
doi: 10.1021/ja902238s
O'Dell, L. A.; Schurko, R. W. Chem. Phys. Lett. 2008, 464 (1–3), 97. doi: 10.1016/j.cplett.2008.08.095a
doi: 10.1016/j.cplett.2008.08.095a
Massiot, D.; Fayon, F.; Capron, M.; King, I.; Le Calvé, S.; Alonso, B.; Durand, J. O.; Bujoli, B.; Gan, Z.; Hoatson, G. Magn. Reson. Chem. 2002, 40 (1), 70. doi: 10.1002/mrc.984
doi: 10.1002/mrc.984
Chowdari, B. V..; Kumari, P. P. Mater. Res. Bull. 1999, 34 (2), 327. doi: 10.1016/S0025-5408(99)00012-4
doi: 10.1016/S0025-5408(99)00012-4
Himei, Y.; Osaka, A.; Nanba, T.; Miura, Y. J. Non. Cryst. Solids 1994, 177, 164. doi: 10.1016/0022-3093(94)90526-6
doi: 10.1016/0022-3093(94)90526-6
Sekiya, T.; Mochida, N.; Ohtsuka, A.; Tonokawa, M. J. Non. Cryst. Solids 1992, 144, 128. doi: 10.1016/S0022-3093(05)80393-X
doi: 10.1016/S0022-3093(05)80393-X
Irannejad, M.; Jose, G.; Jha, A.; Steenson, P. Opt. Commun. 2012, 285 (10–11), 2646. doi: 10.1016/j.optcom.2012.01.073
doi: 10.1016/j.optcom.2012.01.073
Murugan, G. S.; Suzuki, T.; Ohishi, Y. J. Appl. Phys. 2006, 100 (2), 023107. doi: 10.1063/1.2215218
doi: 10.1063/1.2215218
Brow, R. K.; Tallant, D. R.; Hudgens, J. J.; Martin, S. W.; Irwin, A. D. J. Non. Cryst. Solids 1994, 177, 221. doi: 10.1016/0022-3093(94)90534-7
doi: 10.1016/0022-3093(94)90534-7
He, D.; Kang, S.; Zhang, L.; Chen, L.; Ding, Y.; Yin, Q.; Hu, L. High Power Laser Sci. Eng. 2017, 5, e1. doi: 10.1017/hpl.2016.46
doi: 10.1017/hpl.2016.46
Hu, L.; Chen, S.; Tang, J.; Wang, B.; Meng, T.; Chen, W.; Wen, L.; Hu, J.; Li, S.; Xu, Y.; et al. High Power Laser Sci. Eng. 2014, 2, e1. doi: 10.1017/hpl.2014.4
doi: 10.1017/hpl.2014.4
Campbell, J. H.; Suratwala, T. I. J. Non. Cryst. Solids 2000, 263, 318. doi: 10.1016/S0022-3093(99)00645-6
doi: 10.1016/S0022-3093(99)00645-6
Kim, Y. P.; Lee, G. S.; Kim, J. W.; Kim, M. S.; Ahn, H. S.; Lim, J. Y.; Kim, H. W.; Son, Y. J.; Knowles, J. C.; Hyun, J. K. J. Tissue Eng. Regen. Med. 2015, 9 (3), 236. doi: 10.1002/term.1626
doi: 10.1002/term.1626
Ahmed, I.; Lewis, M.; Olsen, I.; Knowles, J. C. Biomaterials 2004, 25 (3), 491. doi: 10.1016/S0142-9612(03)00546-5
doi: 10.1016/S0142-9612(03)00546-5
Shah, R.; Sinanan, A. C. M.; Knowles, J. C.; Hunt, N. P.; Lewis, M. P. Biomaterials 2005, 26 (13), 1497. doi: 10.1016/j.biomaterials.2004.04.049
doi: 10.1016/j.biomaterials.2004.04.049
Ahmed, I.; Collins, C. A.; Lewis, M. P.; Olsen, I.; Knowles, J. C. Biomaterials 2004, 25 (16), 3223. doi: 10.1016/j.biomaterials.2003.10.013
doi: 10.1016/j.biomaterials.2003.10.013
Mangion, M.; Johari, G. P. Phys. Rev. B 1987, 36 (16), 8845. doi: 10.1103/PhysRevB.36.8845
doi: 10.1103/PhysRevB.36.8845
Martin, S. W. J. Am. Ceram. Soc. 1991, 74 (8), 1767. doi: 10.1111/j.1151-2916.1991.tb07788.x
doi: 10.1111/j.1151-2916.1991.tb07788.x
Brow, R. K. J. Non. Cryst. Solids 2000, 263, 1. doi: 10.1016/S0022-3093(99)00620-1
doi: 10.1016/S0022-3093(99)00620-1
Brow, R. K.; Click, C. A.; Alam, T. M. J. Non. Cryst. Solids 2000, 274 (1–3), 9. doi: 10.1016/S0022-3093(00)00178-2
doi: 10.1016/S0022-3093(00)00178-2
Nakata, S.; Togashi, T.; Honma, T.; Komatsu, T. J. Non. Cryst. Solids 2016, 450, 109. doi: 10.1016/j.jnoncrysol.2016.08.005
doi: 10.1016/j.jnoncrysol.2016.08.005
Rioux, M.; Ledemi, Y.; Viens, J.; Morency, S.; Ghaffari, S. A.; Messaddeq, Y. RSC Adv. 2015, 5 (50), 40236. doi: 10.1039/C5RA00681C
doi: 10.1039/C5RA00681C
Rioux, M.; Ledemi, Y.; Messaddeq, Y. J. Non. Cryst. Solids 2017, 459, 169. doi: 10.1016/j.jnoncrysol.2017.01.011
doi: 10.1016/j.jnoncrysol.2017.01.011
Cho, K. I.; Lee, S. H.; Shin, D. W.; Sun, Y. K. Electrochim. Acta 2006, 52 (4), 1576. doi: 10.1016/j.electacta.2006.02.065
doi: 10.1016/j.electacta.2006.02.065
de Oliveira, M.; Oliveira, J. S.; Kundu, S.; Machado, N. M. P.; Rodrigues, A. C. M.; Eckert, H. J. Non. Cryst. Solids 2018, 482, 14. doi: 10.1016/j.jnoncrysol.2017.11.052
doi: 10.1016/j.jnoncrysol.2017.11.052
Larink, D.; Rinke, M. T.; Eckert, H. J. Phys. Chem. C 2015, 119 (31), 17539. doi: 10.1021/acs.jpcc.5b04074
doi: 10.1021/acs.jpcc.5b04074
de Oliveira, M.; Amjad, R. J.; de Camargo, A. S. S.; Eckert, H. J. Phys. Chem. C 2018, 122 (41), 23698. doi: 10.1021/acs.jpcc.8b07827
doi: 10.1021/acs.jpcc.8b07827
Blais-Roberge, M.; Santagneli, S. H.; Messaddeq, S. H.; Rioux, M.; Ledemi, Y.; Eckert, H.; Messaddeq, Y. J. Phys. Chem. C 2017, 121 (25), 13823. doi: 10.1021/acs.jpcc.7b03684
doi: 10.1021/acs.jpcc.7b03684
Dongbei, L.; Shuai, X.; Zhiwu, Y. Chin. J. Magn. Reson. 2017, 34 (1), 115. doi: 10.11938/cjmr20170114
doi: 10.11938/cjmr20170114
Lesage, A.; Bardet, M.; Emsley, L. J. Am. Chem. Soc. 1999, 121 (47), 10987. doi: 10.1021/ja992272b
doi: 10.1021/ja992272b
Guerry, P.; Smith, M. E.; Brown, S. P. J. Am. Chem. Soc. 2009, 131 (33), 11861. doi: 10.1021/ja902238s
doi: 10.1021/ja902238s
O'Dell, L. A.; Schurko, R. W. Chem. Phys. Lett. 2008, 464 (1–3), 97. doi: 10.1016/j.cplett.2008.08.095a
doi: 10.1016/j.cplett.2008.08.095a
Massiot, D.; Fayon, F.; Capron, M.; King, I.; Le Calvé, S.; Alonso, B.; Durand, J. O.; Bujoli, B.; Gan, Z.; Hoatson, G. Magn. Reson. Chem. 2002, 40 (1), 70. doi: 10.1002/mrc.984
doi: 10.1002/mrc.984
Chowdari, B. V..; Kumari, P. P. Mater. Res. Bull. 1999, 34 (2), 327. doi: 10.1016/S0025-5408(99)00012-4
doi: 10.1016/S0025-5408(99)00012-4
Himei, Y.; Osaka, A.; Nanba, T.; Miura, Y. J. Non. Cryst. Solids 1994, 177, 164. doi: 10.1016/0022-3093(94)90526-6
doi: 10.1016/0022-3093(94)90526-6
Sekiya, T.; Mochida, N.; Ohtsuka, A.; Tonokawa, M. J. Non. Cryst. Solids 1992, 144, 128. doi: 10.1016/S0022-3093(05)80393-X
doi: 10.1016/S0022-3093(05)80393-X
Irannejad, M.; Jose, G.; Jha, A.; Steenson, P. Opt. Commun. 2012, 285 (10–11), 2646. doi: 10.1016/j.optcom.2012.01.073
doi: 10.1016/j.optcom.2012.01.073
Murugan, G. S.; Suzuki, T.; Ohishi, Y. J. Appl. Phys. 2006, 100 (2), 023107. doi: 10.1063/1.2215218
doi: 10.1063/1.2215218
Brow, R. K.; Tallant, D. R.; Hudgens, J. J.; Martin, S. W.; Irwin, A. D. J. Non. Cryst. Solids 1994, 177, 221. doi: 10.1016/0022-3093(94)90534-7
doi: 10.1016/0022-3093(94)90534-7
Xinzhi Ding , Chong Liu , Jing Niu , Nan Chen , Shutao Xu , Yingxu Wei , Zhongmin Liu . Solid-state NMR study of the stability of MOR framework aluminum. Chinese Journal of Structural Chemistry, 2024, 43(4): 100247-100247. doi: 10.1016/j.cjsc.2024.100247
Huixin Chen , Chen Zhao , Hongjun Yue , Guiming Zhong , Xiang Han , Liang Yin , Ding Chen . Unraveling the reaction mechanism of high reversible capacity CuP2/C anode with native oxidation POx component for sodium-ion batteries. Chinese Chemical Letters, 2025, 36(1): 109650-. doi: 10.1016/j.cclet.2024.109650
Yang Deng , Yitao Ouyang , Chao Han . Constriction-susceptible makes fast cycling of lithium metal in solid-state batteries: Silicon as an example. Chinese Journal of Structural Chemistry, 2024, 43(7): 100276-100276. doi: 10.1016/j.cjsc.2024.100276
Dong Sui , Jiayi Liu . Constriction-susceptible lithium support for fast cycling of solid-state lithium metal battery. Chinese Chemical Letters, 2025, 36(2): 110417-. doi: 10.1016/j.cclet.2024.110417
Biao Fang , Runwei Mo . PVDF-based solid-state battery. Chinese Journal of Structural Chemistry, 2024, 43(8): 100347-100347. doi: 10.1016/j.cjsc.2024.100347
Qian Wang , Ting Gao , Xiwen Lu , Hangchao Wang , Minggui Xu , Longtao Ren , Zheng Chang , Wen Liu . Nanophase separated, grafted alternate copolymer styrene-maleic anhydride as an efficient room temperature solid state lithium ion conductor. Chinese Chemical Letters, 2024, 35(7): 108887-. doi: 10.1016/j.cclet.2023.108887
Tianyi Hou , Yunhui Huang , Henghui Xu . Interfacial engineering for advanced solid-state Li-metal batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100313-100313. doi: 10.1016/j.cjsc.2024.100313
Peng Jia , Yunna Guo , Dongliang Chen , Xuedong Zhang , Jingming Yao , Jianguo Lu , Liqiang Zhang . In-situ imaging electrocatalysis in a solid-state Li-O2 battery with CuSe nanosheets as air cathode. Chinese Chemical Letters, 2024, 35(5): 108624-. doi: 10.1016/j.cclet.2023.108624
Qianqian Song , Yunting Zhang , Jianli Liang , Si Liu , Jian Zhu , Xingbin Yan . Boron nitride nanofibers enhanced composite PEO-based solid-state polymer electrolytes for lithium metal batteries. Chinese Chemical Letters, 2024, 35(6): 108797-. doi: 10.1016/j.cclet.2023.108797
Chaochao Wei , Ru Wang , Zhongkai Wu , Qiyue Luo , Ziling Jiang , Liang Ming , Jie Yang , Liping Wang , Chuang Yu . Revealing the size effect of FeS2 on solid-state battery performances at different operating temperatures. Chinese Chemical Letters, 2024, 35(6): 108717-. doi: 10.1016/j.cclet.2023.108717
Caixia Li , Yi Qiu , Yufeng Zhao , Wuliang Feng . Self assembled electron blocking and lithiophilic interface towards dendrite-free solid-state lithium battery. Chinese Chemical Letters, 2024, 35(4): 108846-. doi: 10.1016/j.cclet.2023.108846
Ting WANG , Peipei ZHANG , Shuqin LIU , Ruihong WANG , Jianjun ZHANG . A Bi-CP-based solid-state thin-film sensor: Preparation and luminescence sensing for bioamine vapors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1615-1621. doi: 10.11862/CJIC.20240134
Ying Li , Yanjun Xu , Xingqi Han , Di Han , Xuesong Wu , Xinlong Wang , Zhongmin Su . A new metal–organic rotaxane framework for enhanced ion conductivity of solid-state electrolyte in lithium-metal batteries. Chinese Chemical Letters, 2024, 35(9): 109189-. doi: 10.1016/j.cclet.2023.109189
Linhui Liu , Wuwan Xiong , Mingli Fu , Junliang Wu , Zhenguo Li , Daiqi Ye , Peirong Chen . Efficient NOx abatement by passive adsorption over a Pd-SAPO-34 catalyst prepared by solid-state ion exchange. Chinese Chemical Letters, 2024, 35(4): 108870-. doi: 10.1016/j.cclet.2023.108870
Shuai Li , Liuting Zhang , Fuying Wu , Yiqun Jiang , Xuebin Yu . Efficient catalysis of FeNiCu-based multi-site alloys on magnesium-hydride for solid-state hydrogen storage. Chinese Chemical Letters, 2025, 36(1): 109566-. doi: 10.1016/j.cclet.2024.109566
Xin Li , Ling Zhang , Yunyan Fan , Shaojing Lin , Yong Lin , Yongsheng Ying , Meijiao Hu , Haiying Gao , Xianri Xu , Zhongbiao Xia , Xinchuan Lin , Junjie Lu , Xiang Han . Carbon interconnected microsized Si film toward high energy room temperature solid-state lithium-ion batteries. Chinese Chemical Letters, 2025, 36(2): 109776-. doi: 10.1016/j.cclet.2024.109776
Ziling Jiang , Shaoqing Chen , Chaochao Wei , Ziqi Zhang , Zhongkai Wu , Qiyue Luo , Liang Ming , Long Zhang , Chuang Yu . Enabling superior electrochemical performance of NCA cathode in Li5.5PS4.5Cl1.5-based solid-state batteries with a dual-electrolyte layer. Chinese Chemical Letters, 2024, 35(4): 108561-. doi: 10.1016/j.cclet.2023.108561
Mengxiang Zhu , Tao Ding , Yunzhang Li , Yuanjie Peng , Ruiping Liu , Quan Zou , Leilei Yang , Shenglei Sun , Pin Zhou , Guosheng Shi , Dongting Yue . Graphene controlled solid-state growth of oxygen vacancies riched V2O5 catalyst to highly activate Fenton-like reaction. Chinese Chemical Letters, 2024, 35(12): 109833-. doi: 10.1016/j.cclet.2024.109833
Ce Liang , Qiuhui Sun , Adel Al-Salihy , Mengxin Chen , Ping Xu . Recent advances in crystal phase induced surface-enhanced Raman scattering. Chinese Chemical Letters, 2024, 35(9): 109306-. doi: 10.1016/j.cclet.2023.109306
Zizhuo Liang , Fuming Du , Ning Zhao , Xiangxin Guo . Revealing the reason for the unsuccessful fabrication of Li3Zr2Si2PO12 by solid state reaction. Chinese Journal of Structural Chemistry, 2023, 42(11): 100108-100108. doi: 10.1016/j.cjsc.2023.100108