Citation: Zhang Jing, Wang Lina, Chen Xiaofei, Wang Yufeng, Niu Chengyan, Wu Lixin, Tang Zhiyong. Redox-Regulated Dynamic Self-Assembly of a Lindqvist-Type Polyoxometalate Complex[J]. Acta Physico-Chimica Sinica, ;2020, 36(9): 191200. doi: 10.3866/PKU.WHXB201912002 shu

Redox-Regulated Dynamic Self-Assembly of a Lindqvist-Type Polyoxometalate Complex

  • Corresponding author: Zhang Jing, jingzhang@sxu.edu.cn Tang Zhiyong, zytang@nanoctr.cn
  • Received Date: 2 December 2019
    Revised Date: 20 December 2019
    Accepted Date: 25 December 2019
    Available Online: 3 January 2020

    Fund Project: the National Natural Science Foundation of China 21972081the National Natural Science Foundation of China 21502107The project was supported by the National Key Basic Research Program of China (2016YFA0200700), the National Natural Science Foundation of China (21972081, 21890381, 21721002, 21502107), the Frontier Science Key Project of Chinese Academy of Sciences (QYZDJ-SSW-SLH038), and the K. C. Wong Education Foundationthe Frontier Science Key Project of Chinese Academy of Sciences QYZDJSSW-SLH038the National Natural Science Foundation of China 21721002the National Key Basic Research Program of China 2016YFA0200700the National Natural Science Foundation of China 21890381

  • Dynamic regulation of self-assembly is of vital importance in chemistry, biology and material science thanks to its great potential for development of smart materials and devices. Polyoxometalates (POMs) are a class of functional inorganic nanoclusters, which has become one of the excellent building blocks for supramolecular self-assemblies, especially when covalently or non-covalently modified by organic species. As typical stimuli-responsive functional clusters, the POMs could be photochemically or electrochemically reduced to mixed-valence states, of which the structural integrity remains even after encountering stepwise multi-electron redox process. The intriguing photochromism of the POMs in different states exhibits distinct photophysical properties, which motivates us to exploit the dynamic self-assemblies of POM-based complexes. The divalent Lindqvist-type hexamolybdate cluster [Mo6O19]2- is one of the least negative-charged POMs, which is the ideal building blocks to construct novel assembly structures. Based on this motivation, herein, a single chain surfactant-encapsulated polyoxometalate (POM) complex (ODTA)2[Mo6O19] was prepared by simple counterion replacement of Lindqvist-type (TBA)2[Mo6O19] with octadecyltrimethylammonium (ODTA) in acetonitrile solution. The structure of the POM complex was confirmed by 1H nuclear magnetic resonance (NMR), Fourier transform infrared (FT-IR) spectroscopy, thermogravimetric analysis (TGA) and elemental analysis. The solution of complex (ODTA)2[Mo6O19] in the mixed solvents of acetonitrile and isopropanol with the volume ration of 4 to 1 exhibited reversible photochromism upon alternate UV light irradiation and air exposure. Upon UV light irradiation, the light yellow transparent solution of (ODTA)2[Mo6O19] turned into blue quickly. The new broad absorption band appearing at ca.751 nm assigned to the MoV → MoVI intervalence charge-transfer (IVCT) transition, indicated the formation of reduced POM, as revealed by UV-Vis absorption spectra. After exposed to air, the blue solution was bleached. The alternate photochromism could be conducted for multiple cycles. Helical self-assembled morphology of (ODTA)2[Mo6O19] was formed in acetonitrile/isopropanol, characterized by scanning electron microscope (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD) methods. More interestingly, morphology transformation of the complex from helical strips to spherical assemblies occurred accompanied by photochromism occurrence. The morphology evolution during the photochromism process experienced from shortened helical strips through sea urchin-like aggregates to spherical assemblies. Most significantly, the helical assemblies could be recovered again after air oxidation, implying the reversible morphology transformation driven by redox stimulus. The redox-modulated reversible self-assembly is driven by the variation of electrostatic attraction between organic cations and inorganic anions as well as the electrostatic repulsion between inorganic ionic clusters, proved by X-ray photoelectron spectroscopy (XPS) and 1H NMR spectra. The results will contribute to better understanding the mechanism of dynamic assemblies and inspire the precise fabrication of advanced smart materials.
  • 加载中
    1. [1]

      Chang, Y. C.; Jiao, Y.; Symons, H. E.; Xu, J. F.; Faul, C. F. J.; Zhang, X. Chem. Soc. Rev. 2019, 48, 989. doi: 10.1039/C8CS00806J  doi: 10.1039/C8CS00806J

    2. [2]

      Jin, H. J.; Li, H. P.; Zhu, Z. Y.; Huang, J. B.; Xiao, Y. L.; Yan, Y. Angew. Chem. Int. Ed. 2019, doi: 10.1002/anie.201911845  doi: 10.1002/anie.201911845

    3. [3]

      Ji, X. F.; Chen, W.; Long, L. L.; Huang, F. H.; Sessler, J. L. Chem. Sci. 2018, 9, 7746. doi: 10.1039/c8sc03463j  doi: 10.1039/c8sc03463j

    4. [4]

      Song, Y. F.; Tsunashima, R. Chem. Soc. Rev. 2012, 41, 7384. doi: 10.1039/c2cs35143a  doi: 10.1039/c2cs35143a

    5. [5]

      Liu, H. K.; Ren, L. J.; Wu, H.; Ma, Y. L.; Richter, S.; Godehardt, M.; Kubel, C.; Wang, W. J. Am. Chem. Soc. 2019, 141, 831. doi: 10.1021/jacs8b08016  doi: 10.1021/jacs8b08016

    6. [6]

      Xia, C. X.; Wang, Z.; Sun, D.; Jiang, B. L.; Xin, X. Langmuir 2017, 33, 13242. doi: 10.1021/acs.langmuir.7b03495  doi: 10.1021/acs.langmuir.7b03495

    7. [7]

      He, P. L.; Xu, B.; Xu, X. B.; Song, L.; Wang, X.; Chem. Sci. 2016, 7, 1011. doi: 10.1 039/c5sc03554f  doi: 10.1039/c5sc03554f

    8. [8]

      Wang, S. S.; Yang, G. Y. Chem. Rev. 2015, 115, 4893. doi: 10.1021/cr500390v  doi: 10.1021/cr500390v

    9. [9]

      Shi, N.; Wang, R.; Wang, X.; Tan, J.; Guan, Y.; Li, Z.; Wan, X.; Zhang, J. Chem. Commun. 2019, 55, 1136. doi: 10.1039/c8cc09154d  doi: 10.1039/c8cc09154d

    10. [10]

      Zhang, G. P.; Zhu, H. X.; Chen, M. J.; Li, H. G.; Yuan, Y.; Ma, T. T.; Hao, J. C. Chem. Eur. J. 2017, 23, 7278. doi: 10.1002/chem.201605651  doi: 10.1002/chem.201605651

    11. [11]

      Wang, Y. C.; Li, F. Y.; Xu, L.; Jiang, N.; Liu, X. Z. Dalton Trans. 2013, 42, 5839. doi: 10.1039/C3DT32658F  doi: 10.1039/C3DT32658F

    12. [12]

      Sun, Z. X.; Li, F. Y.; Zhao, M. L.; Xu, L.; Fang, S. N. Electrochem. Commun. 2013, 30, 38. doi: 10.1016/j.elecom.2013.02.006  doi: 10.1016/j.elecom.2013.02.006

    13. [13]

      Zhao, J.; Li, K. X.; Wan, K. W.; Sun, T. D.; Zheng, N. N.; Zhu, F. J.; Ma, J. C.; Jiao, J.; Li, T. C.; Ni, J.; et al. Angew. Chem. Int. Ed. 2019, 58, 2. doi: 10.1002/anie.201910521  doi: 10.1002/anie.201910521

    14. [14]

      Zhang, Y.; Wu, L. L.; Zhao, X. Y.; Zhao, Y. N.; Tan, H. Q.; Zhao, X.; Ma, Y. Y.; Zhao, Z.; Song, S. Y.; Wang, Y. H.; et al. Adv. Energy Mater. 2018, 8, 1801139. doi: 10.1002/aenm.201801139  doi: 10.1002/aenm.201801139

    15. [15]

      Yan, Y.; Wang, H. B.; Li, B.; Hou, G. F.; Yin, Z. D.; Wu, L. X.; Yam, V. W. W. Angew. Chem. Int. Ed. 2010, 48, 9233. doi: 10.1002/anie.201004143  doi: 10.1002/anie.201004143

    16. [16]

      Yu, S. J.; Han, Y. K.; Wang, W. Polymer 2019, 162, 73. doi: 10.1016/j.polymer.2018.12.035  doi: 10.1016/j.polymer.2018.12.035

    17. [17]

      Li, H.; Jia, Y.; Wang, A. H.; Cui, W.; Ma, H. C.; Feng, X. Y.; Li. J. B. Chem. Eur. J. 2014, 20, 499. doi: 10.1002/chem.201302660  doi: 10.1002/chem.201302660

    18. [18]

      Yan, J.; Zheng, X. W.; Yao, J. H.; Xu, P.; Miao, Z. L.; Li, J. L.; Lv Z. D.; Zhang, Q. Y.; Yan, Y. J. Organomet. Chem. 2019, 884, 1. doi: 10.1016/j.jorganchem.2019.01.012  doi: 10.1016/j.jorganchem.2019.01.012

    19. [19]

      Li, B.; Li, W.; Li, H. L.; Wu, L. X. Acc. Chem. Res. 2017, 50, 1391. doi: 10.1021/acs.accounts.7b00055  doi: 10.1021/acs.accounts.7b00055

    20. [20]

      Yin, P. C.; Li, D.; Liu, T. B. Chem. Soc. Rev. 2012, 41, 7368. doi: 10.1039/c2cs35176e  doi: 10.1039/c2cs35176e

    21. [21]

      Nisar, A.; Zhuang, J.; Wang, X. Adv. Mater. 2011, 23, 1130. doi: 10.1002/adma.201003520  doi: 10.1002/adma.201003520

    22. [22]

      Gao, Q.; Li, F. Y.; Wang, Y. C.; Xu, L.; Bai, J.; Wang, Y. Dalton Trans. 2014, 43, 941. doi: 10.1039/c3dt52882k  doi: 10.1039/c3dt52882k

    23. [23]

      Polarz, S.; Odendal, J, A.; Hermann, S.; Klaiber, A. Current Opinion Colloid Interface Sci. 2015, 20, 151. doi: 10.1016/j.cocis.2015.07.006  doi: 10.1016/j.cocis.2015.07.006

    24. [24]

      Yang, Y.; Wang, Y. Z.; Li, H. L.; Li, W.; Wu, L. X. Chem. Eur. J. 2010, 16, 8062. doi: 10.1002/chem.201000198  doi: 10.1002/chem.201000198

    25. [25]

      Zhang, J.; Chen, X.; Li, W.; Li, B.; Wu, L. Langmuir 2017, 33, 12750. doi: 10.1021/acs.langmuir.7b01259  doi: 10.1021/acs.langmuir.7b01259

    26. [26]

      Yan, X. H.; Zhu, P. L.; Fei, J. B.; Li, J. B. Adv. Mater. 2010, 22, 1283. doi: 10.1002/adma.200901889  doi: 10.1002/adma.200901889

    27. [27]

      Wang, R.; Cui, J.; Wan, X.; Zhang, J. Chem. Commun. 2019, 55, 4949. doi: 10.1039/c9cc01015g  doi: 10.1039/c9cc01015g

    28. [28]

      Sun, N.; Wu, A. L.; Yu, Y.; Gao, X. P.; Zheng, L. Q. Chem. Eur. J. 2019, 25, 6203. doi: 10.1002/chem.201900478  doi: 10.1002/chem.201900478

    29. [29]

      Gu, H. X.; Bi, L. H.; Fu, Y.; Wang, N.; Liu, S. Q.; Tang, Z. Y. Chem. Sci. 2013, 4, 4371. doi: 10.1039/C3SC51778K  doi: 10.1039/C3SC51778K

    30. [30]

      Wang, Z. L.; Ma, Y.; Zhang, R. L.; Peng, A. D.; Liao, Q.; Cao, Z. W.; Fu, H. B.; Yao, J. N. Adv. Mater. 2009, 21, 1737. doi: 10.1002/adma.200803321  doi: 10.1002/adma.200803321

    31. [31]

      Xiao, F. P.; Hao, J.; Zhang, J.; Lv, C. L.; Yin, P. C. Wang, L. S.; Wei, Y. G. J. Am. Chem. Soc. 2010, 132, 5956. doi: 10.1021/ja101671q  doi: 10.1021/ja101671q

    32. [32]

      Cao, X.; Zhang, L. Y.; Xu, T. Y.; Zhang, S. L.; Zhang, H.; Li, H. L.; Wu, L. X. Polym. Chem. 2016, 7, 3216. doi: 10.1039/c6py00514d  doi: 10.1039/c6py00514d

    33. [33]

      Zhang, J.; Hao, J.; Wei, Y. G.; Xiao, F. P.; Yin, P. C.; Wang, L. S. J. Am. Chem. Soc. 2010, 132, 14. doi: 10.1021/ja907535g  doi: 10.1021/ja907535g

    34. [34]

      Che, M.; Fournier, M.; Launay, J. J. Chem. Phys. 1979, 71, 1954. doi: 10.1063/1.438549  doi: 10.1063/1.438549

    35. [35]

      Poulos, A. S.; Constantin, D.; Davidson. P.; Impéror, M.; Pansu, B.; Panine, P.; Nicole, L.; Sanchez, C. Langmuir 2008, 24, 6285. doi: 10.1021/la8004322  doi: 10.1021/la8004322

    36. [36]

      Yin, P. C.; Wu, P. F.; Xiao, Z. C.; Li, D.; Bitterlich, E.; Zhang, J.; Cheng, P.; Vezenov, D. V.; Liu, T. B.; Wei, Y. G. Angew. Chem. Int. Ed. 2011, 50, 2521. doi: 10.1002/anie.201006144  doi: 10.1002/anie.201006144

    37. [37]

      Zhang, H.; Wang, D. Y. Angew. Chem. Int. Ed. 2008, 47, 3984. doi: 10.1002/anie.200705537  doi: 10.1002/anie.200705537

    38. [38]

      Zhang, J.; Li, W.; Wu, C.; Li, B.; Zhang, J.; Wu, L. X. Chem. Eur. J. 2013, 19, 8129. doi: 10.1002/chem.201300309  doi: 10.1002/chem.201300309

  • 加载中
    1. [1]

      Bowen LiTing WangMing XuYuqi WangZhaoxing LiMei LiuWenjing ZhangMing Feng . Structuring MoO3-polyoxometalate hybrid superstructures to boost electrocatalytic hydrogen evolution reaction. Chinese Chemical Letters, 2025, 36(2): 110467-. doi: 10.1016/j.cclet.2024.110467

    2. [2]

      Chunhui ZhangJie WangJieyang ZhanRunmin YangGuanggang GaoJiayuan ZhangLinlin FanMengqi WangHong Liu . Highly sensitive hydrazine detection through a novel Raman scattering quenching mechanism enabled by a crystalline and noble metal–free polyoxometalate substrate. Chinese Chemical Letters, 2025, 36(3): 109719-. doi: 10.1016/j.cclet.2024.109719

    3. [3]

      Jiayi GuoLiangxiong LingQinwei LuYi ZhouXubiao LuoYanbo Zhou . Degradation of chloroxylenol by CoSx activated peroxomonosulfate: Role of cobalt-sulfur ratio. Chinese Chemical Letters, 2025, 36(4): 110380-. doi: 10.1016/j.cclet.2024.110380

    4. [4]

      Ping WangTing WangMing XuZe GaoHongyu LiBowen LiYuqi WangChaoqun QuMing Feng . Keplerate polyoxomolybdate nanoball mediated controllable preparation of metal-doped molybdenum disulfide for electrocatalytic hydrogen evolution in acidic and alkaline media. Chinese Chemical Letters, 2024, 35(7): 108930-. doi: 10.1016/j.cclet.2023.108930

    5. [5]

      Xuying YuJiarong MiYulan HanCai SunMingsheng WangGuocong Guo . A stable radiochromic semiconductive viologen-based metal–organic framework for dual-mode direct X-ray detection. Chinese Chemical Letters, 2024, 35(9): 109233-. doi: 10.1016/j.cclet.2023.109233

    6. [6]

      Yanting YangGuorong WangKangjing LiWen YangJing ZhangJian ZhangShili LiXianming Zhang . Tuning up of chromism, luminescence in cadmium-viologen complexes through polymorphism strategy: Inkless erasable printing application. Chinese Chemical Letters, 2025, 36(1): 110123-. doi: 10.1016/j.cclet.2024.110123

    7. [7]

      Zhongjie LiXiangyue KongYuhao LiuHuayu QiuLingling ZhanShouchun Yin . Progress of additives for morphology control in organic photovoltaics. Chinese Chemical Letters, 2024, 35(6): 109378-. doi: 10.1016/j.cclet.2023.109378

    8. [8]

      Meijin Li Xirong Fu Xue Zheng Yuhan Liu Bao Li . The Marvel of NAD+: Nicotinamide Adenine Dinucleotide. University Chemistry, 2024, 39(9): 35-39. doi: 10.12461/PKU.DXHX202401027

    9. [9]

      Rui Gao Ying Zhou Yifan Hu Siyuan Chen Shouhong Xu Qianfu Luo Wenqing Zhang . Design, Synthesis and Performance Experiment of Novel Photoswitchable Hybrid Tetraarylethenes. University Chemistry, 2024, 39(5): 125-133. doi: 10.3866/PKU.DXHX202310050

    10. [10]

      Zishuo Yi Peng Liu Yan Xu . Fluorescent “Chameleon”: A Popular Science Experiment Based on Dynamic Luminescence. University Chemistry, 2024, 39(9): 304-310. doi: 10.12461/PKU.DXHX202311079

    11. [11]

      Yihao Zhao Jitian Rao Jie Han . Synthesis and Photochromic Properties of 3,3-Diphenyl-3H-Naphthopyran: Design and Teaching Practice of a Comprehensive Organic Experiment. University Chemistry, 2024, 39(10): 149-155. doi: 10.3866/PKU.DXHX202402050

    12. [12]

      Zhenzhu WangChenglong LiuYunpeng GeWencan LiChenyang ZhangBing YangShizhong MaoZeyuan Dong . Differentiated self-assembly through orthogonal noncovalent interactions towards the synthesis of two-dimensional woven supramolecular polymers. Chinese Chemical Letters, 2024, 35(5): 109127-. doi: 10.1016/j.cclet.2023.109127

    13. [13]

      Sifan DuYuan WangFulin WangTianyu WangLi ZhangMinghua Liu . Evolution of hollow nanosphere to microtube in the self-assembly of chiral dansyl derivatives and inversed circularly polarized luminescence. Chinese Chemical Letters, 2024, 35(7): 109256-. doi: 10.1016/j.cclet.2023.109256

    14. [14]

      Cheng-Yan WuYi-Nan GaoZi-Han ZhangRui LiuQuan TangZhong-Lin Lu . Enhancing self-assembly efficiency of macrocyclic compound into nanotubes by introducing double peptide linkages. Chinese Chemical Letters, 2024, 35(11): 109649-. doi: 10.1016/j.cclet.2024.109649

    15. [15]

      Changlin SuWensheng CaiXueguang Shao . Water as a probe for the temperature-induced self-assembly transition of an amphiphilic copolymer. Chinese Chemical Letters, 2025, 36(4): 110095-. doi: 10.1016/j.cclet.2024.110095

    16. [16]

      Xiaofei NIUKe WANGFengyan SONGShuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057

    17. [17]

      Zengchao GuoWeiwei LiuTengfei LiuJinpeng WangHui JiangXiaohui LiuYossi WeizmannXuemei Wang . Engineered exosome hybrid copper nanoscale antibiotics facilitate simultaneous self-assembly imaging and elimination of intracellular multidrug-resistant superbugs. Chinese Chemical Letters, 2024, 35(7): 109060-. doi: 10.1016/j.cclet.2023.109060

    18. [18]

      Meng ShanYongmei YuMengli SunShuping YangMengqi WangBo ZhuJunbiao Chang . Bifunctional organocatalyst-catalyzed dynamic kinetic resolution of hemiketals for synthesis of chiral ketals via hydrogen bonding control. Chinese Chemical Letters, 2025, 36(1): 109781-. doi: 10.1016/j.cclet.2024.109781

    19. [19]

      Changhui YuPeng ShangHuihui HuYuening ZhangXujin QinLinyu HanCaihe LiuXiaohan LiuMinghua LiuYuan GuoZhen Zhang . Evolution of template-assisted two-dimensional porphyrin chiral grating structure by directed self-assembly using chiral second harmonic generation microscopy. Chinese Chemical Letters, 2024, 35(10): 109805-. doi: 10.1016/j.cclet.2024.109805

    20. [20]

      Bing NiuHonggao HuangLiwei LuoLi ZhangJianbo Tan . Coating colloidal particles with a well-defined polymer layer by surface-initiated photoinduced polymerization-induced self-assembly and the subsequent seeded polymerization. Chinese Chemical Letters, 2025, 36(2): 110431-. doi: 10.1016/j.cclet.2024.110431

Metrics
  • PDF Downloads(13)
  • Abstract views(556)
  • HTML views(77)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return