Citation: Wang Fenfen, Wang Peng, Niu Hongyao, Yu Yingfeng, Sun Pingchuan. Solid-State NMR Studies on Hydrogen Bonding Interactions and Structural Evolution in PAA/PEO Blends[J]. Acta Physico-Chimica Sinica, ;2020, 36(4): 191201. doi: 10.3866/PKU.WHXB201912016 shu

Solid-State NMR Studies on Hydrogen Bonding Interactions and Structural Evolution in PAA/PEO Blends

  • Corresponding author: Sun Pingchuan, spclbh@nankai.edu.cn
  • Received Date: 4 December 2019
    Revised Date: 12 February 2020
    Accepted Date: 13 February 2020
    Available Online: 25 April 2020

    Fund Project: the National Natural Science Foundation of China 21374051The project was supported by the National Natural Science Foundation of China (21534005, 21374051)the National Natural Science Foundation of China 21534005

  • Intermolecular interactions are the key to control the final structure and properties of polymers; however, molecular-level detection of complex interactions remains a challenge. In this study, a series of poly(acrylic acid)/poly(ethylene oxide) (PAA/PEO) solid films were prepared from aqueous solutions at different pHs. Multinuclear solid-state NMR (SSNMR) experiments, including one- and two-dimensional (1D and 2D) 1H CRAMPS (Combined Rotation And Multiple Pulse NMR Spectroscopy) based on the continuous phase modulation technique, high-resolution 13C CPMAS (Cross-Polarization and Magic-Angle Spining), and 23Na MQMAS (Multiple-Quantum MAS) experiments, were used to this in situ investigation of the structure and dynamics of these polymer blends. The 1H CRAMPS experiments revealed different types of protons in the blends from the mutually hydrogen-bonded COOH groups, from the free COOH groups, the COOH groups bounded with water that undergo fast chemical exchange mutually, and the COOH groups interacting with PEO and from main chain groups. With increasing pH, most of these peaks decreased except for the main chain protons owing to the decrease in the hydrogen bonding interaction among PAA and PEO as well as water. These CRAMPS NMR techniques were also used to elucidate the molecular mobility of the different groups. Furthermore, 2D 1H-1H spin-exchange NMR experiments provided more detailed information about the interpolymer and water–polymer interactions. 1H spin-diffusion experiments indicated the presence of phase separation in these blends, and the determined domain size of the mobile phase was approximately 17 nm. Two types of 23Na sites were revealed by MQMAS experiment; in particular, the Na+ ionic location and interaction between individual polymers was revealed by 1H detected 23Na-1H CP experiments, which showed that 23Na is in the proximity of PAA instead of PEO. These SSNMR experimental results provide detailed information about the influence of hydrogen bonding interactions on the microcosmic structure and dynamics of PAA/PEO blends at the molecular level. The influence of different pH levels on the hydrogen bonding interactions, miscibility between PAA and PEO, microstructure, water–polymer interactions, and molecule mobility of individual compositions was clarified. Based on the above-mentioned NMR studies, we proposed a novel structural model of these PAA/PEO blends. This model successfully revealed the influence of pH on the microstructure and dynamics of PAA/PEO blends at the molecular level for the first time. Our results indicate that solid-state NMR is a powerful tool that can be used to study the complex interactions of multiphase polymer materials. Our research is of great significant to both the development of new methods to probe the weak interactions in polymers and the development of new polymer materials based on hydrogen bonding interactions.
  • 加载中
    1. [1]

      Cordier, P.; Tournilhac, F.; Soulie-Ziakovic, C.; Leibler, L. Nature 2008, 451, 977. doi: 10.1038/nature06669  doi: 10.1038/nature06669

    2. [2]

      Zhang, C.; Yang, Z.; Nghia Tuan, D.; Li, X.; Nishiyama, Y.; Wu, Q.; Zhang, R.; Sun, P. Macromolecules 2019, 52, 5014. doi: 10.1021/acs.macromol.9b00503  doi: 10.1021/acs.macromol.9b00503

    3. [3]

      Li, B.; Xu, L.; Wu, Q.; Chen, T.; Sun, P.; Jin, Q.; Ding, D.; Wang, X.; Xue, G.; Shi, A. C. Macromolecules 2007, 40, 5776. doi: 10.1021/ma070485c  doi: 10.1021/ma070485c

    4. [4]

      Khutoryanskiy, V. V.; Dubolazov, A. V.; Nurkeeva, Z. S.; Mun, G. A. Langmuir 2004, 20, 3785. doi: 10.1021/la049807l  doi: 10.1021/la049807l

    5. [5]

      Bailey, F. E.; Lundberg, R. D.; Callard, R. W. J. Langmuir 1964, 2, 845.  doi: 10.1002/pol.1964.100020221

    6. [6]

      Tsai, C. Y.; Chung, C. H.; Hong, J. L. ACS Omega 2018, 3, 4423. doi: 10.1021/acsomega.8b00124  doi: 10.1021/acsomega.8b00124

    7. [7]

      Wang, Y.; Liu, X.; Li, S.; Li, T.; Song, Y.; Li, Z.; Zhang, W.; Sun, J. ACS Appl. Mater. Interfaces 2017, 9, 29120. doi: 10.1021/acsami.7b08636  doi: 10.1021/acsami.7b08636

    8. [8]

      Liu, W. C.; Chung, C. H.; Hong, J. L. ACS Omega 2018, 3, 11368. doi: 10.1021/acsomega.8b01456  doi: 10.1021/acsomega.8b01456

    9. [9]

      Ikawa T; Abe K; J., H. K. Polym. Chem. Ed. 1975, 13, 1505.  doi: 10.1002/pol.1975.170130703

    10. [10]

      Hansen, M. R.; Graf, R.; Spiess, H. W. Acc. Chem. Res. 2013, 46, 1996. doi: 10.1021/ar300338b  doi: 10.1021/ar300338b

    11. [11]

      Hu, F. H.; Luo, W. B.; Hong, M. Science 2010, 330, 505. doi: 10.1126/science.1191714  doi: 10.1126/science.1191714

    12. [12]

      Kong, X. Q.; Deng, H. X.; Yan, F. Y.; Kim, J.; Swisher, J. A.; Smit, B.; Yaghi, O. M.; Reimer, J. A. Science 2013, 341, 882. doi: 10.1126/science.1238339  doi: 10.1126/science.1238339

    13. [13]

      Xu, L.; Zhao, Z.; Zhao, R.; Yu, R.; Zhang, W. Acta Phys. -Chim. Sin. 2019, 35, 92.  doi: 10.3866/PKU.WHXB201711101

    14. [14]

      He, Y.; Li, H.; Zhou, L.; Xu, T.; Peng, C.; Liu, H. Acta Phys. -Chim. Sin. 2019, 35, 299.  doi: 10.3866/PKU.WHXB201804172

    15. [15]

      Li, S. H.; Li, J.; Zheng, A. M.; Deng, F. Acta Phys. -Chim. Sin. 2017, 33, 270.  doi: 10.3866/PKU.WHXB201611022

    16. [16]

      Hu, W.; Luo, Q.; Li, S. H.; Shen, W. L.; Yue, Y.; Deng, F. Acta Phys. -Chim. Sin. 2006, 22, 1233.  doi: 10.1016/S1872-1508[06]60058-2

    17. [17]

      Buda, A.; Demco, D. E.; Blumich, B.; Litvinov, V. M.; Penning, J. P. ChemPhysChem 2004, 5, 876. doi: 10.1002/cphc.200301071  doi: 10.1002/cphc.200301071

    18. [18]

      Wang, X. L.; Tao, F. F.; Sun, P. C.; Zhou, D. S.; Wang, Z. Q.; Gu, Q.; Hu, J. L.; Xue, G. Macromolecules 2007, 40, 4736. doi: 10.1021/ma0700025  doi: 10.1021/ma0700025

    19. [19]

      Sakellariou, D.; Lesage, A.; Hodgkinson, P.; Emsley, L. Chem. Phys. Lett. 2000, 319, 253. doi: 10.1016/S0009-2614[00]00127-5  doi: 10.1016/S0009-2614[00]00127-5

    20. [20]

      Landfester, K.; Boeffel, C.; Lambla, M.; Spiess, H. W. Macromolecules 1996, 29, 5972. doi: 10.1021/ma960095i  doi: 10.1021/ma960095i

    21. [21]

      Sun, P. C.; Dang, Q. Q.; Li, B. H.; Chen, T. H.; Wang, Y. N.; Lin, H.; Jin, Q. H.; Ding, D. T.; Shi, A. C. Macromolecules 2005, 38, 5654. doi: 10.1021/ma0505979  doi: 10.1021/ma0505979

    22. [22]

      Lesage, A.; Duma, L.; Sakellariou, D.; Emsley, L. J. Am. Chem. Soc. 2001, 123, 5747. doi: 10.1021/ja0039740  doi: 10.1021/ja0039740

    23. [23]

      Clauss, J.; Schmidt-Rohr, K.; Adam, A.; Boeffel, C.; Spiess, H. W. Macromolecules 1992, 25, 5208. doi: 10.1021/ma00046a015  doi: 10.1021/ma00046a015

    24. [24]

      Brown, S. P.; Wimperis, S. J. Magn. Reson. 1997, 128, 42. doi: 10.1006/jmre.1997.1217  doi: 10.1006/jmre.1997.1217

    25. [25]

      Goldbourt, A.; Kababya, S.; Vega, S.; Madhu, P. K. Solid State Nucl. Magn. Reson. 2000, 18, 1. doi: 10.1006/snmr.2000.0007  doi: 10.1006/snmr.2000.0007

    26. [26]

      Savelyev, A.; Papoian, G. A. J. Am. Chem. Soc. 2006, 128, 14506. doi: 10.1021/ja0629460  doi: 10.1021/ja0629460

    27. [27]

      He, X.; Liu, Y.; Zhang, R.; Wu, Q.; Chen, T.; Sun, P.; Wang, X.; Xue, G. J. Phys. Chem. C 2014, 118, 13285. doi: 10.1021/jp5036772  doi: 10.1021/jp5036772

    28. [28]

      Schmidt-Rohr, K.; Clauss, J.; Spiess, H. W. Macromolecules 1992, 25, 3273. doi: 10.1021/ma00038a037  doi: 10.1021/ma00038a037

    29. [29]

      Mellinger, F.; Wilhelm, M.; Spiess, H. W. Macromolecules 1999, 32, 4686. doi: 10.1021/ma9820265  doi: 10.1021/ma9820265

  • 加载中
    1. [1]

      Xinzhi Ding Chong Liu Jing Niu Nan Chen Shutao Xu Yingxu Wei Zhongmin Liu . Solid-state NMR study of the stability of MOR framework aluminum. Chinese Journal of Structural Chemistry, 2024, 43(4): 100247-100247. doi: 10.1016/j.cjsc.2024.100247

    2. [2]

      Yue RenKang LiYi-Zi WangShao-Peng ZhaoShu-Min PanHaojie FuMengfan JingYaming WangFengyuan YangChuntai Liu . Swelling and erosion assisted sustained release of tea polyphenol from antibacterial ultrahigh molecular weight polyethylene for joint replacement. Chinese Chemical Letters, 2025, 36(2): 110468-. doi: 10.1016/j.cclet.2024.110468

    3. [3]

      Huixin ChenChen ZhaoHongjun YueGuiming ZhongXiang HanLiang YinDing Chen . Unraveling the reaction mechanism of high reversible capacity CuP2/C anode with native oxidation POx component for sodium-ion batteries. Chinese Chemical Letters, 2025, 36(1): 109650-. doi: 10.1016/j.cclet.2024.109650

    4. [4]

      Qianqian SongYunting ZhangJianli LiangSi LiuJian ZhuXingbin Yan . Boron nitride nanofibers enhanced composite PEO-based solid-state polymer electrolytes for lithium metal batteries. Chinese Chemical Letters, 2024, 35(6): 108797-. doi: 10.1016/j.cclet.2023.108797

    5. [5]

      Shuai LiLiuting ZhangFuying WuYiqun JiangXuebin Yu . Efficient catalysis of FeNiCu-based multi-site alloys on magnesium-hydride for solid-state hydrogen storage. Chinese Chemical Letters, 2025, 36(1): 109566-. doi: 10.1016/j.cclet.2024.109566

    6. [6]

      Biao Fang Runwei Mo . PVDF-based solid-state battery. Chinese Journal of Structural Chemistry, 2024, 43(8): 100347-100347. doi: 10.1016/j.cjsc.2024.100347

    7. [7]

      Tianyi Hou Yunhui Huang Henghui Xu . Interfacial engineering for advanced solid-state Li-metal batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100313-100313. doi: 10.1016/j.cjsc.2024.100313

    8. [8]

      Peng JiaYunna GuoDongliang ChenXuedong ZhangJingming YaoJianguo LuLiqiang ZhangIn-situ imaging electrocatalysis in a solid-state Li-O2 battery with CuSe nanosheets as air cathode. Chinese Chemical Letters, 2024, 35(5): 108624-. doi: 10.1016/j.cclet.2023.108624

    9. [9]

      Chaochao WeiRu WangZhongkai WuQiyue LuoZiling JiangLiang MingJie YangLiping WangChuang Yu . Revealing the size effect of FeS2 on solid-state battery performances at different operating temperatures. Chinese Chemical Letters, 2024, 35(6): 108717-. doi: 10.1016/j.cclet.2023.108717

    10. [10]

      Caixia LiYi QiuYufeng ZhaoWuliang Feng . Self assembled electron blocking and lithiophilic interface towards dendrite-free solid-state lithium battery. Chinese Chemical Letters, 2024, 35(4): 108846-. doi: 10.1016/j.cclet.2023.108846

    11. [11]

      Ting WANGPeipei ZHANGShuqin LIURuihong WANGJianjun ZHANG . A Bi-CP-based solid-state thin-film sensor: Preparation and luminescence sensing for bioamine vapors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1615-1621. doi: 10.11862/CJIC.20240134

    12. [12]

      Ying LiYanjun XuXingqi HanDi HanXuesong WuXinlong WangZhongmin Su . A new metal–organic rotaxane framework for enhanced ion conductivity of solid-state electrolyte in lithium-metal batteries. Chinese Chemical Letters, 2024, 35(9): 109189-. doi: 10.1016/j.cclet.2023.109189

    13. [13]

      Yang Deng Yitao Ouyang Chao Han . Constriction-susceptible makes fast cycling of lithium metal in solid-state batteries: Silicon as an example. Chinese Journal of Structural Chemistry, 2024, 43(7): 100276-100276. doi: 10.1016/j.cjsc.2024.100276

    14. [14]

      Dong SuiJiayi Liu . Constriction-susceptible lithium support for fast cycling of solid-state lithium metal battery. Chinese Chemical Letters, 2025, 36(2): 110417-. doi: 10.1016/j.cclet.2024.110417

    15. [15]

      Hengying XiangNanping DengLu GaoWen YuBowen ChengWeimin Kang . 3D core-shell nanofibers framework and functional ceramic nanoparticles synergistically reinforced composite polymer electrolytes for high-performance all-solid-state lithium metal battery. Chinese Chemical Letters, 2024, 35(8): 109182-. doi: 10.1016/j.cclet.2023.109182

    16. [16]

      Linhui LiuWuwan XiongMingli FuJunliang WuZhenguo LiDaiqi YePeirong Chen . Efficient NOx abatement by passive adsorption over a Pd-SAPO-34 catalyst prepared by solid-state ion exchange. Chinese Chemical Letters, 2024, 35(4): 108870-. doi: 10.1016/j.cclet.2023.108870

    17. [17]

      Xin LiLing ZhangYunyan FanShaojing LinYong LinYongsheng YingMeijiao HuHaiying GaoXianri XuZhongbiao XiaXinchuan LinJunjie LuXiang Han . Carbon interconnected microsized Si film toward high energy room temperature solid-state lithium-ion batteries. Chinese Chemical Letters, 2025, 36(2): 109776-. doi: 10.1016/j.cclet.2024.109776

    18. [18]

      Ziling JiangShaoqing ChenChaochao WeiZiqi ZhangZhongkai WuQiyue LuoLiang MingLong ZhangChuang Yu . Enabling superior electrochemical performance of NCA cathode in Li5.5PS4.5Cl1.5-based solid-state batteries with a dual-electrolyte layer. Chinese Chemical Letters, 2024, 35(4): 108561-. doi: 10.1016/j.cclet.2023.108561

    19. [19]

      Mengxiang ZhuTao DingYunzhang LiYuanjie PengRuiping LiuQuan ZouLeilei YangShenglei SunPin ZhouGuosheng ShiDongting Yue . Graphene controlled solid-state growth of oxygen vacancies riched V2O5 catalyst to highly activate Fenton-like reaction. Chinese Chemical Letters, 2024, 35(12): 109833-. doi: 10.1016/j.cclet.2024.109833

    20. [20]

      Meng ShanYongmei YuMengli SunShuping YangMengqi WangBo ZhuJunbiao Chang . Bifunctional organocatalyst-catalyzed dynamic kinetic resolution of hemiketals for synthesis of chiral ketals via hydrogen bonding control. Chinese Chemical Letters, 2025, 36(1): 109781-. doi: 10.1016/j.cclet.2024.109781

Metrics
  • PDF Downloads(10)
  • Abstract views(565)
  • HTML views(26)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return