Citation: Xiong Hui, Xie Xinwen, Wang Miao, Hou Yaqi, Hou Xu. CVD Grown Carbon Nanotubes on Reticulated Skeleton for Brine Desalination[J]. Acta Physico-Chimica Sinica, ;2020, 36(9): 191200. doi: 10.3866/PKU.WHXB201912008 shu

CVD Grown Carbon Nanotubes on Reticulated Skeleton for Brine Desalination

  • Corresponding author: Wang Miao, miaowang@xmu.edu.cn Hou Xu, houx@xmu.edu.cn
  • These authors contributed equally to this work.
  • Received Date: 2 December 2019
    Revised Date: 9 February 2020
    Accepted Date: 12 February 2020
    Available Online: 2 March 2020

    Fund Project: the Natural Science Foundation of Fujian Province of China 2018J06003The project was supported by the National Key R & D Program of China (2018YFA0209500), the National Natural Science Foundation of China (21673197, 21621091, 21808191, 51706191), the 111 Project (B16029), the Fundamental Research Funds for the Central Universities of China (20720190037), the Natural Science Foundation of Fujian Province of China (2018J06003), the Special Project of Strategic Emerging Industries from Fujian Development and Reform Commissionthe Fundamental Research Funds for the Central Universities of China 20720190037the National Natural Science Foundation of China 21621091the National Natural Science Foundation of China 51706191the National Key R & D Program of China 2018YFA0209500the 111 Project B16029the National Natural Science Foundation of China 21808191the National Natural Science Foundation of China 21673197

  • Using solar energy to power evaporative processes has found various applications in desalination, wastewater treatment, and power generation among other fields. Due to its green-energy sources and energy-efficient conversions, it has gained increasing attention. However, as one of the oldest approaches, the application of solar evaporation is still limited by issues such as low evaporation efficiency, fouling, and the rapid degradation of solar absorbers. During solar evaporation processes, the solar absorbing materials are directly heated by sunlight and the generated heat is transferred to the water around the material. Within this process, in situ photo-thermal conversion is realized by absorber materials at the air-water interface. After the water is heated, it vapors continuously. Therefore, the material for solar absorption and photo-thermal conversion is key to improving the efficiency of solar evaporation processes. Currently, many approaches are being developed to achieve high-efficient solar evaporation, such as the photon management, nano-scale thermal regulation, the development of new photo-thermal conversion materials, and the design of efficient light-absorbing solar stiller. Carbon-based materials including carbon nanotubes, graphene, carbon black, graphite, etc. have broad light-absorption profiles over the entire solar spectrum, which makes them the outstanding photo-thermal conversion materials. Herein, we design a new structure and house-like solar still on the basis of carbon-based materials to achieve high light absorption, efficient photo-thermal conversion, and continuous desalination. We use the chemical vapor deposition (CVD) technique to fabricate a reticulated carbon-nanotube solar evaporation membrane. Stainless steel mesh (SSM) is used as a reticulated skeleton, providing porous structures and increasing the mechanical strength of the membrane. Then the carbon nanotubes (CNTs) are grown on the reticulated skeleton to function as solar conversion structures due to their wide range of light absorption capacities. The CVD grown CNTs reticulated membrane (CGRM) is fixed in a house-like device with a sloped ceiling to condense and collect water vapors ensuring the continuous desalination of water. Our experiments show that the fabricated CGRM is hydrophobic with an average contact angle of 133.4° for a 100.0 g·L-1 NaCl solution, only allowing water vapors to pass through while rejecting salts. When the light intensity was 1 kW·m-2, the surface temperature of the membrane increased rapidly and stabilized at 84.37 ℃. The salt rejection rate of the system could reach up to 99.92%.To perform a comparative study, we also prepared a mechanically-filled CNTs reticulated membrane (MFRM1, MFRM2) for solar evaporation tests, which showed an inferior performance to that of the growing structure of the CGRM. Therefore, it was determined that our system might provide a potential way to harvest freshwater readily with portable-type equipment.
  • 加载中
    1. [1]

      Shannon, M. A.; Bohn, P. W.; Elimelech, M.; Georgiadis, J. G.; Marinas, B. J.; Mayes, A. M. Nature 2008, 452, 301. doi: 10.1038/nature06599  doi: 10.1038/nature06599

    2. [2]

      Dudchenko, A. V.; Chen, C.; Cardenas, A.; Rolf, J.; Jassby, D. Nat. Nanotechnol. 2017, 12, 557. doi: 10.1038/nnano.2017.102  doi: 10.1038/nnano.2017.102

    3. [3]

      Yan, K.; Jiao, L.; Lin, S.; Ji, X.; Lu, Y.; Zhang, L. Desalination 2018, 437, 26. doi: 10.1016/j.desal.2018.02.020  doi: 10.1016/j.desal.2018.02.020

    4. [4]

      Zhu, L.; Chuan, F.; Gao, M.; Ghim, W. H. Adv. Mater. 2015, 27, 7713. doi: 10.1002/aenm.201702149  doi: 10.1002/aenm.201702149

    5. [5]

      Huang, J.; He, Y.; Wang, L.; Huang, Y.; Jiang, B. Energ. Convers. Manage. 2017, 132, 452. doi: 10.1016/j.enconman.2016.11.053  doi: 10.1016/j.enconman.2016.11.053

    6. [6]

      Lou, J.; Liu, Y.; Wang, Z.; Zhao, D.; Song, C.; Wu, J.; Dasgupta, N.; Zhang, W.; Zhang, D.; Tao, P.; et al. ACS Appl. Mater. Inter. 2016, 8, 14628. doi: 10.1021/acsami.6b04606  doi: 10.1021/acsami.6b04606

    7. [7]

      Liu, Y.; Chen, J.; Guo, D.; Cao, M.; Jiang, L. ACS Appl. Mater. Inter. 2015, 7, 13645. doi: 10.1021/acsami.5b03435  doi: 10.1021/acsami.5b03435

    8. [8]

      Zhu, L.; Gao, M.; Peh, C. K. N.; Wang, X.; Ho, G. W. Adv. Energy Mater. 2018, 8, 1702149. doi: 10.1002/aenm.201702149  doi: 10.1002/aenm.201702149

    9. [9]

      Zhu, L.; Gao, M.; Peh, C. K. N.; Ho, G. W. Mater. Horiz. 2018, 5, 323. doi: 10.1039/C7MH01064H  doi: 10.1039/C7MH01064H

    10. [10]

      Zhang, P.; Li, J.; Lv, L.; Zhao, Y.; Qu, L. ACS Nano 2017, 11, 5087. doi: 10.1021/acsnano.7b01965  doi: 10.1021/acsnano.7b01965

    11. [11]

      Chen, C.; Kuang, Y.; Hu, L. Joule 2019, 3, 683. doi: 10.1016/j.joule.2017.09.011  doi: 10.1016/j.joule.2017.09.011

    12. [12]

      Kabeel, A. E.; El-Agouz, S. A. Desalination 2011, 276, 1. doi: 10.1016/j.desal.2011.03.042  doi: 10.1016/j.desal.2011.03.042

    13. [13]

      Tao, P.; Ni, G.; Song, C.; Shang, W.; Wu, J.; Zhu, J.; Chen, G.; Deng, T. Nat. Energy 2018, 3, 1031. doi: 10.1007/BF02856901  doi: 10.1007/BF02856901

    14. [14]

      Wang, Z.; Liu, Y.; Tao, P.; Shen, Q.; Yi, N.; Zhang, F.; Liu, Q.; Song, C.; Zhang, D.; Shang, W.; et al. Small 2014, 10, 3234. doi: 10.1109/tim.2011.2128710  doi: 10.1109/tim.2011.2128710

    15. [15]

      Yu, F.; Chen, Y.; Liang, X.; Xu, J.; Lee, C.; Liang, Q.; Tao, P.; Deng, T. Prog. Nat. Sci-Mater. 2017, 27, 531. doi: 10.1016/j.pnsc.2017.08.010  doi: 10.1016/j.pnsc.2017.08.010

    16. [16]

      Zielinski, M. S.; Choi, J. W.; La Grange, T.; Modestino, M.; Hashemi, S. M.; Pu, Y.; Birkhold, S.; Hubbell, J. A.; Psaltis, D. Nano Lett. 2016, 16, 2159. doi: 10.1021/acs.nanolett.5b03901  doi: 10.1021/acs.nanolett.5b03901

    17. [17]

      Zhou., L.; Tan., Y.; Ji., D.; Zhu., B.; Zhang., P.; Xu., J.; Gan., Q.; Yu., Z.; Zhu, J. Sci. Adv. 2016, 2, e1501227. doi: 10.1364/PV.2015.PW3B.3  doi: 10.1364/PV.2015.PW3B.3

    18. [18]

      Bae, K.; Kang, G.; Cho, S. K.; Park, W.; Kim, K.; Padilla, W. J. Nat. Commun. 2015, 6, 10103. doi: 10.1038/ncomms10103  doi: 10.1038/ncomms10103

    19. [19]

      Zhao, F.; Zhou, X.; Shi, Y.; Qian, X.; Alexander, M.; Zhao, X.; Mendez, S.; Yang, R.; Qu, L.; Yu, G. Nat. Nanotechnol. 2018, 13, 489. doi: 10.1038/s41565-018-0097-z  doi: 10.1038/s41565-018-0097-z

    20. [20]

      Fujiwara., M.; Imura, T. ACS Nano 2015, 9, 5705. doi: 10.1021/nn505970n.99999j  doi: 10.1021/nn505970n.99999j

    21. [21]

      Ni, G.; Li, G.; Boriskina, S. V.; Li, H.; Yang, W.; Zhang, T.; Chen, G. Nat. Energy 2016, 1, 1.doi: 10.1038/nenergy.2016.126  doi: 10.1038/nenergy.2016.126

    22. [22]

      Yang, Y.; Zhao, H.; Yin, Z.; Zhao, J.; Yin, X.; Li, N.; Yin, D.; Li, Y.; Lei, B.; Du, Y.; et al. Mater. Horiz. 2018, 5, 1143. doi: 10.1002/adma.201502201  doi: 10.1002/adma.201502201

    23. [23]

      Zhao, J.; Yang, Y.; Yang, C.; Tian, Y.; Han, Y.; Liu, J.; Yin, X.; Que, W. J. Mater. Chem. A 2018, 6, 16196. doi: 10.1063/1.365287  doi: 10.1063/1.365287

    24. [24]

      Fu, Y.; Wang, G.; Ming, X.; Liu, X.; Hou, B.; Mei, T.; Li, J.; Wang, J.; Wang, X. Carbon 2018, 130, 250. doi: 10.2307/25599220  doi: 10.2307/25599220

    25. [25]

      Hao, W.; Chiou, K.; Qiao, Y.; Liu, Y.; Song, C.; Deng, T.; Huang, J. Nanoscale 2018, 10, 6306. doi: 10.1039/C7NR09556B  doi: 10.1039/C7NR09556B

    26. [26]

      Li, X.; Xu, W.; Tang, M.; Zhou, L.; Zhu, B.; Zhu, S.; Zhu, J. Proc. Natl. Acad. Sci. U. S. A. 2016, 113, 13953. doi: 10.1073/pnas.0813280106  doi: 10.1073/pnas.0813280106

    27. [27]

      Li, Y.; Gao, T.; Yang, Z.; Chen, C.; Luo, W.; Yang, B.; Hu, L. Adv. Mater 2016, 29, 1700981. doi: 10.1002/aenm.201601122  doi: 10.1002/aenm.201601122

    28. [28]

      Li, T.; Fang, Q.; Xi, X.; Chen, Y.; Liu, F. J. Mater. Chem. A 2019, 7, 586. doi: 10.1007/s13213-012-0568-7  doi: 10.1007/s13213-012-0568-7

    29. [29]

      Xue, G.; Liu, K.; Chen, Q.; Yang, P.; Li, J.; Ding, T.; Duan, J.; Qi, B.; Zhou, J. ACS Appl. Mater. Inter. 2017, 9, 15052. doi: 10.1021/acsami.7b01992  doi: 10.1021/acsami.7b01992

    30. [30]

      Goh, K.; Karahan, H. E.; Wei, L.; Bae, T. H.; Fane, A. G.; Wang, R.; Chen, Y. Carbon 2016, 109, 694. doi: 10.1016/j.carbon.2016.08.077  doi: 10.1016/j.carbon.2016.08.077

    31. [31]

      Ghasemi, H.; Ni, G.; Marconnet, A. M.; Loomis, J.; Yerci, S.; Miljkovic, N.; Chen, G. Nat. Commun. 2014, 5, 4449. doi: 10.1038/ncomms5449  doi: 10.1038/ncomms5449

    32. [32]

      Wang, Y.; Zhang, L.; Wang, P. ACS Sustain. Chem. Eng. 2016, 4, 1223. doi: 10.1021/acssuschemeng.5b01274  doi: 10.1021/acssuschemeng.5b01274

    33. [33]

      Nikolaos, T. E., K.; Loukas, E. K.; Maria, B.; Evangelos, K.; Theodore, E. M.; Dimitrios, G.; Panos, P. ACS Nano 2012, 6, 10475. doi: 10.1021/nn304531k  doi: 10.1021/nn304531k

    34. [34]

      Yang, Z. P. J., A. B.; Shawn, Y. L.; Pulickel, M. A. Nano Lett. 2008, 8, 446. doi: 10.1021/nl072369t  doi: 10.1021/nl072369t

    35. [35]

      Liu, G.; Xu, J.; Wang, K. Nano Energy 2017, 41, 269. doi: 10.1016/j.nanoen.2017.09.005  doi: 10.1016/j.nanoen.2017.09.005

    36. [36]

      Pendergast, M. M.; Hoek, E. M. V. Energ. Environ. Sci. 2011, 4, 1946. doi: 10.1039/C0EE00541J  doi: 10.1039/C0EE00541J

    37. [37]

      Shannon, M. A.; Bohn, P. W.; Elimelech, M.; Georgiadis, J. G.; Marinas, B. J.; Mayes, A. M. Nature 2008, 452, 301. doi: 10.1038/nature06599  doi: 10.1038/nature06599

    38. [38]

      Wu, Z.; Jonathan, M.; Jennifer, S.; Maria, N.; Katalin, K.; John, R. R.; David, B. T.; Arthur, F. H.; Andrew, G. R. Science 2004, 305, 1273. doi: 10.1126/science.1101243  doi: 10.1126/science.1101243

    39. [39]

      Cao, F.; Pan, G. X.; Xia, X. H.; Tang, P. S.; Chen, H. F. J. Power Sources 2014, 264, 161. doi: 10.1016/j.jpowsour.2014.04.103  doi: 10.1016/j.jpowsour.2014.04.103

    40. [40]

      Jiang, J.; Li, Y.; Liu, J.; Huang, X.; Yuan, C.; Lou, X. W. Adv. Mater 2012, 24, 5166. doi: 10.1002/adma.201202146  doi: 10.1002/adma.201202146

    41. [41]

      Li, X.; Zhu, B.; Zhu, J. Carbon 2019, 146, 320. doi: 10.1016/j.fgb.2010.08.002  doi: 10.1016/j.fgb.2010.08.002

  • 加载中
    1. [1]

      Deqi FanYicheng TangYemei LiaoYan MiYi LuXiaofei Yang . Two birds with one stone: Functionalized wood composites for efficient photocatalytic hydrogen production and solar water evaporation. Chinese Chemical Letters, 2024, 35(9): 109441-. doi: 10.1016/j.cclet.2023.109441

    2. [2]

      Shu-Ran Xu Fang-Xing Xiao . Metal halide perovskites quantum dots: Synthesis, and modification strategies for solar CO2 conversion. Chinese Journal of Structural Chemistry, 2023, 42(12): 100173-100173. doi: 10.1016/j.cjsc.2023.100173

    3. [3]

      Jian-Rong Li Jieying Hu Lai-Hon Chung Jilong Zhou Parijat Borah Zhiqing Lin Yuan-Hui Zhong Hua-Qun Zhou Xianghua Yang Zhengtao Xu Jun He . Insight into stable, concentrated radicals from sulfur-functionalized alkyne-rich crystalline frameworks and application in solar-to-vapor conversion. Chinese Journal of Structural Chemistry, 2024, 43(8): 100380-100380. doi: 10.1016/j.cjsc.2024.100380

    4. [4]

      Rui ChengXin HuangTingting ZhangJiazhuang GuoJian YuSu Chen . Solid superacid catalysts promote high-performance carbon dots with narrow-band fluorescence emission for luminescence solar concentrators. Chinese Chemical Letters, 2024, 35(8): 109278-. doi: 10.1016/j.cclet.2023.109278

    5. [5]

      Zhenyu HuZhenchun YangShiqi ZengKun WangLina LiChun HuYubao Zhao . Cationic surface polarization centers on ionic carbon nitride for efficient solar-driven H2O2 production and pollutant abatement. Chinese Chemical Letters, 2024, 35(10): 109526-. doi: 10.1016/j.cclet.2024.109526

    6. [6]

      Pei CaoYilan WangLejian YuMiao WangLiming ZhaoXu Hou . Dynamic asymmetric mechanical responsive carbon nanotube fiber for ionic logic gate. Chinese Chemical Letters, 2024, 35(6): 109421-. doi: 10.1016/j.cclet.2023.109421

    7. [7]

      Yi Herng ChanZhe Phak ChanSerene Sow Mun LockChung Loong YiinShin Ying FoongMee Kee WongMuhammad Anwar IshakVen Chian QuekShengbo GeSu Shiung Lam . Thermal pyrolysis conversion of methane to hydrogen (H2): A review on process parameters, reaction kinetics and techno-economic analysis. Chinese Chemical Letters, 2024, 35(8): 109329-. doi: 10.1016/j.cclet.2023.109329

    8. [8]

      Mingxin SongLijing XieFangyuan SuZonglin YiQuangui GuoCheng-Meng Chen . New insights into the effect of hard carbons microstructure on the diffusion of sodium ions into closed pores. Chinese Chemical Letters, 2024, 35(6): 109266-. doi: 10.1016/j.cclet.2023.109266

    9. [9]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    10. [10]

      Shili WangMamitiana Roger RazanajatovoXuedong DuShunli WanXin HeQiuming PengQingrui Zhang . Recent advances on decomplexation mechanisms of heavy metal complexes in persulfate-based advanced oxidation processes. Chinese Chemical Letters, 2024, 35(6): 109140-. doi: 10.1016/j.cclet.2023.109140

    11. [11]

      Ling-Ling WuXiangchuan MengQingyang ZhangXiaowan HanFeiya YangQinghua WangHai-Yu HuNianzeng Xing . Heavy-atom engineered hypoxia-responsive probes for precisive photoacoustic imaging and cancer therapy. Chinese Chemical Letters, 2024, 35(4): 108663-. doi: 10.1016/j.cclet.2023.108663

    12. [12]

      Bharathi Natarajan Palanisamy Kannan Longhua Guo . Metallic nanoparticles for visual sensing: Design, mechanism, and application. Chinese Journal of Structural Chemistry, 2024, 43(9): 100349-100349. doi: 10.1016/j.cjsc.2024.100349

    13. [13]

      Xiao LiWanqiang YuYujie WangRuiying LiuQingquan YuRiming HuXuchuan JiangQingsheng GaoHong LiuJiayuan YuWeijia Zhou . Metal-encapsulated nitrogen-doped carbon nanotube arrays electrode for enhancing sulfion oxidation reaction and hydrogen evolution reaction by regulating of intermediate adsorption. Chinese Chemical Letters, 2024, 35(8): 109166-. doi: 10.1016/j.cclet.2023.109166

    14. [14]

      Xinyu RenHong LiuJingang WangJiayuan Yu . Electrospinning-derived functional carbon-based materials for energy conversion and storage. Chinese Chemical Letters, 2024, 35(6): 109282-. doi: 10.1016/j.cclet.2023.109282

    15. [15]

      Yiqiao ChenAo LiuBiwen YangZhenzhen LiBinggang YeZhouyi GuoZhiming LiuHaolin Chen . Photoluminescence and photothermal conversion in boric acid derived carbon dots for targeted microbial theranostics. Chinese Chemical Letters, 2024, 35(9): 109295-. doi: 10.1016/j.cclet.2023.109295

    16. [16]

      Caixia LiYi QiuYufeng ZhaoWuliang Feng . Self assembled electron blocking and lithiophilic interface towards dendrite-free solid-state lithium battery. Chinese Chemical Letters, 2024, 35(4): 108846-. doi: 10.1016/j.cclet.2023.108846

    17. [17]

      Lili WangYa YanRulin LiXujie HanJiahui LiTing RanJialu LiBaichuan XiongXiaorong SongZhaohui YinHong WangQingjun ZhuBowen ChengZhen Yin . Interface engineering of 2D NiFe LDH/NiFeS heterostructure for highly efficient 5-hydroxymethylfurfural electrooxidation. Chinese Chemical Letters, 2024, 35(9): 110011-. doi: 10.1016/j.cclet.2024.110011

    18. [18]

      Yan ZhuJia LiuMeiheng LvTingting WangDongxiang ZhangRong ShangXin-Dong JiangJianjun DuGuiling Wang . Heavy-atom-free orthogonal configurative dye 1,7-di-anthra-aza-BODIPY for singlet oxygen generation. Chinese Chemical Letters, 2024, 35(10): 109446-. doi: 10.1016/j.cclet.2023.109446

    19. [19]

      Chen Lu Zefeng Yu Jing Cao . Advancement in porphyrin/phthalocyanine compounds-based perovskite solar cells. Chinese Journal of Structural Chemistry, 2024, 43(3): 100240-100240. doi: 10.1016/j.cjsc.2024.100240

    20. [20]

      Chi Li Peng Gao . Is dipole the only thing that matters for inverted perovskite solar cells?. Chinese Journal of Structural Chemistry, 2024, 43(6): 100324-100324. doi: 10.1016/j.cjsc.2024.100324

Metrics
  • PDF Downloads(21)
  • Abstract views(714)
  • HTML views(93)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return