Citation: Li Menggang, Xia Zhonghong, Huang Yarong, Tao Lu, Chao Yuguang, Yin Kun, Yang Wenxiu, Yang Weiwei, Yu Yongsheng, Guo Shaojun. Rh-Doped PdCu Ordered Intermetallics for Enhanced Oxygen Reduction Electrocatalysis with Superior Methanol Tolerance[J]. Acta Physico-Chimica Sinica, ;2020, 36(9): 191204. doi: 10.3866/PKU.WHXB201912049 shu

Rh-Doped PdCu Ordered Intermetallics for Enhanced Oxygen Reduction Electrocatalysis with Superior Methanol Tolerance

  • Corresponding author: Yang Weiwei, yangww@hit.edu.cn Yu Yongsheng, ysyu@hit.edu.cn Guo Shaojun, guosj@pku.edu.cn
  • Received Date: 19 December 2019
    Revised Date: 23 February 2020
    Accepted Date: 26 February 2020
    Available Online: 6 March 2020

    Fund Project: the China Postdoctoral Science Foundation 2018M631239the National Natural Science Foundation of China 51871078the National Key R & D Program of China 2016YFB0100201The project was supported by the Beijing Natural Science Foundation, China (JQ18005), the National Key R & D Program of China (2016YFB0100201), the National Natural Science Foundation of China (51671003, 21802003, 51571072, 51871078), and the China Postdoctoral Science Foundation (2018M631239)the National Natural Science Foundation of China 51671003the National Natural Science Foundation of China 51571072the National Natural Science Foundation of China 21802003the Beijing Natural Science Foundation, China JQ18005

  • Direct methanol fuel cells (DMFCs), as one of the important energy conversion devices, are of great interest in the fields of energy, catalysis and materials. However, the application of DMFCs is presently challenged because of the limited activity and durability of cathode catalysts as well as the poisoning issues caused by methanol permeation to the cathode during operation. Herein, we report a new class of Rh-doped PdCu nanoparticles (NPs) with ordered intermetallic structure for enhancing the activity and durability of the cathode for oxygen reduction reaction (ORR) and achieving superior methanol tolerance. The disordered Rh-doped PdCu NPs can be prepared via a simple wet-chemical method, followed by annealing to convert it to ordered phases. The results of transmission electron microscopy (TEM), scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDS), power X-ray diffraction (PXRD) analysis and high resolution TEM (HRTEM) successfully demonstrate the formation of near-spherical NPs with an average size of 6.5 ± 0.5 nm and the conversion of the phase structure. The complete phase transition temperatures of Rh-doped PdCu NPs and PdCu are 500 and 400 ℃, respectively. The molar ratio of Rh/Pd/Cu in the as-synthesized Rh-doped PdCu NPs is 5/48/47. Benefitting from Rh doping and the presence of the ordered intermetallic structure, the Rh-doped PdCu intermetallic electrocatalyst achieves the maximum ORR mass activity of 0.96 A·mg-1 at 0.9 V versus reversible hydrogen electrode (RHE) under alkaline conditions—a 7.4-fold enhancement compared to the commercial Pt/C catalyst. For different electrocatalysts, the ORR activities follow the sequence, ordered Rh-doped PdCu intermetallics > ordered PdCu intermetallics > disordered Rh-doped PdCu NPs > disordered PdCu NPs > commercial Pt/C catalyst. In addition, the distinct structure endows the Rh-doped PdCu intermetallics with highly stable ORR durability with unaltered half-wave potential (E1/2) and mass activity after continuous 20000 cycles, which are higher than those of other electrocatalysts. Furthermore, the E1/2 of the Rh-doped PdCu intermetallics decreases by only 5 mV after adding 0.5 mol·L-1 methanol to the electrolyte, while the commercial Pt/C catalyst negatively shifts by 235 mV and a distinct oxidation peak can be observed. The results indicate that the ORR activity of the Rh-doped PdCu intermetallic electrocatalyst can be well maintained even in the presence of poisoning environment. Our results have demonstrated that Rh-doped PdCu NPs with ordered intermetallic structures is a potential electrocatalyst toward the next-generation high-performance DMFCs.
  • 加载中
    1. [1]

      Chu, S.; Majumdar, A. Nature 2012, 488, 294. doi: 10.1038/nature11475  doi: 10.1038/nature11475

    2. [2]

      Larcher, D.; Tarascon, J. Nat. Chem. 2015, 7, 19. doi: 10.1038/NCHEM.2085  doi: 10.1038/NCHEM.2085

    3. [3]

      She, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I.; NØrskov, J. K.; Jaramillo, T. F. Science 2017, 355, eaad4998. doi: 10.1126/science.aad4998  doi: 10.1126/science.aad4998

    4. [4]

      Ud Din, M. A.; Saleem, F.; Ni, B.; Yong, Y.; Wang, X. Adv. Mater. 2017, 29, 1604994. doi: 10.1002/adma.201604994  doi: 10.1002/adma.201604994

    5. [5]

      Sun, Y.; Huang, B.; Xu, N.; Li, Y.; Luo, M.; Li, C.; Qin, Y.; Wang, L.; Guo, S. Sci. Bull. 2019, 64, 54. doi: 10.1016/j.scib.2018.12.008  doi: 10.1016/j.scib.2018.12.008

    6. [6]

      Tao, Z.; Chen, W.; Yang, J.; Wang, X.; Tan, Z.; Ye, J.; Chen, Y.; Zhu, Y. Sci. China Mater. 2019, 62, 273. doi: 10.1007/s40843-018-9366-x  doi: 10.1007/s40843-018-9366-x

    7. [7]

      Deke, M. K. Nature 2012, 486, 43. doi: 10.1038/nature11115  doi: 10.1038/nature11115

    8. [8]

      Li, C.; Liu, T.; He, T.; Ni, B.; Yuan, Q.; Wang, X. Nanoscale 2018, 10, 4670. doi: 10.1039/C7NR09669K  doi: 10.1039/C7NR09669K

    9. [9]

      Luo, M.; Sun, Y.; Qin, Y.; Yang, Y.; Wu, D.; Guo, S. Acta Phys. -Chim. Sin. 2018, 34, 361.  doi: 10.3866/PKU.WHXB201708312

    10. [10]

      Li, C.; Huang, B.; Luo, M.; Qin, Y.; Sun, Y.; Li, Y.; Yang, Y.; Wu, D.; Li, M.; Guo, S. Appl. Catal. B: Environ. 2019, 256, 117828. doi: 10.1016/j.apcatb.2019.117828  doi: 10.1016/j.apcatb.2019.117828

    11. [11]

      Luo, M.; Qin, Y.; Li, M.; Sun, Y.; Li, C.; Li, Y.; Yang, Y.; Lv, F.; Wu, D.; Zhou, P.; et al. Sci. Bull. 2020, 65, 97. doi: 10.1016/j.scib.2019.10.012  doi: 10.1016/j.scib.2019.10.012

    12. [12]

      Bu, L.; Tang, C.; Shao, Q.; Zhu, X.; Huang, X. ACS Catal. 2018, 8, 4569. doi: 10.1021/acscatal.8b00455  doi: 10.1021/acscatal.8b00455

    13. [13]

      Liu, S.; Zhang, Q.; Li, Y.; Han, M.; Gu, L.; Nan, C.; Bao, J.; Dai, Z. J. Am. Chem. Soc. 2015, 137, 2820. doi: 10.1021/ja5129154  doi: 10.1021/ja5129154

    14. [14]

      Jiang, K.; Wang, P.; Guo, S.; Zhang, X.; Shen, X.; Lu, G.; Su, D.; Huang, X. Angew. Chem. Int. Ed. 2016, 55, 9030. doi: 10.1002/anie.201603022  doi: 10.1002/anie.201603022

    15. [15]

      Wang, H.; Luo, W.; Zhu, L.; Zhao, Z.; E, B.; Tu, W.; Ke, X.; Sui, M.; Chen, C.; Chen, Q.; et al. Adv. Funct. Mater. 2018, 28, 1707219. doi: 10.1002/adfm.201707219  doi: 10.1002/adfm.201707219

    16. [16]

      Luo, M.; Yang, Y.; Sun, Y.; Qin, Y.; Li, C.; Li, Y.; Li, M.; Zhang, S.; Su, D.; Guo, S. Mater. Today 2019, 23, 45. doi: 10.1016/j.mattod.2018.06.005  doi: 10.1016/j.mattod.2018.06.005

    17. [17]

      Luo, M.; Zhao, Z.; Zhang, Y.; Sun, Y.; Xing, Y.; Lv, F.; Yang, Y.; Zhang, X.; Hwang, S.; Qin, Y.; et al. Nature 2019, 574, 81. doi: 10.1038/s41586-019-1603-7  doi: 10.1038/s41586-019-1603-7

    18. [18]

      Yang, Y.; Xiao, W.; Feng, X.; Xiong, Y.; Gong, M.; Shen, T.; Lu, Y.; Abruña, H. D.; Wang, D. ACS Nano 2019, 13, 5968. doi: 10.1021/acsnano.9b01961  doi: 10.1021/acsnano.9b01961

    19. [19]

      Jiang, G.; Zhu, H.; Zhang, X.; Shen, B.; Wu, L.; Zhang, S.; Lu, G.; Wu, Z.; Sun, S. ACS Nano 2015, 9, 11014. doi: 10.1021/acsnano.5b04361  doi: 10.1021/acsnano.5b04361

    20. [20]

      Wang, K.; Qin, Y.; Lv, F.; Li, M.; Liu, Q.; Lin, F.; Feng, J.; Yang, C.; Gao, P.; Guo, S. Small Methods 2018, 2, 1700331. doi: 10.1002/smtd.201700331  doi: 10.1002/smtd.201700331

    21. [21]

      Ji, X.; Gao, P.; Zhang, L.; Wang, X.; Wang, F.; Zhu, H.; Yu, J. ChemElectroChem 2019, 6, 1. doi: 10.1002/celc.201900390  doi: 10.1002/celc.201900390

    22. [22]

      Xiao, W.; Cordeiro, M. A. L; Gao, G.; Zheng, A.; Wang, J.; Lei, W.; Gong, M.; Lin, R.; Stavitski, E.; Xin, H. L.; et al. Nano Energy 2018, 50, 70. doi: 10.1016/j.nanoen.2018.05.032  doi: 10.1016/j.nanoen.2018.05.032

    23. [23]

      Xiao, W.; Lei, W.; Gong, M.; Xin, H. L.; Wang, D. ACS Catal. 2018, 8, 3237. doi: 10.1021/acscatal.7b04420  doi: 10.1021/acscatal.7b04420

    24. [24]

      Gamler, J. T. L.; Ashberry, H. M.; Skrabalak, S. E.; Koczkur, K. M. Adv. Mater. 2018, 30, 1801563. doi: 10.1002/adma.201801563  doi: 10.1002/adma.201801563

    25. [25]

      Rößner, L.; Armbrüster, M. ACS Catal. 2019, 9, 2018. doi: 10.1021/acscatal.8b04566  doi: 10.1021/acscatal.8b04566

    26. [26]

      Casado-Rivera, E.; Volpe, D. J.; Alden, L.; Lind, C.; Downie, C.; Vázquez-Alvarez, T.; Angelo, A. C. D.; DiSalvo, F. J.; Abruña, H. D. J. Am. Chem. Soc. 2004, 126, 4043. doi: 10.1021/ja038497a  doi: 10.1021/ja038497a

    27. [27]

      Abe, H.; Matsumoto, F.; Alden, L. R.; Warren, S. C.; Abruña, H. D.; DiSalvo, F. J. Am. Chem. Soc. 2008, 130, 5452.doi: 10.1021/ja075061c  doi: 10.1021/ja075061c

    28. [28]

      Cui, Z.; Chen, H.; Zhao, M.; Marshall, D.; Yu, Y.; Abruña, H.; DiSalvo, F. J. Am. Chem. Soc. 2014, 136, 10206.doi: 10.1021/ja504573a  doi: 10.1021/ja504573a

    29. [29]

      Beermann, V.; Gocyla, M.; Willinger, E.; Rudi, S.; Heggen, M.; Dunin-Borkowski, R. E.; Willinger, M. G.; Strasser, P. Nano Lett. 2016, 16, 1719. doi: 10.1021/acs.nanolett.5b04636  doi: 10.1021/acs.nanolett.5b04636

    30. [30]

      Tu, W.; Chen, K.; Zhu, L.; Zai, H.; E, B.; Ke, X.; Chen, C.; Sui, M.; Chen, Q.; Li, Y. Adv. Funct. Mater. 2019, 29, 1807070. doi: 10.1002/adfm.201807070  doi: 10.1002/adfm.201807070

    31. [31]

      Liang, J.; Li, N.; Zhao, Z.; Ma, L.; Wang, X.; Li, S.; Liu, X.; Wang, T.; Du, Y.; Lu, G.; et al. Angew. Chem. Int. Ed. 2019, 131, 15617. doi: 10.1002/anie.201908824  doi: 10.1002/anie.201908824

    32. [32]

      Li, M.; Zhao, Z.; Xia, Z.; Yang, Y.; Luo, M.; Huang, Y.; Sun, Y.; Chao, Y.; Yang, W.; Yang, W.; et al. ACS Catal. 2020, 10, 3018. doi: 10.1021/acscatal.9b04419  doi: 10.1021/acscatal.9b04419

    33. [33]

      Huang, H.; Li, K.; Chen, Z.; Luo, L.; Gu, Y.; Zhang, D.; Ma, C.; Si, R.; Si, J.; Yang, J.; et al. J. Am. Chem. Soc. 2017, 139, 8152.doi: 10.1021/jacs.7b01036  doi: 10.1021/jacs.7b01036

    34. [34]

      Li, C.; Yuan, Q.; Ni, B.; He, T.; Zhang, S.; Long, Y.; Gu, L.; Wang, X. Nat. Commun. 2018, 9, 3702. doi: 10.1038/s41467-018-06043-1  doi: 10.1038/s41467-018-06043-1

    35. [35]

      Li, M.; Luo, M.; Xia, Z.; Yang, Y.; Huang, Y.; Wu, D.; Sun, Y.; Li, C.; Chao, Y.; Yang, W.; et al. J. Mater. Chem. A 2019, 7, 20151. doi: 10.1039/c9ta06861a  doi: 10.1039/c9ta06861a

    36. [36]

      Wang, C.; Chen, D. P.; Sang, X.; Unocic, R. R.; Skrabalak, S. E. ACS Nano 2016, 10, 6345. doi: 10.1021/acsnano.6b02669  doi: 10.1021/acsnano.6b02669

    37. [37]

      Wu, Y.; Zhao, Y.; Liu, J.; Wang, F. J. Mater. Chem. A 2018, 6, 10700. doi: 10.1039/c8ta00029h  doi: 10.1039/c8ta00029h

    38. [38]

      Xia, Z.; Guo, S. Chem. Soc. Rev. 2019, 48, 3265. doi: 10.1039/c8cs00846a  doi: 10.1039/c8cs00846a

    39. [39]

      Lang, X. Y.; Han, G. F.; Xiao, B. B.; Gu, L.; Yang, Z. Z.; Wen, Z.; Zhu, Y. F.; Zhao, M.; Li, J. C.; Jiang, Q. Adv. Funct. Mater. 2015, 25, 230. doi: 10.1002/adfm.201401868  doi: 10.1002/adfm.201401868

    40. [40]

      Antolini, E. Appl. Catal. B: Environ. 2017, 217, 201. doi: 10.1016/j.apcatb.2017.05.081  doi: 10.1016/j.apcatb.2017.05.081

    41. [41]

      Zhao, Y.; Wang, C.; Liu, J.; Wang, F. Nanoscale 2018, 10, 9038. doi: 10.1039/c8nr02207k  doi: 10.1039/c8nr02207k

    42. [42]

      Shi, Q.; Zhu, C.; Bi, C.; Xia, H.; Engelhard, M. H.; Du, D.; Lin, Y. J. Mater. Chem. A 2017, 5, 23952. doi: 10.1039/c7ta08407b  doi: 10.1039/c7ta08407b

    43. [43]

      Kwak, D. H.; Han, S. B.; Kim, D. H.; Won, J. E.; Park, K. W. Appl. Catal. B: Environ. 2018, 238, 93. doi: 10.1016/j.apcatb.2018.07.013  doi: 10.1016/j.apcatb.2018.07.013

    44. [44]

      Feng, Y.; Yang, C.; Fang, W.; Huang, B.; Shao, Q.; Huang, X. Nano Energy 2019, 58, 234. doi: 10.1016/j.nanoen.2019.01.036  doi: 10.1016/j.nanoen.2019.01.036

    45. [45]

      Wang, K.; Du, H.; Sriphathoorat, R.; Shen, P. K. Adv. Mater. 2018, 30, 1804074. doi: 10.1002/adma.201804074  doi: 10.1002/adma.201804074

    46. [46]

      Zhu, W.; Shan, J.; Nguyen, L.; Zhang, S.; Tao, F. F.; Zhang, Y. W. Sci. China Mater. 2019, 62, 103. doi: 10.1007/s40843-018-9265-0  doi: 10.1007/s40843-018-9265-0

    47. [47]

      Li, Z.; Chen, Y.; Fu, G.; Chen, Y.; Sun, D.; Lee, J. M.; Tang, Y. Nanoscale 2019, 11, 2974. doi: 10.1039/c8nr09482a  doi: 10.1039/c8nr09482a

  • 加载中
    1. [1]

      Xiaodan WangYingnan LiuZhibin LiuZhongjian LiTao ZhangYi ChengLecheng LeiBin YangYang Hou . Highly efficient electrosynthesis of H2O2 in acidic electrolyte on metal-free heteroatoms co-doped carbon nanosheets and simultaneously promoting Fenton process. Chinese Chemical Letters, 2024, 35(7): 108926-. doi: 10.1016/j.cclet.2023.108926

    2. [2]

      Chengde WangLiping HuangShanshan WangLihao WuYi WangJun Dong . A distinction of gliomas at cellular and tissue level by surface-enhanced Raman scattering spectroscopy. Chinese Chemical Letters, 2024, 35(5): 109383-. doi: 10.1016/j.cclet.2023.109383

    3. [3]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    4. [4]

      Xinyi Hu Riguang Zhang Zhao Jiang . Depositing the PtNi nanoparticles on niobium oxide to enhance the activity and CO-tolerance for alkaline methanol electrooxidation. Chinese Journal of Structural Chemistry, 2023, 42(11): 100157-100157. doi: 10.1016/j.cjsc.2023.100157

    5. [5]

      Kunsong HuYulong ZhangJiayi ZhuJinhua MaiGang LiuManoj Krishna SugumarXinhua LiuFeng ZhanRui Tan . Nano-engineered catalysts for high-performance oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(10): 109423-. doi: 10.1016/j.cclet.2023.109423

    6. [6]

      Hongxia LiXiyang WangDu QiaoJiahao LiWeiping ZhuHonglin Li . Mechanism of nanoparticle aggregation in gas-liquid microfluidic mixing. Chinese Chemical Letters, 2024, 35(4): 108747-. doi: 10.1016/j.cclet.2023.108747

    7. [7]

      Yixin ZhangTing WangJixiang ZhangPengyu LuNeng ShiLiqiang ZhangWeiran ZhuNongyue He . Formation mechanism for stable system of nanoparticle/protein corona and phospholipid membrane. Chinese Chemical Letters, 2024, 35(4): 108619-. doi: 10.1016/j.cclet.2023.108619

    8. [8]

      Wenlong LiFeishi ShanQingdong BaoQinghua LiHua GaoLeyong Wang . Supramolecular assembly nanoparticle for trans-epithelial treatment of keratoconus. Chinese Chemical Letters, 2024, 35(10): 110060-. doi: 10.1016/j.cclet.2024.110060

    9. [9]

      Qian-Qian TangLi-Fang FengZhi-Peng LiShi-Hao WuLong-Shuai ZhangQing SunMei-Feng WuJian-Ping Zou . Single-atom sites regulation by the second-shell doping for efficient electrochemical CO2 reduction. Chinese Chemical Letters, 2024, 35(9): 109454-. doi: 10.1016/j.cclet.2023.109454

    10. [10]

      Yuxiang Zhang Jia Zhao Sen Lin . Nitrogen doping retrofits the coordination environment of copper single-atom catalysts for deep CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100415-100415. doi: 10.1016/j.cjsc.2024.100415

    11. [11]

      Yan WangHuixin ChenFuda YuShanyue WeiJinhui SongQianfeng HeYiming XieMiaoliang HuangCanzhong Lu . Oxygen self-doping pyrolyzed polyacrylic acid as sulfur host with physical/chemical adsorption dual function for lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(7): 109001-. doi: 10.1016/j.cclet.2023.109001

    12. [12]

      Jiayu Huang Kuan Chang Qi Liu Yameng Xie Zhijia Song Zhiping Zheng Qin Kuang . Fe-N-C nanostick derived from 1D Fe-ZIFs for Electrocatalytic oxygen reduction. Chinese Journal of Structural Chemistry, 2023, 42(10): 100097-100097. doi: 10.1016/j.cjsc.2023.100097

    13. [13]

      Guan-Nan Xing Di-Ye Wei Hua Zhang Zhong-Qun Tian Jian-Feng Li . Pd-based nanocatalysts for oxygen reduction reaction: Preparation, performance, and in-situ characterization. Chinese Journal of Structural Chemistry, 2023, 42(11): 100021-100021. doi: 10.1016/j.cjsc.2023.100021

    14. [14]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    15. [15]

      Min SongQian ZhangTao ShenGuanyu LuoDeli Wang . Surface reconstruction enabled o-PdTe@Pd core-shell electrocatalyst for efficient oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(8): 109083-. doi: 10.1016/j.cclet.2023.109083

    16. [16]

      Botao QUQian WANGXiaogang NINGYuxin ZHOURuiping ZHANG . Deeply penetrating photoacoustic imaging in tumor tissues based on dual-targeted melanin nanoparticle. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1025-1032. doi: 10.11862/CJIC.20230416

    17. [17]

      Jin LongXingqun ZhengBin WangChenzhong WuQingmei WangLishan Peng . Improving the electrocatalytic performances of Pt-based catalysts for oxygen reduction reaction via strong interactions with single-CoN4-rich carbon support. Chinese Chemical Letters, 2024, 35(5): 109354-. doi: 10.1016/j.cclet.2023.109354

    18. [18]

      Peng Wang Daijie Deng Suqin Wu Li Xu . Cobalt-based deep eutectic solvent modified nitrogen-doped carbon catalyst for boosting oxygen reduction reaction in zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(1): 100199-100199. doi: 10.1016/j.cjsc.2023.100199

    19. [19]

      Ningxiang Wu Huaping Zhao Yong Lei . Nanomaterials with highly ordered nanostructures: Definition, influence and future challenge. Chinese Journal of Structural Chemistry, 2024, 43(11): 100392-100392. doi: 10.1016/j.cjsc.2024.100392

    20. [20]

      Tiantian LiRuochen JinBin WuDongming LanYunjian MaYonghua Wang . A novel insight of enhancing the hydrogen peroxide tolerance of unspecific peroxygenase from Daldinia caldariorum based on structure. Chinese Chemical Letters, 2024, 35(4): 108701-. doi: 10.1016/j.cclet.2023.108701

Metrics
  • PDF Downloads(15)
  • Abstract views(610)
  • HTML views(110)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return