Loading [MathJax]/jax/output/SVG/jax.js

Citation: Zhang Zonghui, Ren Jinjun, Hu Lili. Structure Investigations on 100LiO1/2-(100-x)PO5/2-xTeO2 Fast Ionic Conducting Glasses Using Solid-State Nuclear Magnetic Resonance Spectroscopy[J]. Acta Physico-Chimica Sinica, ;2020, 36(11): 200104. doi: 10.3866/PKU.WHXB202001048 shu

Structure Investigations on 100LiO1/2-(100-x)PO5/2-xTeO2 Fast Ionic Conducting Glasses Using Solid-State Nuclear Magnetic Resonance Spectroscopy

  • Corresponding author: Ren Jinjun, renjinjunsiom@163.com Hu Lili, hulili@siom.ac.cn
  • Received Date: 19 January 2020
    Revised Date: 18 February 2020
    Accepted Date: 19 February 2020
    Available Online: 9 March 2020

    Fund Project: the National Natural Science Foundation of China 61675218The project was supported by the National Natural Science Foundation of China (61675218) and the 100 Talents Program of Chinese Academy of Sciences

  • Modified phosphate glasses can be used in all-solid-state batteries as solid electrolytes and cathodes due to their high ionic conductivity. The properties of fast ionic conducting glasses are strongly related to the structure of the glass networks. However, most previous works have focused on improving the ionic conductivity of such glasses by composition adjustments, while structural studies are scant. Structural investigations are essential to understand the composition dependence of the glass structure, which is valuable for improving the ionic conductivity and developing new ionic conducting glasses. In this work, phosphate ionic conducting glasses with compositions of 100LiO1/2-(100-x)PO5/2-xTeO2 (x = 0, 10, 20, 25, 30) were synthesized, and their structures were investigated using Raman and solid-state nuclear magnetic resonance (SSNMR) spectroscopy. When x = 0, Raman and 31P magic angle spinning (MAS) NMR spectra showed that most of the phosphorus species were Q0Te(2) species, while the concentration of Q0Te(1) species was negligible. QmTe(n) represents the phosphorus species with n bridging oxygen atoms (the oxygen atoms in P—O—P and P—O—Te linkages are both considered to be bridging oxygen atoms), and m Te atoms are connected to this [PO4] tetrahedron. When PO5/2 is substituted with TeO2, long P—O—P chains are broken into short chains, and Q0Te(2) species gradually transform into Q1Te(2) and Q0Te(1) species. Two-dimensional (2D) refocused incredible natural abundance double quantum transfer experiment (INADEQUATE) spectra proved that no isolated phosphorus species existed in the glasses; Q0Te(2), Q1Te(2), and Q0Te(1) species were connected with each other through P—O—P linkages. Three- and four-coordinated Te were observed in the static 125Te wideband uniform-rate smooth truncation quadrupolar Carr-Purcell-Meiboom-Gill (WURST-QCPMG) spectra. When the concentration of TeO2 was low, four-coordinated Te was dominant. However, with the increase in TeO2, the proportion of three-coordinated Te gradually increased, while that of four-coordinated Te decreased. The experimental contents of P—O—P, P—O—Te, and Te—O—Te linkages in these glasses were calculated from the deconvolutions of 31P and 125Te NMR spectra. Then, the experimental contents were compared with the theoretical contents calculated according to a random distribution model. It was found that the experimental contents of homonuclear P—O—P and Te—O—Te linkages were slightly higher than their corresponding theoretical values, while the experimental content of heteronuclear P—O—Te was slightly lower than the theoretical value. These results indicated a weak priority for homonuclear connectivities. In this glass system, Li+ ions preferred to stay around [PO4] tetrahedrons rather than tellurium oxygen polyhedrons. However, a small number of Li+ ions still interacted with tellurium oxygen polyhedrons to form [TeO3] units. During the substitution of PO5/2 by TeO2, the fractions of bridging oxygen atoms in these glasses were almost unchanged, resulting in a slight change in the glass transition temperature. This work provides a comprehensive description of glass networks, depending on their compositions, which could be valuable for improving the ionic conductivity and for designing new fast ionic conducting glasses through structural modifications.
  • Phosphate glasses have been widely applied in high power laser devices 1-3, biological materials 4-7, and fast ionic conducting glasses 8, 9. Phosphate ionic conducting glasses, which can be used in "all-solid-state" batteries, are attracting more attention. "All-solid-state" battery is considered to be a very important solution for next-generation rechargeable batteries due to the simple structure, high energy density, and great safety. The properties of phosphate ionic conducting glasses, as potential solid-state electrolyte or cathode materials, can be improved by incorporating various components due to the flexible compositions and admirable vitrification abilities 10, 11. For instance, a series of Na2O-FeO-P2O5 glasses were evaluated as the cathodes for sodium-ion batteries, the conductivity increased with the increase of FeO and 30Na2O-40FeO-30P2O5 glass exhibited high reversible discharge capacity as 115 mAh∙g−1 with a Na anode 12. In the AgI-P2O5 conducting glass system, the addition of tungsten oxide (WO3) can adjust the glass transition temperature, thermal expansion coefficient, refractive index, optical band edge, electrical conductivity, and improve considerably glass stability against water and humidity in the environment, which are important for drawing conductive fibers 13, 14.

    The properties of fast ionic conducting glasses are strongly related to the glass network structures. The structure investigations can help to establish the connection between the glass structure and the composition. However, further structural investigations are rarely reported. With the help of mature vibration spectroscopy technologies, such as FTIR and Raman spectra, the structures of ionic conducting glasses can be analyzed. FTIR and Raman spectroscopy was used to study the structures of solid-state glass electrolytes with the compositions of xLi2O-(1−x)[yB2O3-(1−y)P2O5], in which more P2O5 could convert the [BO3] into [BO4] and reduce the Li+ ion conductivity, while more B2O3 could increase [BO3] thus increasing the Li+ ion conductivity of glass electrolyte 15.

    Recent years, advanced solid-state nuclear magnetic resonance (SSNMR) spectroscopy technologies have shown outstanding advantages on probing the structures of vitreous materials, due to their flexible and powerful capabilities on detecting the glass networks within short- and medium-range 16-20. The structures of AgI-AgPO3-Ag2WO4 ionic conducting glasses were investigated using multiple SSNMR technologies, the successive conversion from P—O—P into P—O—W linkages were observed, and the Q(2)-like chain were broken into Q(1) and Q(0) species linked tungsten species and this structural transformation increased the glass rigidity and stability against hydrolysis reactions 19.

    In this work, the structures of the glasses with the compositions of 100LiO1/2-(100−x)PO5/2-xTeO2 (x = 0, 10, 20, 25, 30) are investigated using Raman spectroscopy and multiple SSNMR technologies. The evolution of phosphorus species is tracked using 31P MAS NMR and Raman spectra. The connectivities between phosphorus species are identified by 2D refocused INADEQUATE spectra. 125Te WURST-QCPMG experiments are employed to probing the local chemical environments of Te atoms. The correlations between different structure units are discussed based on a random distribution model. Summarized from all discussions, a comprehensive depiction of glass networks is presented.

    All these glass samples with the compositions of 100LiO1/2-(100−x)PO5/2-xTeO2 (x = 0, 10, 20, 25, 30) were prepared from LiPO3 (99.9%), Li2CO3 (99.9%) and TeO2 (99.99%). These raw materials were weighed according to the compositions with a total weight of 5 g, and then mixed in a platinum crucible. All these glasses were melted at 800 ℃ for 20 min and then the melts were cast on a preheated stainless-steel mold. These glass samples are labeled as 0Te, 10Te, 20Te, 25Te and 30Te for x = 0, 10, 20, 25, 30, respectively. The differential scanning calorimetry (DSC) curves were obtained using a METTLER TOLEDO TGA/DSC-1600 differential scanning calorimeter. During these measurements, glass samples were heated under N2 atmosphere with a heating rate of 10 K∙min−1. Raman spectra were obtained by a Renishaw in via Raman microscope with an excitation wavelength of 488 nm.

    In this work, all NMR measurements were operated on a Bruker Avance Ⅲ HD 500 MHz spectrometer (11.7 T). All 31P single pulse MAS NMR spectra were obtained at 202.5 MHz using a 4 mm probe with experimental conditions as followed: the spinning rate is 12 kHz, the length of 90° pulse is 2.5 μs, the recycle delays are 320 s for all samples. And crystalline NH4H2PO4 (chemical shift = 1.12 ppm) were employed to calibrate the chemical shifts of 31P.

    To identify different 31P spices and obtain the correlations between these 31P species, two-dimensional (2D) refocused INADEQUATE experiments were adopted, in which the 31P species involved in P—O—P linkages can be detected by a double quantum (DQ) coherence process created based on J-coupling effect through P—O—P bond, while the isolated 31P species will be filtered out 21, 22. Fig. 1 shows the pulse scheme of the refocused INADEQUATE and homologous coherence transfer pathway. In 2D refocused INADEQUATE spectra, the F2 dimension and the F1 dimension show the regular one quantum coherence spectrum and double quantum coherence resonance frequency, respectively. The double quantum coherence resonance frequency in the F1 dimension equals the sum of their offset frequencies and autocorrelation peaks will appear at both sides of the diagonal. In this work, 2D refocused INADEQUATE experiments were done using a 2.5 mm probe with a spinning rate of 25 kHz. The length of π/2 pulse is 2.0 μs and the recycle delay is 60 s. The DQ filtered coherence was created using an excitation sequence of 90°–τ–180°– τ– 90°, and the mixing time τ was optimized to be 3.32 ms.

    Figure 1

    Figure 1.  The pulse scheme of refocused INADEQUATE and homologous coherence transfer pathway.

    The chemical environment of 125Te nuclei was detected using the static wideband uniform-rate smooth truncation quadrupolar Carr-Purcell-Meiboom-Gill (WURST-QCPMG) technique 23. The WURST-80 pulse shape was employed using an 8-step phase cycling. The pulses length of WURST excitation and refocusing were both 50 μs, and the excitation bandwidth was 700 kHz. To compensate the line shape distortions, which originate from transverse relaxation during the formation of frequency-dispersed echoes, the frequency was swept twice in two opposite directions and these two spectra after Fourier transformation were summed into a final spectrum 23. The recycle delays were 100 s for all glass samples. The chemical shifts of 125Te are calibrated by CdTe. All processing and deconvolutions of solid-state NMR spectra were done by DMFIT software package 24.

    Fig. 2 shows the DSC curves of 100LiO1/2-(100−x)PO5/2-xTeO2 (x = 0, 10, 20, 25, 30) glasses. The glass transition temperature (Tg) of these glasses is almost constant within a measurement error of 10 ℃, which is due to the little change of bridging oxygen fractions in these glasses (as discussed below). Fig. 3 shows the Raman spectra of glass 0Te, 10Te, 20Te, 25Te and 30Te. The assignments of Raman vibration bands in this work refer to the previous literature 25-30. In glass 0Te (i.e. LiPO3), all phosphorus species should be metaphosphate Q0Te(2) species, where the QmTe(n) represents the phosphorus species with n bridging oxygen atoms (the oxygen atoms in P—O—P and P—O—Te linkages are both considered to be bridging oxygen atoms) and m Te atoms are connected to this [PO4] tetrahedron. The band at 1175 cm−1 corresponds to the symmetric stretching vibration of (PO2) units involving two P—O—Li linkages (v(PO2)sym). And the shoulder at 1255 cm−1 can be assigned to the asymmetric stretching vibration of (PO2) units (v(PO2)asym). The bands at 695 cm−1 are ascribed to the symmetric stretching vibration of the bridging oxygen between P—O—P linkages (v(POP)sym) in long-chain phosphate structures, while the bands at 745 cm−1 are ascribed to v(POP)sym in short-chain phosphate structures. After TeO2 is incorporated into glasses, a minor band at 1035 cm−1 can be observed, which is the symmetric stretching vibrations of (PO3) involving three P—O—Li linkages in Q0Te(1) species. The vibration bands associated with (TeO) structural units can be found at 480 and 635 cm−1, which are due to the symmetric stretching vibration of Te—O—Te (v(TeOTe)sym) and the asymmetric stretching of the continuous network composed of [TeO4] trigonal bipyramid (tbp), respectively. The vibration band at 820 cm−1 is ascribed to the [TeO3] trigonal pyramid (tp) 25, 29.

    Figure 2

    Figure 2.  The DSC curves of the glasses with the compositions of 100LiO1/2-(100−x)PO5/2-xTeO2. The line on the top is the Tg depended on composition (x).

    Figure 3

    Figure 3.  The Raman spectra of the glasses with the compositions of 100LiO1/2-(100−x)PO5/2-xTeO2. The vibration positions are marked by T1 [v(TeOTe)sym], T2 [v(TeO4)asym], T3 [v(TeO3)], P1 [v(POP)long-chain], P2 [v(POP)short-chain], P3 [v(PO3)sym], P4 [v(PO2)sym] and P5 [v(PO2)asym].

    With the increase of TeO2, the intensity of v(POP)sym in long chains is gradually suppressed, while the band of v(POP)sym in short chains is raised, indicating that long P—O—P chains are broken into short P—O—P chains and more Q0Te(2) species transform into Q0Te(1) and Q1Te(2) species. Simultaneously, the transformation from Q0Te(2) species to Q1Te(2) species results in a slight broadening and shifting to lower wavenumber of v(PO2)sym and v(PO2)asym bands, since the symmetric and asymmetric v(PO2) in Q1Te(2) species have lower vibration frequency than that in Q0Te(2) species. Besides, when TeO2 is added into glasses, both three- and four-coordinated Te can be observed. Te-correlated vibration bands gradually rise as TeO2 increases.

    Fig. 4 shows the 31P MAS NMR spectra and deconvolution models of all these glasses. For glass 0Te (i.e. LiPO3), a main peak at −22.7 ppm is observed, which is assigned to Q0Te(2) species. There is also a very small signal at −4.9 ppm corresponding to Q0Te(1) species. This is because the excess Li2O, due to a small number of volatilization of P2O5 during the melting, provides more nonbridging oxygen atoms to form Q0Te(1) species. When TeO2 is added into the glass, a new peak (at −13.6 ppm for 10Te glass) appears between the positions of Q0Te(2) and Q0Te(1), which can be ascribed to Q1Te(2) species according to the chemical shift position. With the increase of TeO2, Q0Te(2) species decrease significantly while Q1Te(2) and Q0Te(1) species increase, which is consistent with the results of Raman spectra.

    Figure 4

    Figure 4.  (a) The 31P MAS NMR spectra of glasses in 100LiO1/2- (100−x)PO5/2-xTeO2. The spinning sidebands are marked by asterisks. (b) The deconvolutions of 31P MAS NMR spectra. Dash lines represent Q0Te(2) (red), Q1Te(2) (yellow) and Q0Te(1) (green) species, respectively.

    31P refocused INADEQUATE spectra are employed to identify the 31P species and detect the correlations between 31P species. Fig. 5 shows 2D 31P refocused INADEQUATE spectrum of glass 30Te. In the F2 dimension, all peaks observed in ordinary 31P single pulse MAS NMR spectra (see Fig. 4) can also be found, which indicates that there are no isolated 31P species in 30Te glass. Six connectivities Q0Te(1)-Q0Te(1), Q0Te(1)-Q1Te(2), Q0Te(1)-Q0Te(2), Q1Te(2)-Q1Te(2), Q1Te(2)-Q0Te(2) and Q0Te(2)-Q0Te(2) can be observed, corresponding to nine correlation peaks marked by nine translucent red dots in Fig. 5. These results indicate that all the phosphorus species are connected with each other through P—O—P bond.

    Figure 5

    Figure 5.  The 2D 31P refocused INADEQUATE spectra of glass 30Te. Nine translucent red dots in (b) represent nine autocorrelation peaks involving six possible connectivities between Q0Te(2) (−20.0 ppm), Q1Te(2) (−10.6 ppm) and Q0Te(1) (−3.1 ppm) species.

    Static 125Te WURST-QCPMG spectra are generally preferred to probe the chemical environment of 125Te rather than magic angle spinning due to the very wide 125Te NMR chemical shift distributions 18. Fig. 6 illustrates the 125Te WURST-QCPMG spectra and deconvolution models. The deconvolution parameters are list in Table 1. There are two components in each spectrum. For 10Te glass, the positions of two components are 2898 and 2262 ppm, which can be assigned to three- and four-coordinated Te ([TeO3] and [TeO4] species), respectively. [TeO4] species are dominant when the concentration of TeO2 is low, but as more PO5/2 is substituted by TeO2, the relative proportion of [TeO3] gradually increases.

    Figure 6

    Figure 6.  The 125Te WURST-QCPMG spectra and the dash lines show the deconvolution shapes. The whole peaks are deconvoluted into three-coordinated (green) [TeO3] and four-coordinates (red) [TeO4].

    Table 1

    Table 1.  The deconvolution parameters of 125Te WURST-QCPMG spectra.
    下载: 导出CSV
    Sample Unit Position (ppm) (±5) δcs (ppm) (±5) ηcs Area (%) (±5)
    10Te [TeO3] 2955 −668 0 27.7
    [TeO4] 2237 −766 0.5 72.3
    20Te [TeO3] 2968 −671 0 35.0
    [TeO4] 2382 −761 0.45 65.0
    25Te [TeO3] 2953 −671 0 37.6
    [TeO4] 2392 −791 0.45 62.4
    30Te [TeO3] 2945 −668 0 44.9
    [TeO4] 2423 −798 0.4 55.1

    The deconvolution parameters of the 31P MAS NMR spectra (shown in Fig. 4) are summarized in Table 2. With the increase of x value, the proportion of Q0Te(2) species decreases while that of Q0Te(1) and Q1Te(2) species continuously increase. All the structures of phosphorus and tellurium units are shown in Fig. 7. Both Q0Te(2) and Q1Te(2) species have one Li+ ion on average while Q0Te(1) has two Li+ ions. The increase of Q0Te(1) with TeO2 indicates that Li+ ions prefer to stay around [PO4] units rather than tellurium oxygen polyhedrons. However, a minor number of Li+ ions still interact with tellurium oxygen polyhedrons to form [TeO3]. With the increase of TeO2, more Li+ ions interact with tellurium oxygen polyhedrons and resulting in the formation of more [TeO3].

    Table 2

    Table 2.  The deconvolution parameters of 31P MAS NMR spectra.
    下载: 导出CSV
    Sample Unit δ (ppm) (±0.5) FWHM (ppm) (±0.5) Area (%) (±2)
    0Te Q0Te(2) −22.7 8.9 99.3
    Q0Te(1) −4.9 6.2 0.7
    10Te Q0Te(2) −22.1 9.2 65.2
    Q1Te(2) −13.6 10.5 25.5
    Q0Te(1) −4.1 6.5 9.3
    20Te Q0Te(2) −20.9 9.5 36.9
    Q1Te(2) −12.3 10.5 45.2
    Q0Te(1) −3.8 6.5 17.9
    25Te Q0Te(2) −20.3 9.5 25.3
    Q1Te(2) −11.6 11.0 52.9
    Q0Te(1) −3.5 6.7 21.8
    30Te Q0Te(2) −20.0 11.3 16.0
    Q1Te(2) −10.6 9.5 57.9
    Q0Te(1) −3.1 6.8 26.2

    Figure 7

    Figure 7.  The structural sketches of phosphorus of Q0Te(2), Q1Te(2), Q0Te(1), three- and four-coordinated Te species. The single, double and dash lines represent the single, double and noninteger bonds, respectively. Every Te atom has a pair of lone electrons and TeOn represents n-coordinated Te.

    The oxygen atoms in P—O—P, P—O—Te and Te—O—Te are all considered to be bridging oxygen (BO). Thus, the content of Te—BO— bond can be obtained as follows:

    N(TeBO)=[F(TeO3)×1+F(TeO4)×4]×N(Te)

    (1)

    where F(TeOn) is the relative fraction of TeOn species listed in Table 1, N(Te) is the total content of Te under the stoichiometry of 100LiO1/2- (100−x)PO5/2-xTeO2. Similarly, the content of P—BO— bond can be calculated as follows:

    N(PBO)={F[Q(2)0Te]×2+F[Q(2)1Te]×2+F[Q(1)0Te]×1}×N(P)

    (2)

    Thus, the fractions of P—BO— and Te—BO— bonds can be calculated as follows:

    F(PBO)=N(PBO)/[N(PBO)+N(TeBO)]

    (3)

    F(TeBO)=N(TeBO)/[N(PBO)+N(TeBO)]

    (4)

    Here, we propose a random distribution model. We assume that all P—BO— and Te—BO— randomly bond to form P—O—P, P—O—Te and Te—O—Te linkages, then the probabilities to form P—O—P, P—O—Te and Te—O—Te linkages are:

    P(POP)=F(PBO)2

    (5)

    P(POTe)=F(PBO)×F(TeBO)×2

    (6)

    P(TeOTe)=F(TeBO)2

    (7)

    And the total content of these three kinds of linkages is equal to the total content of BO as follows:

    N(linkages)=N(BO)=[N(PBO)+N(TeBO)]/2

    (8)

    Thus, the theoretical contents of P—O—P, P—O—Te and Te—O—Te (under the stoichiometry of 100LiO1/2-(100−x)PO5/2-xTeO2.) can be calculated according to the random distribution model as follows:

    N(POP)=N(BO)×P(POP)

    (9)

    N(POTe)=N(BO)×P(POTe)

    (10)

    N(TeOTe)=N(BO)×P(TeOTe)

    (11)

    Simultaneously, the experimental contents of P—O—P, P—O—Te, Te—O—Te can be calculated from the deconvolutions of 125Te WURST-QCPMG and 31P MAS NMR spectra (list in Table 1 and Table 2) as follows:

    N(POP)={F[Q(2)0Te]×1+F[Q(2)1Te]×0.5+F[Q(1)0Te]×0.5}×N(P)

    (12)

    N(POTe)=F[Q(2)1Te]×1×N(P)

    (13)

    N(TeOTe)=N(BO)N(POP)N(POTe)

    (14)

    Fig. 8 shows the comparisons between the theoretical (red) and experimental (black) contents of P—O—P, P—O—Te and Te—O—Te linkages. For both P—O—P and Te—O—Te linkages, the experimental values are slightly higher than the theoretical ones. And for P—O—Te linkage, it is inverse. These indicate that P and Te atoms slightly prefer homonuclear connectivity than heteronuclear connectivity.

    Figure 8

    Figure 8.  Comparison between the theoretical contents calculated according to random distribution model (red) and experimental contents (black) of the P—O—P (a), P—O—Te (b) and Te—O—Te (c) linkages. All the contents are relative to the stoichiometry of 100LiO1/2-(100−x)PO5/2-xTeO2.

    In this glass system, the fractions of BO in total oxygen atoms can be calculated:

    F(BO)=N(BO)/N(O)

    (15)

    Fig. 9 shows the change trends of the total fractions of BO and the Tg values. With the increase of TeO2, the fraction of BO and Tg have similar change trends that they almost remain constant within errors. This is not unexpected since the strength of the glass network depends on the fraction of BO. The similar BO fractions indicate the similar glass network connectivities and similar Tg in this glass system.

    Figure 9

    Figure 9.  The fractions of bridging oxygen atom and Tg of the glasses with the compositions of 100LiO1/2-(100−x)PO5/2-xTeO2.

    The structures of the glasses in 100LiO1/2-(100−x)PO5/2-xTeO2 (x = 0, 10, 20, 25, 30) system are investigated by solid-state NMR technologies and Raman spectroscopy. When TeO2 is incorporated into these glasses, long P—O—P chains involved in glass networks are broken into short chains and Q0Te(2) species gradually transform into Q1Te(2) and Q0Te(1) species. Q0Te(2), Q1Te(2) and Q0Te(1) species are connected with each other through P—O—P. With the addition of TeO2, a minor number of Li+ ions interact with tellurium oxygen polyhedrons resulting in the formation of [TeO3]. However, Li+ ions prefer to stay around [PO4] units rather than tellurium oxygen polyhedrons. Therefore, only a small fraction of [TeO3] is formed, which increases with the content of TeO2. Most Te atoms exist as [TeO4] in all these glasses. With PO5/2 being gradually replaced by TeO2, both the Tg and the fraction of bridging oxygen are almost unchanged, which means the glass network connectivity has no obvious change. The homonuclear connectivities P—O—P and Te—O—Te show slight priority over the heteronuclear connectivity P—O—Te. In summary, this study presents a comprehensive structure study of Li-doped tellurium phosphate ionic conducting glasses. This work could promote the understanding of the glass structure dependence on compositions and the development of new ionic conducting glasses.

    We thank Yujing Shen (Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences) and Sasa Yan (Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences) for their assistance on the DSC and Raman measurements, respectively.


    1. [1]

      He, D.; Kang, S.; Zhang, L.; Chen, L.; Ding, Y.; Yin, Q.; Hu, L. High Power Laser Sci. Eng. 2017, 5, e1. doi: 10.1017/hpl.2016.46  doi: 10.1017/hpl.2016.46

    2. [2]

      Hu, L.; Chen, S.; Tang, J.; Wang, B.; Meng, T.; Chen, W.; Wen, L.; Hu, J.; Li, S.; Xu, Y.; et al. High Power Laser Sci. Eng. 2014, 2, e1. doi: 10.1017/hpl.2014.4  doi: 10.1017/hpl.2014.4

    3. [3]

      Campbell, J. H.; Suratwala, T. I. J. Non. Cryst. Solids 2000, 263, 318. doi: 10.1016/S0022-3093(99)00645-6  doi: 10.1016/S0022-3093(99)00645-6

    4. [4]

      Kim, Y. P.; Lee, G. S.; Kim, J. W.; Kim, M. S.; Ahn, H. S.; Lim, J. Y.; Kim, H. W.; Son, Y. J.; Knowles, J. C.; Hyun, J. K. J. Tissue Eng. Regen. Med. 2015, 9 (3), 236. doi: 10.1002/term.1626  doi: 10.1002/term.1626

    5. [5]

      Ahmed, I.; Lewis, M.; Olsen, I.; Knowles, J. C. Biomaterials 2004, 25 (3), 491. doi: 10.1016/S0142-9612(03)00546-5  doi: 10.1016/S0142-9612(03)00546-5

    6. [6]

      Shah, R.; Sinanan, A. C. M.; Knowles, J. C.; Hunt, N. P.; Lewis, M. P. Biomaterials 2005, 26 (13), 1497. doi: 10.1016/j.biomaterials.2004.04.049  doi: 10.1016/j.biomaterials.2004.04.049

    7. [7]

      Ahmed, I.; Collins, C. A.; Lewis, M. P.; Olsen, I.; Knowles, J. C. Biomaterials 2004, 25 (16), 3223. doi: 10.1016/j.biomaterials.2003.10.013  doi: 10.1016/j.biomaterials.2003.10.013

    8. [8]

      Mangion, M.; Johari, G. P. Phys. Rev. B 1987, 36 (16), 8845. doi: 10.1103/PhysRevB.36.8845  doi: 10.1103/PhysRevB.36.8845

    9. [9]

      Martin, S. W. J. Am. Ceram. Soc. 1991, 74 (8), 1767. doi: 10.1111/j.1151-2916.1991.tb07788.x  doi: 10.1111/j.1151-2916.1991.tb07788.x

    10. [10]

      Brow, R. K. J. Non. Cryst. Solids 2000, 263, 1. doi: 10.1016/S0022-3093(99)00620-1  doi: 10.1016/S0022-3093(99)00620-1

    11. [11]

      Brow, R. K.; Click, C. A.; Alam, T. M. J. Non. Cryst. Solids 2000, 274 (1–3), 9. doi: 10.1016/S0022-3093(00)00178-2  doi: 10.1016/S0022-3093(00)00178-2

    12. [12]

      Nakata, S.; Togashi, T.; Honma, T.; Komatsu, T. J. Non. Cryst. Solids 2016, 450, 109. doi: 10.1016/j.jnoncrysol.2016.08.005  doi: 10.1016/j.jnoncrysol.2016.08.005

    13. [13]

      Rioux, M.; Ledemi, Y.; Viens, J.; Morency, S.; Ghaffari, S. A.; Messaddeq, Y. RSC Adv. 2015, 5 (50), 40236. doi: 10.1039/C5RA00681C  doi: 10.1039/C5RA00681C

    14. [14]

      Rioux, M.; Ledemi, Y.; Messaddeq, Y. J. Non. Cryst. Solids 2017, 459, 169. doi: 10.1016/j.jnoncrysol.2017.01.011  doi: 10.1016/j.jnoncrysol.2017.01.011

    15. [15]

      Cho, K. I.; Lee, S. H.; Shin, D. W.; Sun, Y. K. Electrochim. Acta 2006, 52 (4), 1576. doi: 10.1016/j.electacta.2006.02.065  doi: 10.1016/j.electacta.2006.02.065

    16. [16]

      de Oliveira, M.; Oliveira, J. S.; Kundu, S.; Machado, N. M. P.; Rodrigues, A. C. M.; Eckert, H. J. Non. Cryst. Solids 2018, 482, 14. doi: 10.1016/j.jnoncrysol.2017.11.052  doi: 10.1016/j.jnoncrysol.2017.11.052

    17. [17]

      Larink, D.; Rinke, M. T.; Eckert, H. J. Phys. Chem. C 2015, 119 (31), 17539. doi: 10.1021/acs.jpcc.5b04074  doi: 10.1021/acs.jpcc.5b04074

    18. [18]

      de Oliveira, M.; Amjad, R. J.; de Camargo, A. S. S.; Eckert, H. J. Phys. Chem. C 2018, 122 (41), 23698. doi: 10.1021/acs.jpcc.8b07827  doi: 10.1021/acs.jpcc.8b07827

    19. [19]

      Blais-Roberge, M.; Santagneli, S. H.; Messaddeq, S. H.; Rioux, M.; Ledemi, Y.; Eckert, H.; Messaddeq, Y. J. Phys. Chem. C 2017, 121 (25), 13823. doi: 10.1021/acs.jpcc.7b03684  doi: 10.1021/acs.jpcc.7b03684

    20. [20]

      Dongbei, L.; Shuai, X.; Zhiwu, Y. Chin. J. Magn. Reson. 2017, 34 (1), 115. doi: 10.11938/cjmr20170114  doi: 10.11938/cjmr20170114

    21. [21]

      Lesage, A.; Bardet, M.; Emsley, L. J. Am. Chem. Soc. 1999, 121 (47), 10987. doi: 10.1021/ja992272b  doi: 10.1021/ja992272b

    22. [22]

      Guerry, P.; Smith, M. E.; Brown, S. P. J. Am. Chem. Soc. 2009, 131 (33), 11861. doi: 10.1021/ja902238s  doi: 10.1021/ja902238s

    23. [23]

      O'Dell, L. A.; Schurko, R. W. Chem. Phys. Lett. 2008, 464 (1–3), 97. doi: 10.1016/j.cplett.2008.08.095a  doi: 10.1016/j.cplett.2008.08.095a

    24. [24]

      Massiot, D.; Fayon, F.; Capron, M.; King, I.; Le Calvé, S.; Alonso, B.; Durand, J. O.; Bujoli, B.; Gan, Z.; Hoatson, G. Magn. Reson. Chem. 2002, 40 (1), 70. doi: 10.1002/mrc.984  doi: 10.1002/mrc.984

    25. [25]

      Chowdari, B. V..; Kumari, P. P. Mater. Res. Bull. 1999, 34 (2), 327. doi: 10.1016/S0025-5408(99)00012-4  doi: 10.1016/S0025-5408(99)00012-4

    26. [26]

      Himei, Y.; Osaka, A.; Nanba, T.; Miura, Y. J. Non. Cryst. Solids 1994, 177, 164. doi: 10.1016/0022-3093(94)90526-6  doi: 10.1016/0022-3093(94)90526-6

    27. [27]

      Sekiya, T.; Mochida, N.; Ohtsuka, A.; Tonokawa, M. J. Non. Cryst. Solids 1992, 144, 128. doi: 10.1016/S0022-3093(05)80393-X  doi: 10.1016/S0022-3093(05)80393-X

    28. [28]

      Irannejad, M.; Jose, G.; Jha, A.; Steenson, P. Opt. Commun. 2012, 285 (10–11), 2646. doi: 10.1016/j.optcom.2012.01.073  doi: 10.1016/j.optcom.2012.01.073

    29. [29]

      Murugan, G. S.; Suzuki, T.; Ohishi, Y. J. Appl. Phys. 2006, 100 (2), 023107. doi: 10.1063/1.2215218  doi: 10.1063/1.2215218

    30. [30]

      Brow, R. K.; Tallant, D. R.; Hudgens, J. J.; Martin, S. W.; Irwin, A. D. J. Non. Cryst. Solids 1994, 177, 221. doi: 10.1016/0022-3093(94)90534-7  doi: 10.1016/0022-3093(94)90534-7

    1. [1]

      He, D.; Kang, S.; Zhang, L.; Chen, L.; Ding, Y.; Yin, Q.; Hu, L. High Power Laser Sci. Eng. 2017, 5, e1. doi: 10.1017/hpl.2016.46  doi: 10.1017/hpl.2016.46

    2. [2]

      Hu, L.; Chen, S.; Tang, J.; Wang, B.; Meng, T.; Chen, W.; Wen, L.; Hu, J.; Li, S.; Xu, Y.; et al. High Power Laser Sci. Eng. 2014, 2, e1. doi: 10.1017/hpl.2014.4  doi: 10.1017/hpl.2014.4

    3. [3]

      Campbell, J. H.; Suratwala, T. I. J. Non. Cryst. Solids 2000, 263, 318. doi: 10.1016/S0022-3093(99)00645-6  doi: 10.1016/S0022-3093(99)00645-6

    4. [4]

      Kim, Y. P.; Lee, G. S.; Kim, J. W.; Kim, M. S.; Ahn, H. S.; Lim, J. Y.; Kim, H. W.; Son, Y. J.; Knowles, J. C.; Hyun, J. K. J. Tissue Eng. Regen. Med. 2015, 9 (3), 236. doi: 10.1002/term.1626  doi: 10.1002/term.1626

    5. [5]

      Ahmed, I.; Lewis, M.; Olsen, I.; Knowles, J. C. Biomaterials 2004, 25 (3), 491. doi: 10.1016/S0142-9612(03)00546-5  doi: 10.1016/S0142-9612(03)00546-5

    6. [6]

      Shah, R.; Sinanan, A. C. M.; Knowles, J. C.; Hunt, N. P.; Lewis, M. P. Biomaterials 2005, 26 (13), 1497. doi: 10.1016/j.biomaterials.2004.04.049  doi: 10.1016/j.biomaterials.2004.04.049

    7. [7]

      Ahmed, I.; Collins, C. A.; Lewis, M. P.; Olsen, I.; Knowles, J. C. Biomaterials 2004, 25 (16), 3223. doi: 10.1016/j.biomaterials.2003.10.013  doi: 10.1016/j.biomaterials.2003.10.013

    8. [8]

      Mangion, M.; Johari, G. P. Phys. Rev. B 1987, 36 (16), 8845. doi: 10.1103/PhysRevB.36.8845  doi: 10.1103/PhysRevB.36.8845

    9. [9]

      Martin, S. W. J. Am. Ceram. Soc. 1991, 74 (8), 1767. doi: 10.1111/j.1151-2916.1991.tb07788.x  doi: 10.1111/j.1151-2916.1991.tb07788.x

    10. [10]

      Brow, R. K. J. Non. Cryst. Solids 2000, 263, 1. doi: 10.1016/S0022-3093(99)00620-1  doi: 10.1016/S0022-3093(99)00620-1

    11. [11]

      Brow, R. K.; Click, C. A.; Alam, T. M. J. Non. Cryst. Solids 2000, 274 (1–3), 9. doi: 10.1016/S0022-3093(00)00178-2  doi: 10.1016/S0022-3093(00)00178-2

    12. [12]

      Nakata, S.; Togashi, T.; Honma, T.; Komatsu, T. J. Non. Cryst. Solids 2016, 450, 109. doi: 10.1016/j.jnoncrysol.2016.08.005  doi: 10.1016/j.jnoncrysol.2016.08.005

    13. [13]

      Rioux, M.; Ledemi, Y.; Viens, J.; Morency, S.; Ghaffari, S. A.; Messaddeq, Y. RSC Adv. 2015, 5 (50), 40236. doi: 10.1039/C5RA00681C  doi: 10.1039/C5RA00681C

    14. [14]

      Rioux, M.; Ledemi, Y.; Messaddeq, Y. J. Non. Cryst. Solids 2017, 459, 169. doi: 10.1016/j.jnoncrysol.2017.01.011  doi: 10.1016/j.jnoncrysol.2017.01.011

    15. [15]

      Cho, K. I.; Lee, S. H.; Shin, D. W.; Sun, Y. K. Electrochim. Acta 2006, 52 (4), 1576. doi: 10.1016/j.electacta.2006.02.065  doi: 10.1016/j.electacta.2006.02.065

    16. [16]

      de Oliveira, M.; Oliveira, J. S.; Kundu, S.; Machado, N. M. P.; Rodrigues, A. C. M.; Eckert, H. J. Non. Cryst. Solids 2018, 482, 14. doi: 10.1016/j.jnoncrysol.2017.11.052  doi: 10.1016/j.jnoncrysol.2017.11.052

    17. [17]

      Larink, D.; Rinke, M. T.; Eckert, H. J. Phys. Chem. C 2015, 119 (31), 17539. doi: 10.1021/acs.jpcc.5b04074  doi: 10.1021/acs.jpcc.5b04074

    18. [18]

      de Oliveira, M.; Amjad, R. J.; de Camargo, A. S. S.; Eckert, H. J. Phys. Chem. C 2018, 122 (41), 23698. doi: 10.1021/acs.jpcc.8b07827  doi: 10.1021/acs.jpcc.8b07827

    19. [19]

      Blais-Roberge, M.; Santagneli, S. H.; Messaddeq, S. H.; Rioux, M.; Ledemi, Y.; Eckert, H.; Messaddeq, Y. J. Phys. Chem. C 2017, 121 (25), 13823. doi: 10.1021/acs.jpcc.7b03684  doi: 10.1021/acs.jpcc.7b03684

    20. [20]

      Dongbei, L.; Shuai, X.; Zhiwu, Y. Chin. J. Magn. Reson. 2017, 34 (1), 115. doi: 10.11938/cjmr20170114  doi: 10.11938/cjmr20170114

    21. [21]

      Lesage, A.; Bardet, M.; Emsley, L. J. Am. Chem. Soc. 1999, 121 (47), 10987. doi: 10.1021/ja992272b  doi: 10.1021/ja992272b

    22. [22]

      Guerry, P.; Smith, M. E.; Brown, S. P. J. Am. Chem. Soc. 2009, 131 (33), 11861. doi: 10.1021/ja902238s  doi: 10.1021/ja902238s

    23. [23]

      O'Dell, L. A.; Schurko, R. W. Chem. Phys. Lett. 2008, 464 (1–3), 97. doi: 10.1016/j.cplett.2008.08.095a  doi: 10.1016/j.cplett.2008.08.095a

    24. [24]

      Massiot, D.; Fayon, F.; Capron, M.; King, I.; Le Calvé, S.; Alonso, B.; Durand, J. O.; Bujoli, B.; Gan, Z.; Hoatson, G. Magn. Reson. Chem. 2002, 40 (1), 70. doi: 10.1002/mrc.984  doi: 10.1002/mrc.984

    25. [25]

      Chowdari, B. V..; Kumari, P. P. Mater. Res. Bull. 1999, 34 (2), 327. doi: 10.1016/S0025-5408(99)00012-4  doi: 10.1016/S0025-5408(99)00012-4

    26. [26]

      Himei, Y.; Osaka, A.; Nanba, T.; Miura, Y. J. Non. Cryst. Solids 1994, 177, 164. doi: 10.1016/0022-3093(94)90526-6  doi: 10.1016/0022-3093(94)90526-6

    27. [27]

      Sekiya, T.; Mochida, N.; Ohtsuka, A.; Tonokawa, M. J. Non. Cryst. Solids 1992, 144, 128. doi: 10.1016/S0022-3093(05)80393-X  doi: 10.1016/S0022-3093(05)80393-X

    28. [28]

      Irannejad, M.; Jose, G.; Jha, A.; Steenson, P. Opt. Commun. 2012, 285 (10–11), 2646. doi: 10.1016/j.optcom.2012.01.073  doi: 10.1016/j.optcom.2012.01.073

    29. [29]

      Murugan, G. S.; Suzuki, T.; Ohishi, Y. J. Appl. Phys. 2006, 100 (2), 023107. doi: 10.1063/1.2215218  doi: 10.1063/1.2215218

    30. [30]

      Brow, R. K.; Tallant, D. R.; Hudgens, J. J.; Martin, S. W.; Irwin, A. D. J. Non. Cryst. Solids 1994, 177, 221. doi: 10.1016/0022-3093(94)90534-7  doi: 10.1016/0022-3093(94)90534-7

  • 加载中
    1. [1]

      Xinzhi Ding Chong Liu Jing Niu Nan Chen Shutao Xu Yingxu Wei Zhongmin Liu . Solid-state NMR study of the stability of MOR framework aluminum. Chinese Journal of Structural Chemistry, 2024, 43(4): 100247-100247. doi: 10.1016/j.cjsc.2024.100247

    2. [2]

      Huixin ChenChen ZhaoHongjun YueGuiming ZhongXiang HanLiang YinDing Chen . Unraveling the reaction mechanism of high reversible capacity CuP2/C anode with native oxidation POx component for sodium-ion batteries. Chinese Chemical Letters, 2025, 36(1): 109650-. doi: 10.1016/j.cclet.2024.109650

    3. [3]

      Yang Deng Yitao Ouyang Chao Han . Constriction-susceptible makes fast cycling of lithium metal in solid-state batteries: Silicon as an example. Chinese Journal of Structural Chemistry, 2024, 43(7): 100276-100276. doi: 10.1016/j.cjsc.2024.100276

    4. [4]

      Dong SuiJiayi Liu . Constriction-susceptible lithium support for fast cycling of solid-state lithium metal battery. Chinese Chemical Letters, 2025, 36(2): 110417-. doi: 10.1016/j.cclet.2024.110417

    5. [5]

      Biao Fang Runwei Mo . PVDF-based solid-state battery. Chinese Journal of Structural Chemistry, 2024, 43(8): 100347-100347. doi: 10.1016/j.cjsc.2024.100347

    6. [6]

      Qian WangTing GaoXiwen LuHangchao WangMinggui XuLongtao RenZheng ChangWen Liu . Nanophase separated, grafted alternate copolymer styrene-maleic anhydride as an efficient room temperature solid state lithium ion conductor. Chinese Chemical Letters, 2024, 35(7): 108887-. doi: 10.1016/j.cclet.2023.108887

    7. [7]

      Tianyi Hou Yunhui Huang Henghui Xu . Interfacial engineering for advanced solid-state Li-metal batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100313-100313. doi: 10.1016/j.cjsc.2024.100313

    8. [8]

      Peng JiaYunna GuoDongliang ChenXuedong ZhangJingming YaoJianguo LuLiqiang ZhangIn-situ imaging electrocatalysis in a solid-state Li-O2 battery with CuSe nanosheets as air cathode. Chinese Chemical Letters, 2024, 35(5): 108624-. doi: 10.1016/j.cclet.2023.108624

    9. [9]

      Qianqian SongYunting ZhangJianli LiangSi LiuJian ZhuXingbin Yan . Boron nitride nanofibers enhanced composite PEO-based solid-state polymer electrolytes for lithium metal batteries. Chinese Chemical Letters, 2024, 35(6): 108797-. doi: 10.1016/j.cclet.2023.108797

    10. [10]

      Chaochao WeiRu WangZhongkai WuQiyue LuoZiling JiangLiang MingJie YangLiping WangChuang Yu . Revealing the size effect of FeS2 on solid-state battery performances at different operating temperatures. Chinese Chemical Letters, 2024, 35(6): 108717-. doi: 10.1016/j.cclet.2023.108717

    11. [11]

      Caixia LiYi QiuYufeng ZhaoWuliang Feng . Self assembled electron blocking and lithiophilic interface towards dendrite-free solid-state lithium battery. Chinese Chemical Letters, 2024, 35(4): 108846-. doi: 10.1016/j.cclet.2023.108846

    12. [12]

      Ting WANGPeipei ZHANGShuqin LIURuihong WANGJianjun ZHANG . A Bi-CP-based solid-state thin-film sensor: Preparation and luminescence sensing for bioamine vapors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1615-1621. doi: 10.11862/CJIC.20240134

    13. [13]

      Ying LiYanjun XuXingqi HanDi HanXuesong WuXinlong WangZhongmin Su . A new metal–organic rotaxane framework for enhanced ion conductivity of solid-state electrolyte in lithium-metal batteries. Chinese Chemical Letters, 2024, 35(9): 109189-. doi: 10.1016/j.cclet.2023.109189

    14. [14]

      Linhui LiuWuwan XiongMingli FuJunliang WuZhenguo LiDaiqi YePeirong Chen . Efficient NOx abatement by passive adsorption over a Pd-SAPO-34 catalyst prepared by solid-state ion exchange. Chinese Chemical Letters, 2024, 35(4): 108870-. doi: 10.1016/j.cclet.2023.108870

    15. [15]

      Shuai LiLiuting ZhangFuying WuYiqun JiangXuebin Yu . Efficient catalysis of FeNiCu-based multi-site alloys on magnesium-hydride for solid-state hydrogen storage. Chinese Chemical Letters, 2025, 36(1): 109566-. doi: 10.1016/j.cclet.2024.109566

    16. [16]

      Xin LiLing ZhangYunyan FanShaojing LinYong LinYongsheng YingMeijiao HuHaiying GaoXianri XuZhongbiao XiaXinchuan LinJunjie LuXiang Han . Carbon interconnected microsized Si film toward high energy room temperature solid-state lithium-ion batteries. Chinese Chemical Letters, 2025, 36(2): 109776-. doi: 10.1016/j.cclet.2024.109776

    17. [17]

      Ziling JiangShaoqing ChenChaochao WeiZiqi ZhangZhongkai WuQiyue LuoLiang MingLong ZhangChuang Yu . Enabling superior electrochemical performance of NCA cathode in Li5.5PS4.5Cl1.5-based solid-state batteries with a dual-electrolyte layer. Chinese Chemical Letters, 2024, 35(4): 108561-. doi: 10.1016/j.cclet.2023.108561

    18. [18]

      Mengxiang ZhuTao DingYunzhang LiYuanjie PengRuiping LiuQuan ZouLeilei YangShenglei SunPin ZhouGuosheng ShiDongting Yue . Graphene controlled solid-state growth of oxygen vacancies riched V2O5 catalyst to highly activate Fenton-like reaction. Chinese Chemical Letters, 2024, 35(12): 109833-. doi: 10.1016/j.cclet.2024.109833

    19. [19]

      Ce LiangQiuhui SunAdel Al-SalihyMengxin ChenPing Xu . Recent advances in crystal phase induced surface-enhanced Raman scattering. Chinese Chemical Letters, 2024, 35(9): 109306-. doi: 10.1016/j.cclet.2023.109306

    20. [20]

      Zizhuo Liang Fuming Du Ning Zhao Xiangxin Guo . Revealing the reason for the unsuccessful fabrication of Li3Zr2Si2PO12 by solid state reaction. Chinese Journal of Structural Chemistry, 2023, 42(11): 100108-100108. doi: 10.1016/j.cjsc.2023.100108

Metrics
  • PDF Downloads(12)
  • Abstract views(941)
  • HTML views(169)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return