Citation: Zhang Zonghui, Ren Jinjun, Hu Lili. Structure Investigations on 100LiO1/2-(100-x)PO5/2-xTeO2 Fast Ionic Conducting Glasses Using Solid-State Nuclear Magnetic Resonance Spectroscopy[J]. Acta Physico-Chimica Sinica, ;2020, 36(11): 200104. doi: 10.3866/PKU.WHXB202001048 shu

Structure Investigations on 100LiO1/2-(100-x)PO5/2-xTeO2 Fast Ionic Conducting Glasses Using Solid-State Nuclear Magnetic Resonance Spectroscopy

  • Corresponding author: Ren Jinjun, renjinjunsiom@163.com Hu Lili, hulili@siom.ac.cn
  • Received Date: 19 January 2020
    Revised Date: 18 February 2020
    Accepted Date: 19 February 2020
    Available Online: 9 March 2020

    Fund Project: the National Natural Science Foundation of China 61675218The project was supported by the National Natural Science Foundation of China (61675218) and the 100 Talents Program of Chinese Academy of Sciences

  • Modified phosphate glasses can be used in all-solid-state batteries as solid electrolytes and cathodes due to their high ionic conductivity. The properties of fast ionic conducting glasses are strongly related to the structure of the glass networks. However, most previous works have focused on improving the ionic conductivity of such glasses by composition adjustments, while structural studies are scant. Structural investigations are essential to understand the composition dependence of the glass structure, which is valuable for improving the ionic conductivity and developing new ionic conducting glasses. In this work, phosphate ionic conducting glasses with compositions of 100LiO1/2-(100-x)PO5/2-xTeO2 (x = 0, 10, 20, 25, 30) were synthesized, and their structures were investigated using Raman and solid-state nuclear magnetic resonance (SSNMR) spectroscopy. When x = 0, Raman and 31P magic angle spinning (MAS) NMR spectra showed that most of the phosphorus species were Q0Te(2) species, while the concentration of Q0Te(1) species was negligible. QmTe(n) represents the phosphorus species with n bridging oxygen atoms (the oxygen atoms in P—O—P and P—O—Te linkages are both considered to be bridging oxygen atoms), and m Te atoms are connected to this [PO4] tetrahedron. When PO5/2 is substituted with TeO2, long P—O—P chains are broken into short chains, and Q0Te(2) species gradually transform into Q1Te(2) and Q0Te(1) species. Two-dimensional (2D) refocused incredible natural abundance double quantum transfer experiment (INADEQUATE) spectra proved that no isolated phosphorus species existed in the glasses; Q0Te(2), Q1Te(2), and Q0Te(1) species were connected with each other through P—O—P linkages. Three- and four-coordinated Te were observed in the static 125Te wideband uniform-rate smooth truncation quadrupolar Carr-Purcell-Meiboom-Gill (WURST-QCPMG) spectra. When the concentration of TeO2 was low, four-coordinated Te was dominant. However, with the increase in TeO2, the proportion of three-coordinated Te gradually increased, while that of four-coordinated Te decreased. The experimental contents of P—O—P, P—O—Te, and Te—O—Te linkages in these glasses were calculated from the deconvolutions of 31P and 125Te NMR spectra. Then, the experimental contents were compared with the theoretical contents calculated according to a random distribution model. It was found that the experimental contents of homonuclear P—O—P and Te—O—Te linkages were slightly higher than their corresponding theoretical values, while the experimental content of heteronuclear P—O—Te was slightly lower than the theoretical value. These results indicated a weak priority for homonuclear connectivities. In this glass system, Li+ ions preferred to stay around [PO4] tetrahedrons rather than tellurium oxygen polyhedrons. However, a small number of Li+ ions still interacted with tellurium oxygen polyhedrons to form [TeO3] units. During the substitution of PO5/2 by TeO2, the fractions of bridging oxygen atoms in these glasses were almost unchanged, resulting in a slight change in the glass transition temperature. This work provides a comprehensive description of glass networks, depending on their compositions, which could be valuable for improving the ionic conductivity and for designing new fast ionic conducting glasses through structural modifications.
  • 加载中
    1. [1]

      He, D.; Kang, S.; Zhang, L.; Chen, L.; Ding, Y.; Yin, Q.; Hu, L. High Power Laser Sci. Eng. 2017, 5, e1. doi: 10.1017/hpl.2016.46  doi: 10.1017/hpl.2016.46

    2. [2]

      Hu, L.; Chen, S.; Tang, J.; Wang, B.; Meng, T.; Chen, W.; Wen, L.; Hu, J.; Li, S.; Xu, Y.; et al. High Power Laser Sci. Eng. 2014, 2, e1. doi: 10.1017/hpl.2014.4  doi: 10.1017/hpl.2014.4

    3. [3]

      Campbell, J. H.; Suratwala, T. I. J. Non. Cryst. Solids 2000, 263, 318. doi: 10.1016/S0022-3093(99)00645-6  doi: 10.1016/S0022-3093(99)00645-6

    4. [4]

      Kim, Y. P.; Lee, G. S.; Kim, J. W.; Kim, M. S.; Ahn, H. S.; Lim, J. Y.; Kim, H. W.; Son, Y. J.; Knowles, J. C.; Hyun, J. K. J. Tissue Eng. Regen. Med. 2015, 9 (3), 236. doi: 10.1002/term.1626  doi: 10.1002/term.1626

    5. [5]

      Ahmed, I.; Lewis, M.; Olsen, I.; Knowles, J. C. Biomaterials 2004, 25 (3), 491. doi: 10.1016/S0142-9612(03)00546-5  doi: 10.1016/S0142-9612(03)00546-5

    6. [6]

      Shah, R.; Sinanan, A. C. M.; Knowles, J. C.; Hunt, N. P.; Lewis, M. P. Biomaterials 2005, 26 (13), 1497. doi: 10.1016/j.biomaterials.2004.04.049  doi: 10.1016/j.biomaterials.2004.04.049

    7. [7]

      Ahmed, I.; Collins, C. A.; Lewis, M. P.; Olsen, I.; Knowles, J. C. Biomaterials 2004, 25 (16), 3223. doi: 10.1016/j.biomaterials.2003.10.013  doi: 10.1016/j.biomaterials.2003.10.013

    8. [8]

      Mangion, M.; Johari, G. P. Phys. Rev. B 1987, 36 (16), 8845. doi: 10.1103/PhysRevB.36.8845  doi: 10.1103/PhysRevB.36.8845

    9. [9]

      Martin, S. W. J. Am. Ceram. Soc. 1991, 74 (8), 1767. doi: 10.1111/j.1151-2916.1991.tb07788.x  doi: 10.1111/j.1151-2916.1991.tb07788.x

    10. [10]

      Brow, R. K. J. Non. Cryst. Solids 2000, 263, 1. doi: 10.1016/S0022-3093(99)00620-1  doi: 10.1016/S0022-3093(99)00620-1

    11. [11]

      Brow, R. K.; Click, C. A.; Alam, T. M. J. Non. Cryst. Solids 2000, 274 (1–3), 9. doi: 10.1016/S0022-3093(00)00178-2  doi: 10.1016/S0022-3093(00)00178-2

    12. [12]

      Nakata, S.; Togashi, T.; Honma, T.; Komatsu, T. J. Non. Cryst. Solids 2016, 450, 109. doi: 10.1016/j.jnoncrysol.2016.08.005  doi: 10.1016/j.jnoncrysol.2016.08.005

    13. [13]

      Rioux, M.; Ledemi, Y.; Viens, J.; Morency, S.; Ghaffari, S. A.; Messaddeq, Y. RSC Adv. 2015, 5 (50), 40236. doi: 10.1039/C5RA00681C  doi: 10.1039/C5RA00681C

    14. [14]

      Rioux, M.; Ledemi, Y.; Messaddeq, Y. J. Non. Cryst. Solids 2017, 459, 169. doi: 10.1016/j.jnoncrysol.2017.01.011  doi: 10.1016/j.jnoncrysol.2017.01.011

    15. [15]

      Cho, K. I.; Lee, S. H.; Shin, D. W.; Sun, Y. K. Electrochim. Acta 2006, 52 (4), 1576. doi: 10.1016/j.electacta.2006.02.065  doi: 10.1016/j.electacta.2006.02.065

    16. [16]

      de Oliveira, M.; Oliveira, J. S.; Kundu, S.; Machado, N. M. P.; Rodrigues, A. C. M.; Eckert, H. J. Non. Cryst. Solids 2018, 482, 14. doi: 10.1016/j.jnoncrysol.2017.11.052  doi: 10.1016/j.jnoncrysol.2017.11.052

    17. [17]

      Larink, D.; Rinke, M. T.; Eckert, H. J. Phys. Chem. C 2015, 119 (31), 17539. doi: 10.1021/acs.jpcc.5b04074  doi: 10.1021/acs.jpcc.5b04074

    18. [18]

      de Oliveira, M.; Amjad, R. J.; de Camargo, A. S. S.; Eckert, H. J. Phys. Chem. C 2018, 122 (41), 23698. doi: 10.1021/acs.jpcc.8b07827  doi: 10.1021/acs.jpcc.8b07827

    19. [19]

      Blais-Roberge, M.; Santagneli, S. H.; Messaddeq, S. H.; Rioux, M.; Ledemi, Y.; Eckert, H.; Messaddeq, Y. J. Phys. Chem. C 2017, 121 (25), 13823. doi: 10.1021/acs.jpcc.7b03684  doi: 10.1021/acs.jpcc.7b03684

    20. [20]

      Dongbei, L.; Shuai, X.; Zhiwu, Y. Chin. J. Magn. Reson. 2017, 34 (1), 115. doi: 10.11938/cjmr20170114  doi: 10.11938/cjmr20170114

    21. [21]

      Lesage, A.; Bardet, M.; Emsley, L. J. Am. Chem. Soc. 1999, 121 (47), 10987. doi: 10.1021/ja992272b  doi: 10.1021/ja992272b

    22. [22]

      Guerry, P.; Smith, M. E.; Brown, S. P. J. Am. Chem. Soc. 2009, 131 (33), 11861. doi: 10.1021/ja902238s  doi: 10.1021/ja902238s

    23. [23]

      O'Dell, L. A.; Schurko, R. W. Chem. Phys. Lett. 2008, 464 (1–3), 97. doi: 10.1016/j.cplett.2008.08.095a  doi: 10.1016/j.cplett.2008.08.095a

    24. [24]

      Massiot, D.; Fayon, F.; Capron, M.; King, I.; Le Calvé, S.; Alonso, B.; Durand, J. O.; Bujoli, B.; Gan, Z.; Hoatson, G. Magn. Reson. Chem. 2002, 40 (1), 70. doi: 10.1002/mrc.984  doi: 10.1002/mrc.984

    25. [25]

      Chowdari, B. V..; Kumari, P. P. Mater. Res. Bull. 1999, 34 (2), 327. doi: 10.1016/S0025-5408(99)00012-4  doi: 10.1016/S0025-5408(99)00012-4

    26. [26]

      Himei, Y.; Osaka, A.; Nanba, T.; Miura, Y. J. Non. Cryst. Solids 1994, 177, 164. doi: 10.1016/0022-3093(94)90526-6  doi: 10.1016/0022-3093(94)90526-6

    27. [27]

      Sekiya, T.; Mochida, N.; Ohtsuka, A.; Tonokawa, M. J. Non. Cryst. Solids 1992, 144, 128. doi: 10.1016/S0022-3093(05)80393-X  doi: 10.1016/S0022-3093(05)80393-X

    28. [28]

      Irannejad, M.; Jose, G.; Jha, A.; Steenson, P. Opt. Commun. 2012, 285 (10–11), 2646. doi: 10.1016/j.optcom.2012.01.073  doi: 10.1016/j.optcom.2012.01.073

    29. [29]

      Murugan, G. S.; Suzuki, T.; Ohishi, Y. J. Appl. Phys. 2006, 100 (2), 023107. doi: 10.1063/1.2215218  doi: 10.1063/1.2215218

    30. [30]

      Brow, R. K.; Tallant, D. R.; Hudgens, J. J.; Martin, S. W.; Irwin, A. D. J. Non. Cryst. Solids 1994, 177, 221. doi: 10.1016/0022-3093(94)90534-7  doi: 10.1016/0022-3093(94)90534-7

  • 加载中
    1. [1]

      Xinzhi Ding Chong Liu Jing Niu Nan Chen Shutao Xu Yingxu Wei Zhongmin Liu . Solid-state NMR study of the stability of MOR framework aluminum. Chinese Journal of Structural Chemistry, 2024, 43(4): 100247-100247. doi: 10.1016/j.cjsc.2024.100247

    2. [2]

      Yang Deng Yitao Ouyang Chao Han . Constriction-susceptible makes fast cycling of lithium metal in solid-state batteries: Silicon as an example. Chinese Journal of Structural Chemistry, 2024, 43(7): 100276-100276. doi: 10.1016/j.cjsc.2024.100276

    3. [3]

      Biao Fang Runwei Mo . PVDF-based solid-state battery. Chinese Journal of Structural Chemistry, 2024, 43(8): 100347-100347. doi: 10.1016/j.cjsc.2024.100347

    4. [4]

      Tianyi Hou Yunhui Huang Henghui Xu . Interfacial engineering for advanced solid-state Li-metal batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100313-100313. doi: 10.1016/j.cjsc.2024.100313

    5. [5]

      Qian WangTing GaoXiwen LuHangchao WangMinggui XuLongtao RenZheng ChangWen Liu . Nanophase separated, grafted alternate copolymer styrene-maleic anhydride as an efficient room temperature solid state lithium ion conductor. Chinese Chemical Letters, 2024, 35(7): 108887-. doi: 10.1016/j.cclet.2023.108887

    6. [6]

      Peng JiaYunna GuoDongliang ChenXuedong ZhangJingming YaoJianguo LuLiqiang ZhangIn-situ imaging electrocatalysis in a solid-state Li-O2 battery with CuSe nanosheets as air cathode. Chinese Chemical Letters, 2024, 35(5): 108624-. doi: 10.1016/j.cclet.2023.108624

    7. [7]

      Qianqian SongYunting ZhangJianli LiangSi LiuJian ZhuXingbin Yan . Boron nitride nanofibers enhanced composite PEO-based solid-state polymer electrolytes for lithium metal batteries. Chinese Chemical Letters, 2024, 35(6): 108797-. doi: 10.1016/j.cclet.2023.108797

    8. [8]

      Chaochao WeiRu WangZhongkai WuQiyue LuoZiling JiangLiang MingJie YangLiping WangChuang Yu . Revealing the size effect of FeS2 on solid-state battery performances at different operating temperatures. Chinese Chemical Letters, 2024, 35(6): 108717-. doi: 10.1016/j.cclet.2023.108717

    9. [9]

      Caixia LiYi QiuYufeng ZhaoWuliang Feng . Self assembled electron blocking and lithiophilic interface towards dendrite-free solid-state lithium battery. Chinese Chemical Letters, 2024, 35(4): 108846-. doi: 10.1016/j.cclet.2023.108846

    10. [10]

      Ting WANGPeipei ZHANGShuqin LIURuihong WANGJianjun ZHANG . A Bi-CP-based solid-state thin-film sensor: Preparation and luminescence sensing for bioamine vapors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1615-1621. doi: 10.11862/CJIC.20240134

    11. [11]

      Ying LiYanjun XuXingqi HanDi HanXuesong WuXinlong WangZhongmin Su . A new metal–organic rotaxane framework for enhanced ion conductivity of solid-state electrolyte in lithium-metal batteries. Chinese Chemical Letters, 2024, 35(9): 109189-. doi: 10.1016/j.cclet.2023.109189

    12. [12]

      Linhui LiuWuwan XiongMingli FuJunliang WuZhenguo LiDaiqi YePeirong Chen . Efficient NOx abatement by passive adsorption over a Pd-SAPO-34 catalyst prepared by solid-state ion exchange. Chinese Chemical Letters, 2024, 35(4): 108870-. doi: 10.1016/j.cclet.2023.108870

    13. [13]

      Ziling JiangShaoqing ChenChaochao WeiZiqi ZhangZhongkai WuQiyue LuoLiang MingLong ZhangChuang Yu . Enabling superior electrochemical performance of NCA cathode in Li5.5PS4.5Cl1.5-based solid-state batteries with a dual-electrolyte layer. Chinese Chemical Letters, 2024, 35(4): 108561-. doi: 10.1016/j.cclet.2023.108561

    14. [14]

      Ce LiangQiuhui SunAdel Al-SalihyMengxin ChenPing Xu . Recent advances in crystal phase induced surface-enhanced Raman scattering. Chinese Chemical Letters, 2024, 35(9): 109306-. doi: 10.1016/j.cclet.2023.109306

    15. [15]

      Zizhuo Liang Fuming Du Ning Zhao Xiangxin Guo . Revealing the reason for the unsuccessful fabrication of Li3Zr2Si2PO12 by solid state reaction. Chinese Journal of Structural Chemistry, 2023, 42(11): 100108-100108. doi: 10.1016/j.cjsc.2023.100108

    16. [16]

      Chengde WangLiping HuangShanshan WangLihao WuYi WangJun Dong . A distinction of gliomas at cellular and tissue level by surface-enhanced Raman scattering spectroscopy. Chinese Chemical Letters, 2024, 35(5): 109383-. doi: 10.1016/j.cclet.2023.109383

    17. [17]

      Huihui LIUBaichuan ZHAOChuanhui WANGZhi WANGCongyun ZHANG . Green synthesis of MIL-101/Au composite particles and their sensitivity to Raman detection of thiram. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2021-2030. doi: 10.11862/CJIC.20240059

    18. [18]

      Liang MingDan LiuQiyue LuoChaochao WeiChen LiuZiling JiangZhongkai WuLin LiLong ZhangShijie ChengChuang Yu . Si-doped Li6PS5I with enhanced conductivity enables superior performance for all-solid-state lithium batteries. Chinese Chemical Letters, 2024, 35(10): 109387-. doi: 10.1016/j.cclet.2023.109387

    19. [19]

      Xuejie GaoXinyang ChenMing JiangHanyan WuWenfeng RenXiaofei YangRuncang Sun . Long-lifespan thin Li anode achieved by dead Li rejuvenation and Li dendrite suppression for all-solid-state lithium batteries. Chinese Chemical Letters, 2024, 35(10): 109448-. doi: 10.1016/j.cclet.2023.109448

    20. [20]

      Yue Zheng Tianpeng Huang Pengxian Han Jun Ma Guanglei Cui . Cathodal Li-ion interfacial transport in sulfide-based all-solid-state batteries: Challenges and improvement strategies. Chinese Journal of Structural Chemistry, 2024, 43(10): 100390-100390. doi: 10.1016/j.cjsc.2024.100390

Metrics
  • PDF Downloads(12)
  • Abstract views(875)
  • HTML views(162)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return