Citation: Qian Li, Pingping Ding, Yaping Wang, Xuepin Liao, Bi Shi. Preparation of a Rare Earth Natural Leather X-ray Protection Material and Its Properties[J]. Acta Physico-Chimica Sinica, ;2021, 37(10): 200104. doi: 10.3866/PKU.WHXB202001046 shu

Preparation of a Rare Earth Natural Leather X-ray Protection Material and Its Properties

  • Corresponding author: Xuepin Liao, xpliao@scu.edu.cn
  • Received Date: 19 January 2020
    Revised Date: 16 February 2020
    Accepted Date: 17 February 2020
    Available Online: 2 March 2020

    Fund Project: the National Natural Science Foundation of China 21878191

  • X-rays are widely used in many fields, including medical imaging, chemical structure analysis, and nondestructive examinations. However, long-term X-ray exposure is harmful to human health. Hence, radiation protection materials, especially wearable materials with outstanding performances, are in need of development. Lead (Pb) plates are commonly used as traditional radiation protection materials but have the disadvantages of heavy mass, toxicity, and poor wearability. Cement and alloy also are used to shield the X-ray, whereas application is limited by its heavy mass. In recent years, the wearable polymer based radiation protection was developed but has the defect which is low interfacial compatibility, resulting in poor shielding properties of the material. The K or L absorption edge of an element plays a major role in the attenuation of X-ray photon energy, and has a significant attenuation effect on X-ray photons with similar energy. As an alternative, it has been reported that the K absorption edge of rare earth (RE) elements is located in the range of 40–80 keV, which corresponds to the energy range of X-rays and medical X-ray energy range. Additionally, natural leather (NL) is an abundant natural biomass that is composed of multi-layered collagen fibers and contains amino (―NH2), carboxyl (―COOH), and hydroxyl (―OH) groups. We believe that RE nanoparticles can be uniformly immobilized and stabilized by NL. In this study, we developed a novel strategy to prepare X-ray radiation protective materials by combining RE nanoparticles with NL. NL-based protective materials have the advantages of being lightweight and wearable while providing excellent protection. NL-based RE oxide nanoparticle composites (RE-NL) were successfully prepared by a "retanning" method and verified by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectrometer (EDS) and transmission electron microscopy (TEM). X-ray protection tests showed that La-NL had the best shielding performance compared to the other tested RE oxide-loaded NLs owing to the small difference between the K-edge energy of La and the incident energy. Moreover, La7.80-NL (La2O3 content of 7.80 mmol·cm-3, 0.7 mm) showed better protection performance than a Pb plate with a high-Z elemental content (54.7 mmol·cm-3, 0.25 mm) at 40–80 keV, confirming that the uniform distribution of RE oxides in NL provides enhanced X-ray shielding performance. The RE-NL also displayed a much better tensile strength, tear strength, and softness compared with polymer-based RE oxide composites. Meanwhile, it has the foldability and character of tailor. Therefore, the reported NL-based RE protective materials show promising potential for various scenarios requiring radiation protection.
  • 加载中
    1. [1]

      Koenig, K. L.; Goans, R. E.; Hatchett, R. J.; Mettler, F. A.; Schumacher, T. A.; Noji, E. K.; Jarrett, D. G. Ann. Energy Med. 2005, 45 (6), 643. doi: 10.1016/j.annemergmed.2005.01.020  doi: 10.1016/j.annemergmed.2005.01.020

    2. [2]

      Hernández-Rivera, M.; Kumar, I.; Cho, S. Y.; Cheong, B. Y.; Pulikkathara, M. X.; Moghaddam, S. E.; Whitmire, K. H.; Wilson, L. J. ACS Appl. Mater. Inter. 2017, 9 (7), 5709 doi: 10.1021/acsami.6b12768  doi: 10.1021/acsami.6b12768

    3. [3]

      Hosseini, S. H. Mater. Sci. Semicond. Process. 2015, 39, 90. doi: 10.1016/j.mssp.2015.04.050  doi: 10.1016/j.mssp.2015.04.050

    4. [4]

      Yuan, W. J.; Dong, Z.; Zhao, L.; Yu, T. L.; Zhai, M. L. Acta Phys. -Chim. Sin. 2016, 32 (8), 2101.  doi: 10.3866/PKU.WHXB201604146

    5. [5]

      Cao, P.; Hu, Y.; Zhang, Y.; Peng, J.; Zhai, M. Acta Phys. -Chim. Sin. 2017, 33 (12), 2542.  doi: 10.3866/PKU.WHXB201706151

    6. [6]

      Li, J.; Lin, C.; Lin, J.; Sun, J. Acta Phys. -Chim. Sin. 2020, 36 (1), 1907052.  doi: 10.3866/PKU.WHXB201907052

    7. [7]

      Tiemann, K. J.; Gamez, G.; Dokken, K.; Parsons, J. G.; Gardea-Torresdey, J. L. Microchem. J. 2002, 71 (2-3), 287. doi: 10.1016/S0026-265X(02)00021-8  doi: 10.1016/S0026-265X(02)00021-8

    8. [8]

      Harding, G.; Kosanetzky, J. Nucl. Instrum. Methods Phys. Res. Sect. A: Accel. Spectrometers Detect. Assoc. Equip. 1989, 280 (2-3), 517. doi: 10.1016/0168-9002(89)90964-9  doi: 10.1016/0168-9002(89)90964-9

    9. [9]

      Mandl, A. M. J. Endocrinol. 1959, 18 (4), 426. doi: 10.1677/joe.0.0180426  doi: 10.1677/joe.0.0180426

    10. [10]

      Kurudirek, M. J. Alloys Compd. 2017, 727, 1227. doi: 10.1016/j.jallcom.2017.08.237  doi: 10.1016/j.jallcom.2017.08.237

    11. [11]

      Archer, B. R.; Fewell, T. R.; Conway, B. J.; Quinn, P. W. Med. Phys. 1994, 21 (9), 1499. doi: 10.1118/1.597408  doi: 10.1118/1.597408

    12. [12]

      He, F.; Li, J.; Chen, L.; Chen, L.; Huang, Y. Surf. Rev. Lett. 2015, 22 (2), 1550028. doi: 10.1142/S0218625X15500286  doi: 10.1142/S0218625X15500286

    13. [13]

      Hong, G. Y. Introduction to Rare Earth Chemistry; Science Press: Beijing, China, 2014; pp. 243-248.

    14. [14]

      Liu, L.; He, L.; Yang, C.; Zhang, W.; Jin, R. G.; Zhang, L. Q. Macromol. Rapid Commun. 2004, 25 (12), 1197. doi: 10.1002/marc.200400077  doi: 10.1002/marc.200400077

    15. [15]

      Liu, L.; He, L.; Zhang, W.; Yang, C.; Liu, Y.; Jin, R.; Zhang, L. J. Rare Earth 2004, 22, 85.

    16. [16]

      Vana, N.; Hajek, M.; Berger, T.; Fugger, M.; Hofmann, P. Radiat. Prot. Dosim. 2006, 120 (1-4), 405. doi: 10.1093/rpd/nci670  doi: 10.1093/rpd/nci670

    17. [17]

      Kaur, P.; Singh, D.; Singh, T. Radiat. Phys. Chem. 2018, 144, 336. doi: 10.1016/j.radphyschem.2017.09.018  doi: 10.1016/j.radphyschem.2017.09.018

    18. [18]

      Ramachandran, G. N.; Kartha, G. Nature 1954, 174 (4423), 269. doi: 10.1038/174269c0  doi: 10.1038/174269c0

    19. [19]

      Zhang, Z.; Jia, Z.; Wang, Y.; Wang, F.; Yang, R. Surf. Coat. Technol. 2008, 202 (24), 5947. doi: 10.1016/j.surfcoat.2008.06.172  doi: 10.1016/j.surfcoat.2008.06.172

    20. [20]

      Zhang, Y.; Dai, Y.; Li, J.; Sun, H.; Chang, S. Acta Polym. Sin. 2010, No. 5, 582. doi: 10.3724/SP.J.1105.2010.09178  doi: 10.3724/SP.J.1105.2010.09178

    21. [21]

      Tok, A. I. Y.; Luo, L. H.; Boey, F. Y. C. Mater. Sci. Eng. A 2004, 383 (2), 229. doi: 10.1016/j.msea.2004.05.071  doi: 10.1016/j.msea.2004.05.071

    22. [22]

      Ding, J.; Gu, H.; Qiu, P.; Chen, X.; Xiong, Z.; Zheng, Q.; Shi, X.; Chen, L. J. Electron. Mater. 2013, 42 (3), 382. doi: 10.1007/s11664-012-2370-5  doi: 10.1007/s11664-012-2370-5

    23. [23]

      Guo, J.; Wang, X.; Miaso, P.; Liao, X.; Zhang, W.; Shi, B. J. Mater. Chem. 2012, 22 (24), 11933. doi: 10.1039/c2jm30370a  doi: 10.1039/c2jm30370a

    24. [24]

      Elaissari, A.; Haouam, A.; Huguenard, C.; Pefferkorn, E. J. Colloid Interface Sci. 1992, 149 (1), 68. doi: 10.1016/0021-9797(92)90392-Y  doi: 10.1016/0021-9797(92)90392-Y

    25. [25]

      Liu, C.; Huang, X.; Zhou, J.; Chen, Z.; Liao, X.; Wang, X.; Shi, B. J. Mater. Chem. C. 2016, 4 (5), 914. doi: 10.1039/C5TC02591E  doi: 10.1039/C5TC02591E

    26. [26]

      Okajima, T.; Yasukawa, K.; Umesaki, N. J. Electron Spectrosc. Relat. Phenom. 2010, 180 (1-3), 53. doi: 10.1016/j.elspec.2010.04.004  doi: 10.1016/j.elspec.2010.04.004

    27. [27]

      Yamamoto, T.; Tanaka, T.; Matsuyama, T.; Funabiki, T.; Yoshida, S. J. Synchrotron Rad. 2001, 8 (2), 634. doi: 10.1107/S0909049500017106  doi: 10.1107/S0909049500017106

    28. [28]

      Liu, L.; Zhang, L.; Zhao, S.; Jin, R.; Liu, M. J. Rare Earth 2002, 20, 241.

    29. [29]

      Sales, B. C. J. Low Temp. Phys. 1977, 28 (1-2), 107. doi: 10.1007/BF00658961  doi: 10.1007/BF00658961

    30. [30]

      United States National Bureau of Standards. X-Ray Protection; U.S. Government Printing Office, 1955.

    31. [31]

      Mori, H.; Koshida, K.; Ishigamori, O.; Matsubara, K. Radiol. Phys. Technol. 2014, 7 (1), 158. doi: 10.1007/s12194-013-0246-x  doi: 10.1007/s12194-013-0246-x

    32. [32]

      Lv, S. H.; Duan, J. P.; Hou, M. M.; Yan, X. L.; Liu, G.; Gao, R. J. Adv. Mater. Res. 2011, 189, 3588. doi: 10.4028/www.scientific.net/AMR.189-193.3588  doi: 10.4028/www.scientific.net/AMR.189-193.3588

  • 加载中
    1. [1]

      Liang TANGJingfei NIKang XIAOXiangmei LIU . Synthesis and X-ray imaging application of lanthanide-organic complex-based scintillators. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1892-1902. doi: 10.11862/CJIC.20240139

    2. [2]

      Wei Li Guoqiang Feng Ze Chang . Teaching Reform of X-ray Diffraction Using Synchrotron Radiation in Materials Chemistry. University Chemistry, 2024, 39(3): 29-35. doi: 10.3866/PKU.DXHX202308060

    3. [3]

      Hongwei Ma Fang Zhang Hui Ai Niu Zhang Shaochun Peng Hui Li . Integrated Crystallographic Teaching with X-ray,TEM and STM. University Chemistry, 2024, 39(3): 5-17. doi: 10.3866/PKU.DXHX202308107

    4. [4]

      Hongwei Ma Hui Li . Three Methods for Structure Determination from Powder Diffraction Data. University Chemistry, 2024, 39(3): 94-102. doi: 10.3866/PKU.DXHX202310035

    5. [5]

      Yuqiao Zhou Weidi Cao Shunxi Dong Lili Lin Xiaohua Liu . Study on the Teaching Reformation of Practical X-ray Crystallography. University Chemistry, 2024, 39(3): 23-28. doi: 10.3866/PKU.DXHX202303003

    6. [6]

      Yuping Wei Yiting Wang Jialiang Jiang Jinxuan Deng Hong Zhang Xiaofei Ma Junjie Li . Interdisciplinary Teaching Practice——Flexible Wearable Electronic Skin for Low-Temperature Environments. University Chemistry, 2024, 39(10): 261-270. doi: 10.12461/PKU.DXHX202404007

    7. [7]

      Yongming Guo Jie Li Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057

    8. [8]

      Lina Liu Xiaolan Wei Jianqiang Hu . Exploration of Subject-Oriented Undergraduate Comprehensive Chemistry Experimental Teaching Based on the “STS Concept”: Taking the Experiment of Gold Nanoparticles as an Example. University Chemistry, 2024, 39(10): 337-343. doi: 10.12461/PKU.DXHX202405112

    9. [9]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    10. [10]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    11. [11]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    12. [12]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    13. [13]

      Haiyuan Wang Yiming Tang Haoran Guo Guohui Chen Yajing Sun Chao Zhao Zhen Zhang . Comprehensive Chemistry Experimental Teaching Design Based on the Integration of Science and Education: Preparation and Catalytic Properties of Silver Nanomaterials. University Chemistry, 2024, 39(10): 219-228. doi: 10.12461/PKU.DXHX202404067

    14. [14]

      Lijuan Wang Yuping Ning Jian Li Sha Luo Xiongfei Luo Ruiwen Wang . Enhancing the Advanced Nature of Natural Product Chemistry Laboratory Courses with New Research Findings: A Case Study of the Application of Berberine Hydrochloride in Photodynamic Antimicrobial Films. University Chemistry, 2024, 39(11): 241-250. doi: 10.12461/PKU.DXHX202403017

    15. [15]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    16. [16]

      Min LIXianfeng MENG . Preparation and microwave absorption properties of ZIF-67 derived Co@C/MoS2 nanocomposites. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1932-1942. doi: 10.11862/CJIC.20240065

    17. [17]

      Yinyin Qian Rui Xu . Utilizing VESTA Software in the Context of Material Chemistry: Analyzing Twin Crystal Nanostructures in Indium Antimonide. University Chemistry, 2024, 39(3): 103-107. doi: 10.3866/PKU.DXHX202307051

    18. [18]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    19. [19]

      Keke HanWenjun RaoXiuli YouHaina ZhangXing YeZhenhong WeiHu Cai . Two new high-temperature molecular ferroelectrics [1,5-3.2.2-Hdabcni]X (X = ClO4, ReO4). Chinese Chemical Letters, 2024, 35(6): 108809-. doi: 10.1016/j.cclet.2023.108809

    20. [20]

      Mianying Huang Zhiguang Xu Xiaoming Lin . Mechanistic analysis of Co2VO4/X (X = Ni, C) heterostructures as anode materials of lithium-ion batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100309-100309. doi: 10.1016/j.cjsc.2023.100309

Metrics
  • PDF Downloads(16)
  • Abstract views(264)
  • HTML views(27)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return