Citation: Yang Yamei, Lun Huijie, Long Lasheng, Kong Xiangjian, Zheng Lansun. Controlled Synthesis of Lanthanide-titanium Oxo Clusters EuTi6, EuTi7 and La2Ti14[J]. Acta Physico-Chimica Sinica, ;2020, 36(9): 191200. doi: 10.3866/PKU.WHXB201912007 shu

Controlled Synthesis of Lanthanide-titanium Oxo Clusters EuTi6, EuTi7 and La2Ti14

  • Corresponding author: Kong Xiangjian, xjkong@xmu.edu.cn
  • Received Date: 2 December 2019
    Revised Date: 31 December 2019
    Accepted Date: 8 January 2020
    Available Online: 13 February 2020

    Fund Project: the National Natural Science Foundation of China 21431005the National Natural Science Foundation of China 21871224the National Natural Science Foundation of China 21673184The project was supported by the National Natural Science Foundation of China (21871224, 21673184, 21431005, 21721001)the National Natural Science Foundation of China 21721001

  • As opposed to nanoparticles, atomically precise metal clusters possess a well-defined surface and crystal structure, which aids in understanding the relationship between the structure and chemical reactivity at the atomic level. As an interesting subgroup of metal cluster compounds, heterometallic lanthanide-titanium oxo clusters (LnTOCs) have attracted extensive attention due to their interesting chemical properties. However, the controlled precise synthesis of LnTOCs remains a great challenge because of the intense hydrolysis of Ti4+ ions and the competitive coordination of Ln3+ ions. Owing to this synthetic difficulty, high-nuclearity LnTOCs are very rare, which obstructs further studies on their properties. Choosing the appropriate chelating ligands should be an effective strategy to synthesize LnTOCs because chelating ligands can reduce the degree of hydrolysis of Ti4+ ions. Herein, four new LnTOCs, formulated as [EuTi6(μ3-O)3(OC2H5)8(dtbsa)6(Hdtbsa)]·(C2H5OH) (1), [EuTi7(μ3-O)3(μ2-OH)2(OiPr)9(dtbsa)6(Hdtbsa)Cl]·(HOiPr)3 (2), [EuTi7(μ3-O)3(μ2-OH)2(OiPr)8(dtbsa)7(Hdtbsa)]·(HOiPr)3 (3), and [LaTi7(μ3-O)3(μ2-OH)2(OC2H5)8(dtbsa)7(Hdtbsa)]2·(C2H5OH)4 (4), were prepared by a solvothermal method via the reaction of 3, 5-di-tert-butylsalicylic acid (H2dtbsa), rare-earth salts, and Ti(OiPr)4. Single-crystal analysis showed that the heptanuclear compound 1 contains a EuTi6 metal core featuring a trigonal prismatic structure, wherein Eu3+ is located at the center of the prism formed by six Ti4+ ions. The metal core structure of octanuclear compounds 2 and 3 can be viewed as the EuTi6 unit in 1 connected to another Ti4+ on one side of the triangular prism. The metal framework of Ln2Ti14 in 4 can be regarded as a dimer of EuTi7 in 2. UV-Vis diffuse reflectance spectra revealed that the band gaps of 1, 2, and 3 (2.35, 2.07, and 2.16 eV, respectively) are significantly smaller than that of anatase (3.2 eV). The results of photoelectric tests indicated that the three clusters show an obvious photoelectric response, and the charge separation efficiency of 1 and 2 was better than that of 3. In order to explore the applications of these compounds to photocatalysis, H2 production by light-driven water splitting under irradiation by a 300 W Xe lamp (300–800 nm) in an aqueous methanol solution (20 mL, 10%) was attempted. The H2 production rates for 1, 2, and 3 were 112, 106, and 87 μmol∙h-1∙g-1, respectively, which were higher than that obtained with the commercial P25. Powder X-ray diffraction (PXRD) spectra and thermogravimetry (TGA) profiles confirmed the optical and thermal stability of the three clusters. This work not only provides a chelating ligand strategy for the synthesis of LnTOCs but also reveals their light-driven photocatalytic activity stemming from the small band-gap.
  • 加载中
    1. [1]

      Heuer-Jungemann, A.; Feliu, N.; Bakaimi, I.; Hamaly, M.; Alkilany, A.; Chakraborty, I.; Masood, A.; Casula, M. F.; Kostopoulou, A.; Oh, E.; et al. Chem. Rev. 2019, 119, 4819. doi: 10.1021/acs.chemrev.8b00733  doi: 10.1021/acs.chemrev.8b00733

    2. [2]

      Chen, P. C.; Liu, M. H.; Du, J. S.; Meckes, B.; Wang, S.; Lin, H. X.; Dravid, V. P.; Wolverton, C.; Mirkin, C. A. Science 2019, 363, 959. doi: 10.1126/science.aav4302  doi: 10.1126/science.aav4302

    3. [3]

      Gong, L. J.; Xie, J. N.; Zhu, S.; Gu, Z. J.; Zhao, Y. L. Acta Phys.-Chim. Sin. 2018, 34, 140.  doi: 10.3866/PKU.WHXB201707174

    4. [4]

      Soldevila-Barreda, J. J.; Metzler-Nolte, N. Chem. Rev. 2019, 119, 829. doi: 10.1021/acs.chemrev.8b00493  doi: 10.1021/acs.chemrev.8b00493

    5. [5]

      Yang, T.; Zhao, Y. L.; Tong, Y.; Jiao, Z. B.; Wei, J.; Cai, J. X.; Han, X. D.; Chen, D.; Hu, A.; Kai, J. J. Science 2018, 362, 933. doi: 10.1126/science.aas8815  doi: 10.1126/science.aas8815

    6. [6]

      Sun, M.; Xu, L.; Qu, A.; Zhao, P.; Hao, T.; Ma, W.; Hao, C.; Wen, X.; Colombari, F. M.; de Moura, A. F.; et al. Nat. Chem. 2018, 10, 821. doi: 10.1038/s41557-018-0083-y  doi: 10.1038/s41557-018-0083-y

    7. [7]

      Bai, H.; Fan, H. H.; Zhang, X. B.; Chen, Z.; Tan, W. H. Acta Phys. -Chim. Sin. 2018, 34, 348.  doi: 10.3866/PKU.WHXB201708311

    8. [8]

      Puebla-Hellmann, G.; Venkatesan, K.; Mayor, M.; Lö;rtscher, E. Nature 2018, 559, 232. doi: 10.1038/s41586-018-0275-z  doi: 10.1038/s41586-018-0275-z

    9. [9]

      Yao, Y.; Huang, Z.; Xie, P.; Lacey, S. D.; Jacob, R. J.; Xie, H.; Chen, F.; Nie, A.; Pu, T.; Rehwoldt, M.; et al. Science. 2018, 359, 1489. doi: 10.1126/science.aan5412  doi: 10.1126/science.aan5412

    10. [10]

      Xu, L.; Liang, H. W.; Yang, Y.; Yu, S. H. Chem. Rev. 2018, 118, 3209. doi: 10.1021/acs.chemrev.7b00208  doi: 10.1021/acs.chemrev.7b00208

    11. [11]

      Wong, A.; Liu, Q.; Griffin, S.; Nicholls, A.; Regalbuto, J. R. Science 2017, 358, 1427. doi: 10.1126/science.aao6538  doi: 10.1126/science.aao6538

    12. [12]

      Yan, Z. H.; Du, M. H.; Liu, J. X.; Jin, S. Y.; Wang, C.; Zhuang, G. L.; Kong, X. J.; Long, L. S.; Zheng, L. S. Nat. Commun. 2018, 9, 3353. doi: 10.1038/s41467-018-05659-7  doi: 10.1038/s41467-018-05659-7

    13. [13]

      Zheng, X. Y.; Kong, X. J.; Zheng, Z. P.; Long, L. S.; Zheng, L. S. Acc. Chem. Res. 2018, 51, 517. doi: 10.1021/acs.accounts.7b00579  doi: 10.1021/acs.accounts.7b00579

    14. [14]

      Zheng, X. Y.; Zhang, H.; Wang, Z. X.; Liu, P. X.; Du, M. H.; Han, Y. Z.; Wei, R. J.; Ouyang, Z. W.; Kong, X. J.; Zhuang, G. L.; et al. Angew. Chem. Int. Ed. 2017, 56, 11457. doi: 10.1002/anie.201705697  doi: 10.1002/anie.201705697

    15. [15]

      Fang, W. H.; Zhang, L.; Zhang J. Chem. Soc. Rev. 2018, 47, 404. doi: 10.1039/C7CS00511C  doi: 10.1039/C7CS00511C

    16. [16]

      Fang, W. H.; Zhang, L.; Zhang, J. Dalton Trans. 2017, 46, 803. doi: 10.1039/c6dt04474c  doi: 10.1039/c6dt04474c

    17. [17]

      Fan, X.; Wang, J. H.; Wu, K. F.; Zhang, L.; Zhang, J. Angew. Chem. Int. Ed. 2019, 58, 1320. doi: 10.1002/anie.201809961  doi: 10.1002/anie.201809961

    18. [18]

      Zhang, G.; Liu, C. Y.; Long, D. L.; Cronin, L.; Tung, C. H.; Wang, Y. J. Am. Chem. Soc. 2016, 138, 11097. doi: 10.1021/jacs.6b06290  doi: 10.1021/jacs.6b06290

    19. [19]

      Lin, Y.; Zhu, Y. F.; Chen, Z. H.; Liu, F. H.; Zhao, L.; Su, Z. M. Inorg. Chem. Commun. 2014, 40, 22. doi: 10.1016/j.inoche.2013.11.023  doi: 10.1016/j.inoche.2013.11.023

    20. [20]

      Ding, Q. R.; Liu, J. X.; Narayanam, N.; Zhang, L.; Zhang, J. Dalton Trans. 2017, 46, 16000. doi: 10.1039/c7dt03470a  doi: 10.1039/c7dt03470a

    21. [21]

      Zhao, C.; Han, Y.-Z.; Dai, S.; Chen, X.; Yan, J.; Zhang, W.; Su, H.; Lin, S.; Tang, Z.; Teo, B. K.; et al. Angew. Chem. Int. Ed. 2017, 56, 16252. doi: 10.1002/anie.201709096  doi: 10.1002/anie.201709096

    22. [22]

      Hong, Z. F.; Xu, S. H.; Yan, Z. H.; Lu, D. F.; Kong, X. J.; Long, L. S.; Zheng, L. S. Cryst. Growth Design 2018, 18, 4864. doi: 10.1021/acs.cgd. 8b00904  doi: 10.1021/acs.cgd.8b00904

    23. [23]

      Liu, J. X.; Gao, M. Y.; Fang, W. H.; Zhang, L.; Zhang, J. Angew. Chem. Int. Ed. 2016, 55, 5160. doi: 10.1002/anie.201510455  doi: 10.1002/anie.201510455

    24. [24]

      Fang, W. H.; Zhang, L.; Zhang, J. J. Am. Chem. Soc. 2016, 138, 7480. doi: 10.1021/jacs.6b03489  doi: 10.1021/jacs.6b03489

    25. [25]

      Yang, S.; Su, H. C.; Hou, J. L.; Luo, W.; Zou, D. H.; Zhu, Q. Y.; Dai, J. Dalton Trans. 2017, 46, 9639. doi: 10.1039/c7dt01603d  doi: 10.1039/c7dt01603d

    26. [26]

      Lu, D. F.; Kong, X. J.; Lu, T. B.; Long, L. S.; Zheng, L. S. Inorg. Chem. 2017, 56, 1057. doi: 10.1021/acs.inorgchem.6b03072  doi: 10.1021/acs.inorgchem.6b03072

    27. [27]

      Luo, W.; Hou, J. L.; Zou, D. H.; Cui, L. N.; Zhu, Q. Y.; Dai, J. New J. Chem. 2018, 42, 11629. doi: 10.1039/C8NJ02247J  doi: 10.1039/C8NJ02247J

    28. [28]

      Westin, G.; Norrestam, R.; Nygren, M.; Wijk, M. J. Solid State Chem. 1998, 135, 149. doi: 10.1006/jssc.1997.7616  doi: 10.1006/jssc.1997.7616

    29. [29]

      Hubert-Pfalzgraf, L. G.; Abada, V.; Vaissermann, J. Polyhedron 1999, 18, 3497. doi: 10.1016/50277-5387[99]00281-8  doi: 10.1016/50277-5387[99]00281-8

    30. [30]

      Jupa, M.; Kickelbick, G.; Schubert, U. Eur. J. Inorg. Chem. 2004, 2004, 1835. doi: 10.1002/ejic.200300694  doi: 10.1002/ejic.200300694

    31. [31]

      Zhang, G. L.; Wang, S.; Hou, J. L.; Mo, C. J.; Que, C. J.; Zhu, Q. Y.; Dai, J. Dalton. Trans. 2016, 45, 17681. doi: 10.1039/C6DT03034C  doi: 10.1039/C6DT03034C

    32. [32]

      Luo, W.; Zou, D. H.; Yang, S.; Cui, L. N.; Liu, P. Y.; Zhu, Q. Y.; Dai, J. Inorg. Chem. 2019, 58, 14617. doi: 10.1021/acs.inorgchem.9b02290  doi: 10.1021/acs.inorgchem.9b02290

    33. [33]

      Li, N.; Rodriguez, R. G.; Matthews, P. D.; Luo, H. K.; Wright, D. S. Dalton Trans, 2017, 46, 4287. doi: 10.1039/C7DT00049A  doi: 10.1039/C7DT00049A

    34. [34]

      Liu, Y. J.; Fang, W. H.; Zhang, L.; Zhang, J. Coord. Chem. Rev. 2020, 404, 213099. doi: 10.1016/j.ccr.2019.213099  doi: 10.1016/j.ccr.2019.213099

    35. [35]

      Lv, Y.; Willkomm, J.; Leskes, M.; Steiner, A.; King, T. C.; Gan, L.; Reisner, E.; Wood, P. T.; Wright, D. S. Chemistry 2012, 18, 11867. doi: 10.1002/chem.201201827  doi: 10.1002/chem.201201827

    36. [36]

      Zheng, H.; Du, M. H.; Lin, S. C.; Tang, Z. C.; Kong, X. J.; Long, L. S.; Zheng, L. S. Angew. Chem. Int. Ed. 2018, 57, 10976. doi: 10.1002/anie.201806757  doi: 10.1002/anie.201806757

    37. [37]

      Sheldrick, G. M. Acta Cryst. 2008, A64, 112. doi: 10.1107/S0108767307043930  doi: 10.1107/S0108767307043930

    38. [38]

      Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. J. Appl. Cryst. 2009, 42, 339. doi: 10.1107/50021889808042726  doi: 10.1107/50021889808042726

  • 加载中
    1. [1]

      Hongye Bai Lihao Yu Jinfu Xu Xuliang Pang Yajie Bai Jianguo Cui Weiqiang Fan . Controllable Decoration of Ni-MOF on TiO2: Understanding the Role of Coordination State on Photoelectrochemical Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100096-100096. doi: 10.1016/j.cjsc.2023.100096

    2. [2]

      Chunru Liu Ligang Feng . Advances in anode catalysts of methanol-assisted water-splitting reactions for hydrogen generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100136-100136. doi: 10.1016/j.cjsc.2023.100136

    3. [3]

      Kai Han Guohui Dong Ishaaq Saeed Tingting Dong Chenyang Xiao . Boosting bulk charge transport of CuWO4 photoanodes via Cs doping for solar water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100207-100207. doi: 10.1016/j.cjsc.2023.100207

    4. [4]

      Wenhao ChenJian DuHanbin ZhangHancheng WangKaicheng XuZhujun GaoJiaming TongJin WangJunjun XueTing ZhiLonglu Wang . Surface treatment of GaN nanowires for enhanced photoelectrochemical water-splitting. Chinese Chemical Letters, 2024, 35(9): 109168-. doi: 10.1016/j.cclet.2023.109168

    5. [5]

      Peipei Sun Jinyuan Zhang Yanhua Song Zhao Mo Zhigang Chen Hui Xu . 引入内建电场增强光载流子分离以促进H2的生产. Acta Physico-Chimica Sinica, 2024, 40(11): 2311001-. doi: 10.3866/PKU.WHXB202311001

    6. [6]

      Juan Yuan Bin Zhang Jinping Wu Mengfan Wang . Design of a Comprehensive Experiment on Preparation and Characterization of Cu2(Salen)2 Nanomaterials with Two Distinct Morphologies. University Chemistry, 2024, 39(10): 420-425. doi: 10.3866/PKU.DXHX202402014

    7. [7]

      Jieqiong QinZhi YangJiaxin MaLiangzhu ZhangFeifei XingHongtao ZhangShuxia TianShuanghao ZhengZhong-Shuai Wu . Interfacial assembly of 2D polydopamine/graphene heterostructures with well-defined mesopore and tunable thickness for high-energy planar micro-supercapacitors. Chinese Chemical Letters, 2024, 35(7): 108845-. doi: 10.1016/j.cclet.2023.108845

    8. [8]

      Zhao Lu Hu Lv Qinzhuang Liu Zhongliao Wang . Modulating NH2 Lewis Basicity in CTF-NH2 through Donor-Acceptor Groups for Optimizing Photocatalytic Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(12): 2405005-. doi: 10.3866/PKU.WHXB202405005

    9. [9]

      Yuchen Guo Xiangyu Zou Xueling Wei Weiwei Bao Junjun Zhang Jie Han Feihong Jia . Fe regulating Ni3S2/ZrCoFe-LDH@NF heterojunction catalysts for overall water splitting. Chinese Journal of Structural Chemistry, 2024, 43(2): 100206-100206. doi: 10.1016/j.cjsc.2023.100206

    10. [10]

      Hai-Ling Wang Zhong-Hong Zhu Hua-Hong Zou . Structure and assembly mechanism of high-nuclear lanthanide-oxo clusters. Chinese Journal of Structural Chemistry, 2024, 43(9): 100372-100372. doi: 10.1016/j.cjsc.2024.100372

    11. [11]

      Wen LUOLin JINPalanisamy KannanJinle HOUPeng HUOJinzhong YAOPeng WANG . Preparation of high-performance supercapacitor based on bimetallic high nuclearity titanium-oxo-cluster based electrodes. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 782-790. doi: 10.11862/CJIC.20230418

    12. [12]

      Shuyuan Pan Zehui Yang Fang Luo . Ni-based electrocatalysts for urea assisted water splitting. Chinese Journal of Structural Chemistry, 2024, 43(8): 100373-100373. doi: 10.1016/j.cjsc.2024.100373

    13. [13]

      Yubang Li Xixi Hu Daiqian Xie . The microscopic formation mechanism of O + H2 products from photodissociation of H2O. Chinese Journal of Structural Chemistry, 2024, 43(5): 100274-100274. doi: 10.1016/j.cjsc.2024.100274

    14. [14]

      Lu Qi Zhaoyang Chen Xiaoyu Luan Zhiqiang Zheng Yurui Xue Yuliang Li . Atomically dispersed Mn enhanced catalytic performance for overall water splitting on graphdiyne-coated copper hydroxide nanowire. Chinese Journal of Structural Chemistry, 2024, 43(1): 100197-100197. doi: 10.1016/j.cjsc.2023.100197

    15. [15]

      Ji ChenYifan ZhaoShuwen ZhaoHua ZhangYouyu LongLingfeng YangMin XiZitao NiYao ZhouAnran Chen . Heterogeneous bimetallic oxides/phosphides nanorod with upshifted d band center for efficient overall water splitting. Chinese Chemical Letters, 2024, 35(9): 109268-. doi: 10.1016/j.cclet.2023.109268

    16. [16]

      Rui Deng Wenjie Jiang Tianqi Yu Jiali Lu Boyao Feng Panagiotis Tsiakaras Shibin Yin . Cycad-leaf-like crystalline-amorphous heterostructures for efficient urea oxidation-assisted water splitting. Chinese Journal of Structural Chemistry, 2024, 43(7): 100290-100290. doi: 10.1016/j.cjsc.2024.100290

    17. [17]

      Yuting Wu Haifeng Lv Xiaojun Wu . Design of two-dimensional porous covalent organic framework semiconductors for visible-light-driven overall water splitting: A theoretical perspective. Chinese Journal of Structural Chemistry, 2024, 43(11): 100375-100375. doi: 10.1016/j.cjsc.2024.100375

    18. [18]

      Bicheng Zhu Jingsan Xu . S-scheme heterojunction photocatalyst for H2 evolution coupled with organic oxidation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100327-100327. doi: 10.1016/j.cjsc.2024.100327

    19. [19]

      Yi Herng ChanZhe Phak ChanSerene Sow Mun LockChung Loong YiinShin Ying FoongMee Kee WongMuhammad Anwar IshakVen Chian QuekShengbo GeSu Shiung Lam . Thermal pyrolysis conversion of methane to hydrogen (H2): A review on process parameters, reaction kinetics and techno-economic analysis. Chinese Chemical Letters, 2024, 35(8): 109329-. doi: 10.1016/j.cclet.2023.109329

    20. [20]

      Yong Shu Xing Chen Sai Duan Rongzhen Liao . How to Determine the Equilibrium Bond Distance of Homonuclear Diatomic Molecules: A Case Study of H2. University Chemistry, 2024, 39(7): 386-393. doi: 10.3866/PKU.DXHX202310102

Metrics
  • PDF Downloads(11)
  • Abstract views(392)
  • HTML views(56)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return