Citation: Yuyao Liao, Zhen Fan, Jianzhong Du. Photocrosslinking-Immobilized Polymer Vesicles for Lowering Temperature Triggered Drug Release[J]. Acta Physico-Chimica Sinica, ;2021, 37(10): 191205. doi: 10.3866/PKU.WHXB201912053 shu

Photocrosslinking-Immobilized Polymer Vesicles for Lowering Temperature Triggered Drug Release

  • Corresponding author: Zhen Fan, fanzhen2018@tongji.edu.cn Jianzhong Du, jzdu@tongji.edu.cn
  • Received Date: 23 December 2019
    Revised Date: 13 February 2020
    Accepted Date: 18 February 2020
    Available Online: 2 March 2020

    Fund Project: the National Natural Science Foundation of China 21674081the National Natural Science Foundation of China 21925505the National Natural Science Foundation of China 51803152the Natural Science Foundation of Shanghai, China 19ZR1478800

  • The stability of nanocarriers in physiological environments is of importance for biomedical applications. Among the existing crosslinking approaches for enhancing the structural integrity and stability, photocrosslinking has been considered to be an ideal crosslinking chemistry, as it is non-toxic and cost-effective, and does not require an additional crosslinker or generate by-products. Meanwhile, most current temperature-responsive nanocarriers are designed and synthesized for drug release by increasing temperature. However, heating may induce cell damage during triggered drug release. Therefore, lowering temperature-triggered nanocarriers need to be developed for drug delivery and safe drug release during therapeutic hypothermia. In this study, we prepared an amphiphilic block copolymer, poly(ethylene oxide)-block-poly[N-isopropyl acrylamide-stat-7-(2-methacryloyloxyethoxy)-4-methylcoumarin]-block-poly(acrylic acid) [PEO43-b-P(NIPAM71-stat-CMA8)-b-PAA13], by reversible addition fragmentation chain transfer (RAFT) polymerization. Successful synthesis of the polymer was verified by proton nuclear magnetic resonance (1H NMR) and size exclusion chromatography (SEC). The copolymers self-assembled into vesicles in aqueous solution, with the P(NIPAM-stat-CMA) block forming an inhomogeneous membrane and the PEO chains and PAA chains forming mixed coronas. The cavity of this vesicle could be utilized to load hydrophilic drugs. The CMA groups could undergo photocrosslinking and enhance the stability of vesicles in biological applications, and the PNIPAM moiety endowed the vesicle with temperature-responsive properties. Upon decreasing the temperature, the vesicles swelled and released the loaded drugs. The size distribution and morphology of the vesicles were characterized by dynamic light scattering (DLS), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) experiments. After staining with phosphotungstic acid, the hollow morphology of the vesicles with a phase-separated inhomogeneous membrane was observed by TEM and SEM. The DLS results showed that the hydrodynamic diameter of the vesicles was 208 nm and the polydispersity was 0.075. The size of the vesicles observed by TEM was between 180 and 200 nm, which was in accordance with that measured by DLS. To verify the drug loading capacity and controlled release ability of the vesicle, a water-soluble antibiotic was encapsulated in the vesicles. The experimental results showed that the drug loading content was 10.4% relative to the vesicles and the drug loading efficiency was approximately 32.7%. For vesicles containing the same amount of antibiotics, the release rate at 25 ℃ was 35% higher than that at 37 ℃ after 12 h in aqueous solution. Overall, this photocrosslinked vesicle with temperature-responsive properties facilitates lowering temperature-triggered drug release during therapeutic hypothermia.
  • 加载中
    1. [1]

      Ganta, S.; Devalapally, H.; Shahiwala, A.; Amiji, M. J. Controlled Release 2008, 126, 187. doi: 10.1016/j.jconrel.2007.12.017  doi: 10.1016/j.jconrel.2007.12.017

    2. [2]

      Mura, S.; Nicolas, J.; Couvreur, P. Nat. Mater. 2013, 12, 991. doi: 10.1038/nmat3776  doi: 10.1038/nmat3776

    3. [3]

      Nicolas, J.; Mura, S.; Brambilla, D.; Mackiewicz, N.; Couvreur, P. Chem. Soc. Rev. 2013, 42, 1147. doi: 10.1039/c2cs35265f  doi: 10.1039/c2cs35265f

    4. [4]

      Zhang, L.; Xia, J.; Zhao, Q.; Liu, L.; Zhang, Z. Small 2010, 6, 537. doi: 10.1002/smll.200901680  doi: 10.1002/smll.200901680

    5. [5]

      Chen, J. C.; Li, J. Z.; Liu, J. H.; Xu, L. Q. Chin. Chem. Lett. 2015, 26, 1319. doi: 10.1016/j.cclet.2015.05.050  doi: 10.1016/j.cclet.2015.05.050

    6. [6]

      Sun, H.; Wang, F. Y. K.; Du, J. Z. Sci. Sin.: Chim. 2019, 49, 877. doi: 10.1039/c8sc03995j  doi: 10.1039/c8sc03995j

    7. [7]

      Wang, Y.; Liu, Y.; Xu, S.; Liu, H. Acta Phys. -Chim. Sin. 2019, 35, 876.  doi: 10.3866/PKU.WHXB201901019

    8. [8]

      Yang, B.; Du, J. Z. Chin. J. Polym. Sci. 2020, 38, 349. doi: 10.1007/s10118-020-2345-6  doi: 10.1007/s10118-020-2345-6

    9. [9]

      Chen, L. S.; Hong, Y. X.; He, S. S.; Fan, Z.; Du, J. Z. Acta Phys. -Chim. Sin. 2020, 36, 1910059.  doi: 10.3866/pku.whxb201910059

    10. [10]

      Xiao, J. G.; Hu, Y.; Du, J. Z. Sci. China Chem. 2018, 61, 569. doi: 10.1007/s11426-017-9209-3  doi: 10.1007/s11426-017-9209-3

    11. [11]

      Deng, Z.; Qian, Y.; Yu, Y.; Liu, G.; Hu, J.; Zhang, G.; Liu, S. J. Am. Chem. Soc. 2016, 138, 10452. doi: 10.1021/jacs.6b04115  doi: 10.1021/jacs.6b04115

    12. [12]

      Ge, Z.; Liu, S. Chem. Soc. Rev. 2013, 42, 7289. doi: 10.1039/c3cs60048c  doi: 10.1039/c3cs60048c

    13. [13]

      Jin, Q.; Liu, X.; Liu, G.; Ji, J. Polymer 2010, 51, 1311. doi: 10.1016/j.polymer.2010.01.026  doi: 10.1016/j.polymer.2010.01.026

    14. [14]

      Li, Y.; Xiao, K.; Zhu, W.; Deng, W.; Lam, K. S. Adv. Drug Delivery Rev. 2014, 66, 58. doi: 10.1016/j.addr.2013.09.008  doi: 10.1016/j.addr.2013.09.008

    15. [15]

      Wang, F. Y. K.; Gao, J. Y.; Xiao, J. G.; Du, J. Z. Nano Lett. 2018, 18, 5562. doi: 10.1021/acs.nanolett.8b01985  doi: 10.1021/acs.nanolett.8b01985

    16. [16]

      Jiang, X. Z.; Luo, S. Z.; Armes, S. P.; Shi, W. F.; Liu, S. Y. Macromolecules 2006, 39, 5987. doi: 10.1021/ma061386m  doi: 10.1021/ma061386m

    17. [17]

      Yang, Y. M.; Velmurugan, B.; Liu, X. G.; Xing, B. G. Small 2013, 9, 2937. doi: 10.1002/smll.201201765  doi: 10.1002/smll.201201765

    18. [18]

      Wang, Q.; Cheng, M.; Jiang, J. L.; Wang, L. Y. Chin. Chem. Lett. 2017, 28, 793. doi: 10.1016/j.cclet.2017.02.008  doi: 10.1016/j.cclet.2017.02.008

    19. [19]

      Liu, N.; Yi, C. L.; Sun, J. H.; Wang, J. Q.; Liu, X. Y. Acta Phys. -Chim. Sin. 2013, 29, 327.  doi: 10.3866/PKU.WHXb201212032

    20. [20]

      Zhao, Y. Q.; Fei, F.; Yi, C. L.; Jiang, J. Q.; Luo, J.; Liu, X. Y. Acta Phys. -Chim. Sin. 2010, 26, 3230.  doi: 10.3866/PKU.WHXB20101217

    21. [21]

      Li, B. J.; Wu, Y. Q.; Wang, Y.; Zhang, M. S.; Chen, H. M.; Li, J.; Liu, R. H.; Ding, Y.; Hu, A. G. ACS Appl. Mater. Interfaces 2019, 11, 8896. doi: 10.1021/acsami.8b22516  doi: 10.1021/acsami.8b22516

    22. [22]

      Zhang, Y. X.; He, J.; Dai, X. C.; Yu, L. L.; Tan, J. B.; Zhang, L. Polym. Chem. 2019, 10, 3902. doi: 10.1039/c9py00534j  doi: 10.1039/c9py00534j

    23. [23]

      Batrakova, E. V.; Kabanov, A. V. J. Controlled Release 2008, 130, 98. doi: 10.1016/j.jconrel.2008.04.013  doi: 10.1016/j.jconrel.2008.04.013

    24. [24]

      Danhier, F.; Feron, O.; Preat, V. J. Controlled Release 2010, 148, 135. doi: 10.1016/j.jconrel.2010.08.027  doi: 10.1016/j.jconrel.2010.08.027

    25. [25]

      Jiang, X.; Ge, Z.; Xu, J.; Liu, H.; Liu, S. Biomacromolecules 2007, 8, 3184. doi: 10.1021/bm700743h  doi: 10.1021/bm700743h

    26. [26]

      Nishiyama, N.; Kataoka, K. Pharmacol. Ther. 2006, 112, 630. doi: 10.1016/j.pharmthera.2006.05.006  doi: 10.1016/j.pharmthera.2006.05.006

    27. [27]

      Yang, W. T.; Guo, W. S.; Le, W. J.; Lv, G. X.; Zhang, F. H.; Shi, L.; Wang, X. L.; Wang, J.; Wang, S.; Chang, J.; et al. ACS Nano 2016, 10, 10245. doi: 10.1021/acsnano.6b05760  doi: 10.1021/acsnano.6b05760

    28. [28]

      Chen, X. R.; Ding, X. B.; Zheng, Z. H.; Peng, Y. X. New J. Chem. 2006, 30, 577. doi: 10.1039/b516053g  doi: 10.1039/b516053g

    29. [29]

      Leal, M. P.; Torti, A.; Riedinger, A.; La Fleur, R.; Petti, D.; Cingolani, R.; Bertacco, R.; Pellegrino, T. ACS Nano 2012, 6, 10535. doi: 10.1021/nn3028425  doi: 10.1021/nn3028425

    30. [30]

      Li, Y. T.; Lokitz, B. S.; Armes, S. P.; McCormick, C. L. Macromolecules 2006, 39, 2726. doi: 10.1021/ma0604035  doi: 10.1021/ma0604035

    31. [31]

      Jiang, X. Z.; Liu, S. Y.; Narain, R. Langmuir 2009, 25, 13344. doi: 10.1021/la9034276  doi: 10.1021/la9034276

    32. [32]

      Qu, T. H.; Wang, A. R.; Yuan, J. F.; Shi, J. H.; Gao, Q. Y. Colloids Surf., B 2009, 72, 94. doi: 10.1016/j.colsurfb.2009.03.020  doi: 10.1016/j.colsurfb.2009.03.020

    33. [33]

      Sun, J. X.; Wang, Y. L.; Dou, S. H. Chin. Chem. Lett. 2012, 23, 97. doi: 10.1016/j.cclet.2011.09.023  doi: 10.1016/j.cclet.2011.09.023

    34. [34]

      Huang, H. Q.; Qi, X. L.; Chen, Y. H.; Wu, Z. H. Saudi Pharm. J. 2019, 27, 990. doi: 10.1016/j.jsps.2019.08.001  doi: 10.1016/j.jsps.2019.08.001

    35. [35]

      Kashcooli, M.; Salimpour, M. R.; Shirani, E. J. Therm. Biol. 2017, 64, 7. doi: 10.1016/j.jtherbio.2016.12.007  doi: 10.1016/j.jtherbio.2016.12.007

    36. [36]

      Hijnen, N.; Kneepkens, E.; de Smet, M.; Langereis, S.; Heijman, E.; Grull, H. Proc. Natl. Acad. Sci. U. S. A. 2017, 114, E4802. doi: 10.1073/pnas.1700790114  doi: 10.1073/pnas.1700790114

    37. [37]

      Hildebrandt, B.; Wust, P.; Ahlers, O.; Dieing, A.; Sreenivasa, G.; Kerner, T.; Felix, R.; Riess, H. Crit. Rev. Oncol. Hemat. 2002, 43, 33. doi: 10.1016/s1040-8428(01)00179-2  doi: 10.1016/s1040-8428(01)00179-2

    38. [38]

      Breslin, M.; Lam, P.; Murrell, G. A. C. BMJ Open Sport Exerc. Med. 2015, 1, e000037. doi: 10.1136/bmjsem-2015-000037  doi: 10.1136/bmjsem-2015-000037

    39. [39]

      Utsunomiya, M.; Nitta, K.; Sawagichi, H.; Yoshikawa, A.; Karasuno, H.; Morozumi, K.; Allison, G. T.; Fujiwara, T.; Abe, K. J. Phys. Ther. Sci. 2010, 22, 43. doi: 10.1589/jpts.22.43  doi: 10.1589/jpts.22.43

    40. [40]

      Holzer, M.; Cerchiari, E.; Martens, P.; Roine, R.; Sterz, F.; Eisenburger, P.; Havel, C.; Kofler, J.; Oschatz, E.; Rohrbach, K.; et al. N. Engl. J. Med. 2002, 346, 549. doi: 10.1056/NEJMoa012689  doi: 10.1056/NEJMoa012689

    41. [41]

      Nolan, J. P.; Morley, P. T.; Hoek, T. L. V.; Hickey, R. W.; Kloeck, W. G. J.; Billi, J.; Bottiger, B. W.; Morley, P. T.; Nolan, J. P.; Okada, K.; et al. Circulation 2003, 108, 118. doi: 10.1161/01.cir.0000079019.02601.90  doi: 10.1161/01.cir.0000079019.02601.90

    42. [42]

      Zhu, Y.; Liu, L.; Du, J. Macromolecules 2013, 46, 194. doi: 10.1021/ma302176a  doi: 10.1021/ma302176a

    43. [43]

      Lu, F.; Luo, Y.; Li, B.; Zhao, Q.; Schork, F. J. Macromolecules 2010, 43, 568. doi: 10.1021/ma902058b  doi: 10.1021/ma902058b

    44. [44]

      Chen, J.; Liu, Q. M.; Xiao, J. G.; Du, J. Z. Biomacromolecules 2015, 16, 1695. doi: 10.1021/acs.biomac.5b00551  doi: 10.1021/acs.biomac.5b00551

    45. [45]

      Zhu, Y. Q.; Wang, F. Y. K.; Zhang, C.; Du, J. Z. ACS Nano 2014, 8, 6644. doi: 10.1021/nn502386j  doi: 10.1021/nn502386j

    46. [46]

      Xiao, Y. F.; Sung, H.; Du, J. Z. J. Am. Chem. Soc. 2017, 139, 7640. doi: 10.1021/jacs.7b03219  doi: 10.1021/jacs.7b03219

    47. [47]

      Yuan, K.; Zhou, X.; Du, J. Z. Acta Phys. -Chim. Sin. 2017, 33, 656.  doi: 10.3866/pku.whxb201701162

  • 加载中
    1. [1]

      Ming HuangXiuju CaiYan LiuZhuofeng Ke . Base-controlled NHC-Ru-catalyzed transfer hydrogenation and α-methylation/transfer hydrogenation of ketones using methanol. Chinese Chemical Letters, 2024, 35(7): 109323-. doi: 10.1016/j.cclet.2023.109323

    2. [2]

      Linghui ZouMeng ChengKaili HuJianfang FengLiangxing Tu . Vesicular drug delivery systems for oral absorption enhancement. Chinese Chemical Letters, 2024, 35(7): 109129-. doi: 10.1016/j.cclet.2023.109129

    3. [3]

      Fengjie LiuFansu MengZhenjiang YangHuan WangYuehong RenYu CaiXingwang Zhang . Exosome-biomimetic nanocarriers for oral drug delivery. Chinese Chemical Letters, 2024, 35(9): 109335-. doi: 10.1016/j.cclet.2023.109335

    4. [4]

      Hao WangMeng-Qi PanYa-Fei WangChao ChenJian XuYuan-Yuan GaoChuan-Song QiWei LiXian-He Bu . Post-synthetic modifications of MOFs by different bolt ligands for controllable release of cargoes. Chinese Chemical Letters, 2024, 35(10): 109581-. doi: 10.1016/j.cclet.2024.109581

    5. [5]

      Tiankai SunHui MinZongsu HanLiang WangPeng ChengWei Shi . Rapid detection of nanoplastic particles by a luminescent Tb-based coordination polymer. Chinese Chemical Letters, 2024, 35(5): 108718-. doi: 10.1016/j.cclet.2023.108718

    6. [6]

      Mengjun SunZhi WangJvhui JiangXiaobing WangChuang Yu . Gelation mechanisms of gel polymer electrolytes for zinc-based batteries. Chinese Chemical Letters, 2024, 35(5): 109393-. doi: 10.1016/j.cclet.2023.109393

    7. [7]

      Huimin Gao Zhuochen Yu Xuze Zhang Xiangkun Yu Jiyuan Xing Youliang Zhu Hu-Jun Qian Zhong-Yuan Lu . A mini review of the recent progress in coarse-grained simulation of polymer systems. Chinese Journal of Structural Chemistry, 2024, 43(5): 100266-100266. doi: 10.1016/j.cjsc.2024.100266

    8. [8]

      Dong LvXuelei LiuWei LiQiang ZhangXinhong YuYanchun Han . Single droplet formation by controlling the viscoelasticity of polymer solutions during inkjet printing. Chinese Chemical Letters, 2024, 35(6): 109401-. doi: 10.1016/j.cclet.2023.109401

    9. [9]

      Jinjie LuQikai LiuYuting ZhangYi ZhouYanbo Zhou . Antibacterial performance of cationic quaternary phosphonium-modified chitosan polymer in water. Chinese Chemical Letters, 2024, 35(9): 109406-. doi: 10.1016/j.cclet.2023.109406

    10. [10]

      Xiaohong WenMei YangLie LiMingmin HuangWei CuiSuping LiHaiyan ChenChen LiQiuping Guo . Enzymatically controlled DNA tetrahedron nanoprobes for specific imaging of ATP in tumor. Chinese Chemical Letters, 2024, 35(8): 109291-. doi: 10.1016/j.cclet.2023.109291

    11. [11]

      Qingyan JIANGYanyong SHAChen CHENXiaojuan CHENWenlong LIUHao HUANGHongjiang LIUQi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004

    12. [12]

      Yuanzhe Lu Yuanqin Zhu Linfeng Zhong Dingshan Yu . Long-lifespan aqueous alkaline and acidic batteries enabled by redox conjugated covalent organic polymer anodes. Chinese Journal of Structural Chemistry, 2024, 43(3): 100249-100249. doi: 10.1016/j.cjsc.2024.100249

    13. [13]

      Qianqian SongYunting ZhangJianli LiangSi LiuJian ZhuXingbin Yan . Boron nitride nanofibers enhanced composite PEO-based solid-state polymer electrolytes for lithium metal batteries. Chinese Chemical Letters, 2024, 35(6): 108797-. doi: 10.1016/j.cclet.2023.108797

    14. [14]

      Xin-Tong ZhaoJin-Zhi GuoWen-Liang LiJing-Ping ZhangXing-Long Wu . Two-dimensional conjugated coordination polymer monolayer as anode material for lithium-ion batteries: A DFT study. Chinese Chemical Letters, 2024, 35(6): 108715-. doi: 10.1016/j.cclet.2023.108715

    15. [15]

      Xin LiXuan DingJunkun ZhouHui ShiZhenxi DaiJiayi LiuYongcun MaPenghui ShaoLiming YangXubiao Luo . Utilizing synergistic effects of bifunctional polymer hydrogel PAM-PAMPS for selective capture of Pb(Ⅱ) from wastewater. Chinese Chemical Letters, 2024, 35(7): 109158-. doi: 10.1016/j.cclet.2023.109158

    16. [16]

      Lei ZhouYoujun ZhouLizhen FangYiqiao BaiYujia MengLiang LiJie YangYong Yao . Pillar[5]arene based artificial light-harvesting supramolecular polymer for efficient and recyclable photocatalytic applications. Chinese Chemical Letters, 2024, 35(9): 109509-. doi: 10.1016/j.cclet.2024.109509

    17. [17]

      Zhen DaiLinzhi TanYeyu SuKerui ZhaoYushun TianYu LiuTao Liu . Site-specific incorporation of reduction-controlled guest amino acids into proteins for cucurbituril recognition. Chinese Chemical Letters, 2024, 35(5): 109121-. doi: 10.1016/j.cclet.2023.109121

    18. [18]

      Hao CaiXiaoyan WuLei JiangFeng YuYuxiang YangYan LiXian ZhangJian LiuZijian LiHong Bi . Lysosome-targeted carbon dots with a light-controlled nitric oxide releasing property for enhanced photodynamic therapy. Chinese Chemical Letters, 2024, 35(4): 108946-. doi: 10.1016/j.cclet.2023.108946

    19. [19]

      Wenyu GaoLiming ZhangChuang ZhaoLixiang LiuXingran YangJinbo Zhao . Controlled semi-Pinacol rearrangement on a strained ring: Efficient access to multi-substituted cyclopropanes by group migration strategy. Chinese Chemical Letters, 2024, 35(9): 109447-. doi: 10.1016/j.cclet.2023.109447

    20. [20]

      Zhihong LUOYan SHIJinyu ANDeyi ZHENGLong LIQuansheng OUYANGBin SHIJiaojing SHAO . Two-dimensional silica-modified polyethylene oxide solid polymer electrolyte to enhance the performance of lithium-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1005-1014. doi: 10.11862/CJIC.20230444

Metrics
  • PDF Downloads(6)
  • Abstract views(158)
  • HTML views(15)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return