Citation: Yuyao Liao, Zhen Fan, Jianzhong Du. Photocrosslinking-Immobilized Polymer Vesicles for Lowering Temperature Triggered Drug Release[J]. Acta Physico-Chimica Sinica, ;2021, 37(10): 191205. doi: 10.3866/PKU.WHXB201912053 shu

Photocrosslinking-Immobilized Polymer Vesicles for Lowering Temperature Triggered Drug Release

  • Corresponding author: Zhen Fan, fanzhen2018@tongji.edu.cn Jianzhong Du, jzdu@tongji.edu.cn
  • Received Date: 23 December 2019
    Revised Date: 13 February 2020
    Accepted Date: 18 February 2020
    Available Online: 2 March 2020

    Fund Project: the National Natural Science Foundation of China 21674081the National Natural Science Foundation of China 21925505the National Natural Science Foundation of China 51803152the Natural Science Foundation of Shanghai, China 19ZR1478800

  • The stability of nanocarriers in physiological environments is of importance for biomedical applications. Among the existing crosslinking approaches for enhancing the structural integrity and stability, photocrosslinking has been considered to be an ideal crosslinking chemistry, as it is non-toxic and cost-effective, and does not require an additional crosslinker or generate by-products. Meanwhile, most current temperature-responsive nanocarriers are designed and synthesized for drug release by increasing temperature. However, heating may induce cell damage during triggered drug release. Therefore, lowering temperature-triggered nanocarriers need to be developed for drug delivery and safe drug release during therapeutic hypothermia. In this study, we prepared an amphiphilic block copolymer, poly(ethylene oxide)-block-poly[N-isopropyl acrylamide-stat-7-(2-methacryloyloxyethoxy)-4-methylcoumarin]-block-poly(acrylic acid) [PEO43-b-P(NIPAM71-stat-CMA8)-b-PAA13], by reversible addition fragmentation chain transfer (RAFT) polymerization. Successful synthesis of the polymer was verified by proton nuclear magnetic resonance (1H NMR) and size exclusion chromatography (SEC). The copolymers self-assembled into vesicles in aqueous solution, with the P(NIPAM-stat-CMA) block forming an inhomogeneous membrane and the PEO chains and PAA chains forming mixed coronas. The cavity of this vesicle could be utilized to load hydrophilic drugs. The CMA groups could undergo photocrosslinking and enhance the stability of vesicles in biological applications, and the PNIPAM moiety endowed the vesicle with temperature-responsive properties. Upon decreasing the temperature, the vesicles swelled and released the loaded drugs. The size distribution and morphology of the vesicles were characterized by dynamic light scattering (DLS), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) experiments. After staining with phosphotungstic acid, the hollow morphology of the vesicles with a phase-separated inhomogeneous membrane was observed by TEM and SEM. The DLS results showed that the hydrodynamic diameter of the vesicles was 208 nm and the polydispersity was 0.075. The size of the vesicles observed by TEM was between 180 and 200 nm, which was in accordance with that measured by DLS. To verify the drug loading capacity and controlled release ability of the vesicle, a water-soluble antibiotic was encapsulated in the vesicles. The experimental results showed that the drug loading content was 10.4% relative to the vesicles and the drug loading efficiency was approximately 32.7%. For vesicles containing the same amount of antibiotics, the release rate at 25 ℃ was 35% higher than that at 37 ℃ after 12 h in aqueous solution. Overall, this photocrosslinked vesicle with temperature-responsive properties facilitates lowering temperature-triggered drug release during therapeutic hypothermia.
  • 加载中
    1. [1]

      Ganta, S.; Devalapally, H.; Shahiwala, A.; Amiji, M. J. Controlled Release 2008, 126, 187. doi: 10.1016/j.jconrel.2007.12.017  doi: 10.1016/j.jconrel.2007.12.017

    2. [2]

      Mura, S.; Nicolas, J.; Couvreur, P. Nat. Mater. 2013, 12, 991. doi: 10.1038/nmat3776  doi: 10.1038/nmat3776

    3. [3]

      Nicolas, J.; Mura, S.; Brambilla, D.; Mackiewicz, N.; Couvreur, P. Chem. Soc. Rev. 2013, 42, 1147. doi: 10.1039/c2cs35265f  doi: 10.1039/c2cs35265f

    4. [4]

      Zhang, L.; Xia, J.; Zhao, Q.; Liu, L.; Zhang, Z. Small 2010, 6, 537. doi: 10.1002/smll.200901680  doi: 10.1002/smll.200901680

    5. [5]

      Chen, J. C.; Li, J. Z.; Liu, J. H.; Xu, L. Q. Chin. Chem. Lett. 2015, 26, 1319. doi: 10.1016/j.cclet.2015.05.050  doi: 10.1016/j.cclet.2015.05.050

    6. [6]

      Sun, H.; Wang, F. Y. K.; Du, J. Z. Sci. Sin.: Chim. 2019, 49, 877. doi: 10.1039/c8sc03995j  doi: 10.1039/c8sc03995j

    7. [7]

      Wang, Y.; Liu, Y.; Xu, S.; Liu, H. Acta Phys. -Chim. Sin. 2019, 35, 876.  doi: 10.3866/PKU.WHXB201901019

    8. [8]

      Yang, B.; Du, J. Z. Chin. J. Polym. Sci. 2020, 38, 349. doi: 10.1007/s10118-020-2345-6  doi: 10.1007/s10118-020-2345-6

    9. [9]

      Chen, L. S.; Hong, Y. X.; He, S. S.; Fan, Z.; Du, J. Z. Acta Phys. -Chim. Sin. 2020, 36, 1910059.  doi: 10.3866/pku.whxb201910059

    10. [10]

      Xiao, J. G.; Hu, Y.; Du, J. Z. Sci. China Chem. 2018, 61, 569. doi: 10.1007/s11426-017-9209-3  doi: 10.1007/s11426-017-9209-3

    11. [11]

      Deng, Z.; Qian, Y.; Yu, Y.; Liu, G.; Hu, J.; Zhang, G.; Liu, S. J. Am. Chem. Soc. 2016, 138, 10452. doi: 10.1021/jacs.6b04115  doi: 10.1021/jacs.6b04115

    12. [12]

      Ge, Z.; Liu, S. Chem. Soc. Rev. 2013, 42, 7289. doi: 10.1039/c3cs60048c  doi: 10.1039/c3cs60048c

    13. [13]

      Jin, Q.; Liu, X.; Liu, G.; Ji, J. Polymer 2010, 51, 1311. doi: 10.1016/j.polymer.2010.01.026  doi: 10.1016/j.polymer.2010.01.026

    14. [14]

      Li, Y.; Xiao, K.; Zhu, W.; Deng, W.; Lam, K. S. Adv. Drug Delivery Rev. 2014, 66, 58. doi: 10.1016/j.addr.2013.09.008  doi: 10.1016/j.addr.2013.09.008

    15. [15]

      Wang, F. Y. K.; Gao, J. Y.; Xiao, J. G.; Du, J. Z. Nano Lett. 2018, 18, 5562. doi: 10.1021/acs.nanolett.8b01985  doi: 10.1021/acs.nanolett.8b01985

    16. [16]

      Jiang, X. Z.; Luo, S. Z.; Armes, S. P.; Shi, W. F.; Liu, S. Y. Macromolecules 2006, 39, 5987. doi: 10.1021/ma061386m  doi: 10.1021/ma061386m

    17. [17]

      Yang, Y. M.; Velmurugan, B.; Liu, X. G.; Xing, B. G. Small 2013, 9, 2937. doi: 10.1002/smll.201201765  doi: 10.1002/smll.201201765

    18. [18]

      Wang, Q.; Cheng, M.; Jiang, J. L.; Wang, L. Y. Chin. Chem. Lett. 2017, 28, 793. doi: 10.1016/j.cclet.2017.02.008  doi: 10.1016/j.cclet.2017.02.008

    19. [19]

      Liu, N.; Yi, C. L.; Sun, J. H.; Wang, J. Q.; Liu, X. Y. Acta Phys. -Chim. Sin. 2013, 29, 327.  doi: 10.3866/PKU.WHXb201212032

    20. [20]

      Zhao, Y. Q.; Fei, F.; Yi, C. L.; Jiang, J. Q.; Luo, J.; Liu, X. Y. Acta Phys. -Chim. Sin. 2010, 26, 3230.  doi: 10.3866/PKU.WHXB20101217

    21. [21]

      Li, B. J.; Wu, Y. Q.; Wang, Y.; Zhang, M. S.; Chen, H. M.; Li, J.; Liu, R. H.; Ding, Y.; Hu, A. G. ACS Appl. Mater. Interfaces 2019, 11, 8896. doi: 10.1021/acsami.8b22516  doi: 10.1021/acsami.8b22516

    22. [22]

      Zhang, Y. X.; He, J.; Dai, X. C.; Yu, L. L.; Tan, J. B.; Zhang, L. Polym. Chem. 2019, 10, 3902. doi: 10.1039/c9py00534j  doi: 10.1039/c9py00534j

    23. [23]

      Batrakova, E. V.; Kabanov, A. V. J. Controlled Release 2008, 130, 98. doi: 10.1016/j.jconrel.2008.04.013  doi: 10.1016/j.jconrel.2008.04.013

    24. [24]

      Danhier, F.; Feron, O.; Preat, V. J. Controlled Release 2010, 148, 135. doi: 10.1016/j.jconrel.2010.08.027  doi: 10.1016/j.jconrel.2010.08.027

    25. [25]

      Jiang, X.; Ge, Z.; Xu, J.; Liu, H.; Liu, S. Biomacromolecules 2007, 8, 3184. doi: 10.1021/bm700743h  doi: 10.1021/bm700743h

    26. [26]

      Nishiyama, N.; Kataoka, K. Pharmacol. Ther. 2006, 112, 630. doi: 10.1016/j.pharmthera.2006.05.006  doi: 10.1016/j.pharmthera.2006.05.006

    27. [27]

      Yang, W. T.; Guo, W. S.; Le, W. J.; Lv, G. X.; Zhang, F. H.; Shi, L.; Wang, X. L.; Wang, J.; Wang, S.; Chang, J.; et al. ACS Nano 2016, 10, 10245. doi: 10.1021/acsnano.6b05760  doi: 10.1021/acsnano.6b05760

    28. [28]

      Chen, X. R.; Ding, X. B.; Zheng, Z. H.; Peng, Y. X. New J. Chem. 2006, 30, 577. doi: 10.1039/b516053g  doi: 10.1039/b516053g

    29. [29]

      Leal, M. P.; Torti, A.; Riedinger, A.; La Fleur, R.; Petti, D.; Cingolani, R.; Bertacco, R.; Pellegrino, T. ACS Nano 2012, 6, 10535. doi: 10.1021/nn3028425  doi: 10.1021/nn3028425

    30. [30]

      Li, Y. T.; Lokitz, B. S.; Armes, S. P.; McCormick, C. L. Macromolecules 2006, 39, 2726. doi: 10.1021/ma0604035  doi: 10.1021/ma0604035

    31. [31]

      Jiang, X. Z.; Liu, S. Y.; Narain, R. Langmuir 2009, 25, 13344. doi: 10.1021/la9034276  doi: 10.1021/la9034276

    32. [32]

      Qu, T. H.; Wang, A. R.; Yuan, J. F.; Shi, J. H.; Gao, Q. Y. Colloids Surf., B 2009, 72, 94. doi: 10.1016/j.colsurfb.2009.03.020  doi: 10.1016/j.colsurfb.2009.03.020

    33. [33]

      Sun, J. X.; Wang, Y. L.; Dou, S. H. Chin. Chem. Lett. 2012, 23, 97. doi: 10.1016/j.cclet.2011.09.023  doi: 10.1016/j.cclet.2011.09.023

    34. [34]

      Huang, H. Q.; Qi, X. L.; Chen, Y. H.; Wu, Z. H. Saudi Pharm. J. 2019, 27, 990. doi: 10.1016/j.jsps.2019.08.001  doi: 10.1016/j.jsps.2019.08.001

    35. [35]

      Kashcooli, M.; Salimpour, M. R.; Shirani, E. J. Therm. Biol. 2017, 64, 7. doi: 10.1016/j.jtherbio.2016.12.007  doi: 10.1016/j.jtherbio.2016.12.007

    36. [36]

      Hijnen, N.; Kneepkens, E.; de Smet, M.; Langereis, S.; Heijman, E.; Grull, H. Proc. Natl. Acad. Sci. U. S. A. 2017, 114, E4802. doi: 10.1073/pnas.1700790114  doi: 10.1073/pnas.1700790114

    37. [37]

      Hildebrandt, B.; Wust, P.; Ahlers, O.; Dieing, A.; Sreenivasa, G.; Kerner, T.; Felix, R.; Riess, H. Crit. Rev. Oncol. Hemat. 2002, 43, 33. doi: 10.1016/s1040-8428(01)00179-2  doi: 10.1016/s1040-8428(01)00179-2

    38. [38]

      Breslin, M.; Lam, P.; Murrell, G. A. C. BMJ Open Sport Exerc. Med. 2015, 1, e000037. doi: 10.1136/bmjsem-2015-000037  doi: 10.1136/bmjsem-2015-000037

    39. [39]

      Utsunomiya, M.; Nitta, K.; Sawagichi, H.; Yoshikawa, A.; Karasuno, H.; Morozumi, K.; Allison, G. T.; Fujiwara, T.; Abe, K. J. Phys. Ther. Sci. 2010, 22, 43. doi: 10.1589/jpts.22.43  doi: 10.1589/jpts.22.43

    40. [40]

      Holzer, M.; Cerchiari, E.; Martens, P.; Roine, R.; Sterz, F.; Eisenburger, P.; Havel, C.; Kofler, J.; Oschatz, E.; Rohrbach, K.; et al. N. Engl. J. Med. 2002, 346, 549. doi: 10.1056/NEJMoa012689  doi: 10.1056/NEJMoa012689

    41. [41]

      Nolan, J. P.; Morley, P. T.; Hoek, T. L. V.; Hickey, R. W.; Kloeck, W. G. J.; Billi, J.; Bottiger, B. W.; Morley, P. T.; Nolan, J. P.; Okada, K.; et al. Circulation 2003, 108, 118. doi: 10.1161/01.cir.0000079019.02601.90  doi: 10.1161/01.cir.0000079019.02601.90

    42. [42]

      Zhu, Y.; Liu, L.; Du, J. Macromolecules 2013, 46, 194. doi: 10.1021/ma302176a  doi: 10.1021/ma302176a

    43. [43]

      Lu, F.; Luo, Y.; Li, B.; Zhao, Q.; Schork, F. J. Macromolecules 2010, 43, 568. doi: 10.1021/ma902058b  doi: 10.1021/ma902058b

    44. [44]

      Chen, J.; Liu, Q. M.; Xiao, J. G.; Du, J. Z. Biomacromolecules 2015, 16, 1695. doi: 10.1021/acs.biomac.5b00551  doi: 10.1021/acs.biomac.5b00551

    45. [45]

      Zhu, Y. Q.; Wang, F. Y. K.; Zhang, C.; Du, J. Z. ACS Nano 2014, 8, 6644. doi: 10.1021/nn502386j  doi: 10.1021/nn502386j

    46. [46]

      Xiao, Y. F.; Sung, H.; Du, J. Z. J. Am. Chem. Soc. 2017, 139, 7640. doi: 10.1021/jacs.7b03219  doi: 10.1021/jacs.7b03219

    47. [47]

      Yuan, K.; Zhou, X.; Du, J. Z. Acta Phys. -Chim. Sin. 2017, 33, 656.  doi: 10.3866/pku.whxb201701162

  • 加载中
    1. [1]

      Chunlei DaiLiying WangXinru YouYi ZhaoZhong CaoJun Wu . Coffee-derived self-anti-inflammatory polymer as drug nanocarrier for enhanced rheumatoid arthritis treatment. Chinese Chemical Letters, 2025, 36(3): 109869-. doi: 10.1016/j.cclet.2024.109869

    2. [2]

      Mengyuan LiXitong RenYanmei GaoMengyao MuShiping ZhuShufang TianMinghua Lu . Constructing bifunctional magnetic porous poly(divinylbenzene) polymer for high-efficient removal and sensitive detection of bisphenols. Chinese Chemical Letters, 2024, 35(12): 109699-. doi: 10.1016/j.cclet.2024.109699

    3. [3]

      Jing RENRuikui YANXiaoli CHENHuali CUIHua YANGJijiang WANG . Synthesis and fluorescence sensing of a highly sensitive and multi-response cadmium coordination polymer. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 574-586. doi: 10.11862/CJIC.20240287

    4. [4]

      Bing NiuHonggao HuangLiwei LuoLi ZhangJianbo Tan . Coating colloidal particles with a well-defined polymer layer by surface-initiated photoinduced polymerization-induced self-assembly and the subsequent seeded polymerization. Chinese Chemical Letters, 2025, 36(2): 110431-. doi: 10.1016/j.cclet.2024.110431

    5. [5]

      Ming HuangXiuju CaiYan LiuZhuofeng Ke . Base-controlled NHC-Ru-catalyzed transfer hydrogenation and α-methylation/transfer hydrogenation of ketones using methanol. Chinese Chemical Letters, 2024, 35(7): 109323-. doi: 10.1016/j.cclet.2023.109323

    6. [6]

      Yan WangSi-Meng ZhaiPeng LuoXi-Yan DongJia-Yin WangZhen HanShuang-Quan Zang . Vapor- and temperature-triggered reversible optical switching for multi-response Cu8 cluster supercrystals. Chinese Chemical Letters, 2024, 35(11): 109493-. doi: 10.1016/j.cclet.2024.109493

    7. [7]

      Xiaoman DangZhiying WuTangxin XiaoZhouyu WangLeyong Wang . Highly robust supramolecular polymer networks crosslinked by metallacycles. Chinese Chemical Letters, 2024, 35(12): 110208-. doi: 10.1016/j.cclet.2024.110208

    8. [8]

      Yaohua Li Qi Cao Xuanhua Li . Tailoring the configuration of polymer passivators in perovskite solar cells. Chinese Journal of Structural Chemistry, 2025, 44(2): 100413-100413. doi: 10.1016/j.cjsc.2024.100413

    9. [9]

      Tiankai SunHui MinZongsu HanLiang WangPeng ChengWei Shi . Rapid detection of nanoplastic particles by a luminescent Tb-based coordination polymer. Chinese Chemical Letters, 2024, 35(5): 108718-. doi: 10.1016/j.cclet.2023.108718

    10. [10]

      Mengjun SunZhi WangJvhui JiangXiaobing WangChuang Yu . Gelation mechanisms of gel polymer electrolytes for zinc-based batteries. Chinese Chemical Letters, 2024, 35(5): 109393-. doi: 10.1016/j.cclet.2023.109393

    11. [11]

      Huimin Gao Zhuochen Yu Xuze Zhang Xiangkun Yu Jiyuan Xing Youliang Zhu Hu-Jun Qian Zhong-Yuan Lu . A mini review of the recent progress in coarse-grained simulation of polymer systems. Chinese Journal of Structural Chemistry, 2024, 43(5): 100266-100266. doi: 10.1016/j.cjsc.2024.100266

    12. [12]

      Dong LvXuelei LiuWei LiQiang ZhangXinhong YuYanchun Han . Single droplet formation by controlling the viscoelasticity of polymer solutions during inkjet printing. Chinese Chemical Letters, 2024, 35(6): 109401-. doi: 10.1016/j.cclet.2023.109401

    13. [13]

      Jinjie LuQikai LiuYuting ZhangYi ZhouYanbo Zhou . Antibacterial performance of cationic quaternary phosphonium-modified chitosan polymer in water. Chinese Chemical Letters, 2024, 35(9): 109406-. doi: 10.1016/j.cclet.2023.109406

    14. [14]

      Shaohua ZhangXiaojuan DaiWei HaoLiyao LiuYingqiao MaYe ZouJia ZhuChong-an Di . A first-principles study of the Nernst effect in doped polymer. Chinese Chemical Letters, 2024, 35(12): 109837-. doi: 10.1016/j.cclet.2024.109837

    15. [15]

      Xu Li Yue Zhao Tingli Ma . Improved polymer electrolyte interfacial contact via constructing vertically aligned fillers. Chinese Journal of Structural Chemistry, 2025, 44(2): 100406-100406. doi: 10.1016/j.cjsc.2024.100406

    16. [16]

      Linghui ZouMeng ChengKaili HuJianfang FengLiangxing Tu . Vesicular drug delivery systems for oral absorption enhancement. Chinese Chemical Letters, 2024, 35(7): 109129-. doi: 10.1016/j.cclet.2023.109129

    17. [17]

      Fengjie LiuFansu MengZhenjiang YangHuan WangYuehong RenYu CaiXingwang Zhang . Exosome-biomimetic nanocarriers for oral drug delivery. Chinese Chemical Letters, 2024, 35(9): 109335-. doi: 10.1016/j.cclet.2023.109335

    18. [18]

      Hao WangMeng-Qi PanYa-Fei WangChao ChenJian XuYuan-Yuan GaoChuan-Song QiWei LiXian-He Bu . Post-synthetic modifications of MOFs by different bolt ligands for controllable release of cargoes. Chinese Chemical Letters, 2024, 35(10): 109581-. doi: 10.1016/j.cclet.2024.109581

    19. [19]

      Zheyi LiXiaoyang LiangZitong QiuZimeng LiuSiyu WangYue ZhouNan Li . Ion-interferential cell cycle arrest for melanoma treatment based on magnetocaloric bimetallic-ion sustained release hydrogel. Chinese Chemical Letters, 2024, 35(11): 109592-. doi: 10.1016/j.cclet.2024.109592

    20. [20]

      Jiaxu WangJinxie ZhangXiuping WangJingying WangLina ChenJiahui CaoWei CaoSiyu LiangPing LuanKe ZhengXiao-Kun OuyangLi GaoXiaowen OuFan ZhangMeitong OuLin Mei . CaCO3-coated hollow mesoporous silica nanoparticles for pH-responsive fungicides release. Chinese Chemical Letters, 2024, 35(12): 109697-. doi: 10.1016/j.cclet.2024.109697

Metrics
  • PDF Downloads(6)
  • Abstract views(215)
  • HTML views(19)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return