Citation: Zhang Jian, Wang Liang, Wu Zhiyi, Wang Chengtao, Su Zerui, Xiao Feng-Shou. Rational Design of a Core-Shell Rh@Zeolite Catalyst for Selective Diene Hydrogenation[J]. Acta Physico-Chimica Sinica, ;2020, 36(9): 191200. doi: 10.3866/PKU.WHXB201912001 shu

Rational Design of a Core-Shell Rh@Zeolite Catalyst for Selective Diene Hydrogenation

  • Corresponding author: Wang Liang, liangwang@zju.edu.cn
  • Received Date: 2 December 2019
    Revised Date: 31 December 2019
    Accepted Date: 6 January 2020
    Available Online: 14 February 2020

    Fund Project: the National Natural Science Foundation of China 91634201the Natural Science Foundation of Zhejiang Province, China LR18B030002the Beijing Advanced Innovation Center for Soft Matter Science, Engineering of the Beijing University of Chemical Technology, China 21530009067the Fundamental Research Funds for the Central Universities, China 2019XZZX004-02the National Natural Science Foundation of China 91645105The project was supported by the National Key Research and Development Program of China 2018YFB0604801The project was supported by the National Key Research and Development Program of China (2018YFB0604801), the National Natural Science Foundation of China (21822203, 91645105, 91634201), the Natural Science Foundation of Zhejiang Province, China (LR18B030002), the Beijing Advanced Innovation Center for Soft Matter Science, Engineering of the Beijing University of Chemical Technology, China (21530009067), and the Fundamental Research Funds for the Central Universities, China (2019XZZX004-02)the National Natural Science Foundation of China 21822203

  • Selective hydrogenation of dienes and alkynes to monoenes is an important topic of research in the fields of pharmacology and organic synthesis. Catalyst design plays a key role in this process, where a general principle involves controlling the steric diene adsorption by modifying the surface of the metal nanoparticles. For example, upon introducing Bi species into Rh nanoparticles, the resulting RhBi/SiO2 showed 90% selectivity to 2-hexene, with 95% conversion of 1, 4-hexadiene under ambient conditions, because of the suppressed adsorption of the internal C=C bond. However, the catalyst activity decreased remarkably; that is, the activity of the unmodified Rh/SiO2 was about 27 times higher than that of RhBi/SiO2. Controlled steric adsorption of the diene molecules could also be achieved by the constructing porous channels around the metal nanoparticles. For example, metal-organic framework (ZIF-8) or mesoporous silica (MCM-41) encapsulated noble metals showed high selectivity for the hydrogenation of terminal C=C bonds. However, these catalysts had poor durability under the thermal/hydrothermal reaction/regeneration conditions. In contrast, zeolites have superior durability under harsh reaction conditions, but they are rarely used in semi-hydrogenation reactions. We recently found that metal nanoparticles fixed within zeolite crystals (e.g., ZSM-5 and Beta) efficiently catalyze the selective hydrogenation of molecules bearing multiple reducible groups. Thus inspired, we developed a catalyst by fixing Rh nanoparticles within zeolite crystals via an inter-zeolite transformation method. The Rh@CHA catalyst was synthesized by introducing Rh species into the parent Y zeolite (Rh@Y) and transformation of the Y zeolite to chabazite (CHA zeolite) under hydrothermal conditions. X-ray diffraction patterns, N2 sorption isotherms, scanning/transmission electron microscopy images, and model reactions (hydrogenation of probe molecules) confirmed the successful fixation of the Rh nanoparticles inside the CHA zeolite crystals. As expected, the Rh@CHA catalyst was highly selective for the hydrogenation of dienes. For example, Rh@CHA showed a 2-hexene selectivity of 86.7%, with 91.2% conversion of 1, 4-hexadiene. In contrast, the generally supported Rh nanoparticle catalyst (Rh/CHA) showed a low 2-hexene selectivity of 37.2% under identical reaction conditions. Considering that Rh@CHA and Rh/CHA comprise the same CHA zeolite crystals and have similar Rh nanoparticle sizes, the remarkably high selectivity of Rh@CHA is assigned to the steric adsorption of dienes on the Rh surface controlled by the micropores of the CHA zeolite. This work demonstrates that a zeolite-fixed metal core-shell structure is a powerful tool for developing efficient catalysts to be used in diene hydrogenation.
  • 加载中
    1. [1]

      Wang, S.; Zhao, Z. J.; Chang, X.; Zhao, J.; Tian, H.; Yang, C.; Li, M.; Fu, Q.; Mu, R.; Gong, J. Angew. Chem. Int. Ed. 2019, 58, 7668. doi: 10.1002/anie.201903827  doi: 10.1002/anie.201903827

    2. [2]

      Yan, H.; Cheng, H.; Yi, H.; Lin, Y.; Yao, T.; Wang, C.; Li, J.; Wei, S.; Lu, J. J. Am. Chem. Soc. 2015, 137, 10484. doi: 10.1021/jacs.5b06485  doi: 10.1021/jacs.5b06485

    3. [3]

      Zhao, M.; Yuan, K.; Wang, Y.; Li, G.; Guo, J.; Gu, L.; Hu, W.; Zhao, H.; Tang, Z. Nature 2016, 539, 76. doi: 10.1038/nature19763  doi: 10.1038/nature19763

    4. [4]

      Wang, Z.; Zhou, Z.; Zhang, R.; Li, L.; Cheng, Z. M. Acta Phys. -Chim. Sin. 2014, 30, 2315.  doi: 10.3866/PKU.WHXB201410152

    5. [5]

      Gao, X.; Guo, Z.; Zhou, Y.; Jing, F.; Chu, W. Acta Phys. -Chim. Sin. 2017, 33, 602.  doi: 10.3866/PKU.WHXB201611251

    6. [6]

      Miyazaki, M.; Furukawa, S.; Komatsu, T. J. Am. Chem. Soc. 2017, 139, 18231. doi: 10.1021/jacs.7b08792  doi: 10.1021/jacs.7b08792

    7. [7]

      Lucci, F. R.; Liu, J.; Marcinkowski, M. D.; Yang, M.; Allard, L. F.; Flytzani-Stephanopoulos, M.; Sykes, E. C. H. Nat. Commun. 2015, 6, 8550. doi: 10.1038/ncomms9550  doi: 10.1038/ncomms9550

    8. [8]

      Zhang, X.; Shi, H.; Xu, B. Angew. Chem. Int. Ed. 2005, 44, 7132. doi: 10.1002/anie.200502101  doi: 10.1002/anie.200502101

    9. [9]

      Lonergan, W. W.; Vlachos, D. G.; Chen, J. G. J. Catal. 2010, 271, 239. doi: 10.1016/j.jcat.2010.01.019  doi: 10.1016/j.jcat.2010.01.019

    10. [10]

      Yardimci, D.; Serna, P.; Gates, B. C. ACS Catal. 2012, 2, 2100. doi: 10.1021/cs300475c  doi: 10.1021/cs300475c

    11. [11]

      Scharnagl, F.; Hertrich, M. F.; Ferretti, F.; Kreyenschulte, C.; Lund, H.; Jackstell, R.; Beller, M. Sci. Adv. 2018, 4, eaau1248. doi: 10.1126/sciadv.aau1248  doi: 10.1126/sciadv.aau1248

    12. [12]

      Berhault, G.; Bisson, L.; Thomazeau, C.; Verdon, C.; Uzio, D. Appl. Catal. B 2007, 327, 32. doi: 10.1016/j.apcata.2007.04.028  doi: 10.1016/j.apcata.2007.04.028

    13. [13]

      Massard, R.; Uzio, D.; Thomazeau, C.; Pichon, C.; Rousset, J. L.; Bertolini, J. C. J. Catal. 2007, 245, 133. doi: 10.1016/j.jcat.2006.09.014  doi: 10.1016/j.jcat.2006.09.014

    14. [14]

      Zhang, X.; Shi, H.; Xu, B. Catal. Today 2007, 122, 330. doi: 10.1016/j.cattod.2007.02.016  doi: 10.1016/j.cattod.2007.02.016

    15. [15]

      González, S.; Neyman, K. M.; Shaikhutdinov, S.; Freund, H. J.; Illas, F. J. Phys. Chem. C 2007, 111, 6852. doi: 10.1021/jp071584v  doi: 10.1021/jp071584v

    16. [16]

      Armbrüster, M.; Behrens, M.; Cinquini, F.; Föttinger, K.; Grin, Y.; Haghofer, A.; Klötzer, B.; Knop-Gericke, A.; Lorenz, H.; Ota, A.; et al. ChemCatChem 2012, 4, 1048. doi: 10.1002/cctc.201200100  doi: 10.1002/cctc.201200100

    17. [17]

      McCue, A. J.; McRitchie, C. J.; Shepherd, A. M.; Anderson, J. A. J. Catal. 2014, 319, 127. doi: 10.1016/j.jcat.2014.08.016  doi: 10.1016/j.jcat.2014.08.016

    18. [18]

      Zhang, J.; Wang, L.; Shao, Y.; Wang, Y.; Gates, B. C.; Xiao, F. S. Angew. Chem. Int. Ed. 2017, 56, 9747. doi: 10.1002/anie.201703938  doi: 10.1002/anie.201703938

    19. [19]

      Stephenson, C. J.; Hupp, J. T.; Farha, O. K. Inorg. Chem. Front. 2015, 2, 448. doi: 10.1039/c5qi00010f  doi: 10.1039/c5qi00010f

    20. [20]

      Shimazu, S.; Baba, N.; Ichikuni, N.; Uematsu, T. J. Mol. Catal. A: Chem. 2002, 182183, 343. doi: 10.1016/S1381-1169(01)00508-8  doi: 10.1016/S1381-1169(01)00508-8

    21. [21]

      Wang, C.; Wang, L.; Zhang, J.; Wang, H.; Lewis, J. P.; Xiao, F. S. J. Am. Chem. Soc. 2016, 138, 7880. doi: 10.1021/jacs.6b04951  doi: 10.1021/jacs.6b04951

    22. [22]

      Chai, Y.; Liu, S.; Zhao, Z. J.; Gong, J.; Dai, W.; Wu, G.; Guan, N.; Li, L. ACS Catal.2018, 8, 8578. doi: 10.1021/acscatal.8b02276  doi: 10.1021/acscatal.8b02276

    23. [23]

      Iida, T.; Zanchet, D.; Ohara, K.; Wakihara, T.; Roman-Leshkov, Y. Angew. Chem. Int. Ed.2018, 57, 6454. doi: 10.1002/anie.201800557  doi: 10.1002/anie.201800557

    24. [24]

      Van Tendeloo, L.; Gobechiya, E.; Breynaert, E.; Martens, J. A.; Kirschhock, C. E. A. Chem. Commun. 2013, 49, 11737. doi: 10.1039/c3cc47292b  doi: 10.1039/c3cc47292b

    25. [25]

      Ji, Y.; Deimund, M. A.; Bhawe, Y.; Davis, M. E. ACS Catal. 2015, 5, 4456. doi: 10.1021/acscatal.5b00404  doi: 10.1021/acscatal.5b00404

    26. [26]

      Baerlocher, C.; McCusker L. B.; Olson, D. H. Atlas of Zeolite Framework Types, 6th ed.; Elsevier: Radarweg, 2007; pp. 96–97.

  • 加载中
    1. [1]

      Ruiying Liu Li Zhao Baishan Liu Jiayuan Yu Yujie Wang Wanqiang Yu Di Xin Chaoqiong Fang Xuchuan Jiang Riming Hu Hong Liu Weijia Zhou . Modulating pollutant adsorption and peroxymonosulfate activation sites on Co3O4@N,O doped-carbon shell for boosting catalytic degradation activity. Chinese Journal of Structural Chemistry, 2024, 43(8): 100332-100332. doi: 10.1016/j.cjsc.2023.100332

    2. [2]

      Min SongQian ZhangTao ShenGuanyu LuoDeli Wang . Surface reconstruction enabled o-PdTe@Pd core-shell electrocatalyst for efficient oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(8): 109083-. doi: 10.1016/j.cclet.2023.109083

    3. [3]

      Heng YangZhijie ZhouConghui TangFeng Chen . Recent advances in heterogeneous hydrosilylation of unsaturated carbon-carbon bonds. Chinese Chemical Letters, 2024, 35(6): 109257-. doi: 10.1016/j.cclet.2023.109257

    4. [4]

      Xiao LiWanqiang YuYujie WangRuiying LiuQingquan YuRiming HuXuchuan JiangQingsheng GaoHong LiuJiayuan YuWeijia Zhou . Metal-encapsulated nitrogen-doped carbon nanotube arrays electrode for enhancing sulfion oxidation reaction and hydrogen evolution reaction by regulating of intermediate adsorption. Chinese Chemical Letters, 2024, 35(8): 109166-. doi: 10.1016/j.cclet.2023.109166

    5. [5]

      Baokang GengXiang ChuLi LiuLingling ZhangShuaishuai ZhangXiao WangShuyan SongHongjie Zhang . High-efficiency PdNi single-atom alloy catalyst toward cross-coupling reaction. Chinese Chemical Letters, 2024, 35(7): 108924-. doi: 10.1016/j.cclet.2023.108924

    6. [6]

      Xian-Fa JiangChongyun ShaoZhongwen OuyangZhao-Bo HuZhenxing WangYou Song . Generating electron spin qubit in metal-organic frameworks via spontaneous hydrolysis. Chinese Chemical Letters, 2024, 35(7): 109011-. doi: 10.1016/j.cclet.2023.109011

    7. [7]

      Wei Chen Pieter Cnudde . A minireview to ketene chemistry in zeolite catalysis. Chinese Journal of Structural Chemistry, 2024, 43(11): 100412-100412. doi: 10.1016/j.cjsc.2024.100412

    8. [8]

      Shaonan Tian Yu Zhang Qing Zeng Junyu Zhong Hui Liu Lin Xu Jun Yang . Core-shell gold-copper nanoparticles: Evolution of copper shells on gold cores at different gold/copper precursor ratios. Chinese Journal of Structural Chemistry, 2023, 42(11): 100160-100160. doi: 10.1016/j.cjsc.2023.100160

    9. [9]

      Naihong Wang Longkang Zhang Yejun Guan Peng Wu Hao Xu . Pt confined in Sn-ECNU-46 zeolite for efficient alkane dehydrogenation. Chinese Journal of Structural Chemistry, 2024, 43(4): 100248-100248. doi: 10.1016/j.cjsc.2024.100248

    10. [10]

      Guoliang Liu Zhiqiang Liu Anmin Zheng . Modulation of zeolite surface realizes dynamic copper species redispersion. Chinese Journal of Structural Chemistry, 2024, 43(6): 100308-100308. doi: 10.1016/j.cjsc.2024.100308

    11. [11]

      Hengying XiangNanping DengLu GaoWen YuBowen ChengWeimin Kang . 3D core-shell nanofibers framework and functional ceramic nanoparticles synergistically reinforced composite polymer electrolytes for high-performance all-solid-state lithium metal battery. Chinese Chemical Letters, 2024, 35(8): 109182-. doi: 10.1016/j.cclet.2023.109182

    12. [12]

      Yuan ZhangShenghao GongA.R. Mahammed ShaheerRong CaoTianfu Liu . Plasmon-enhanced photocatalytic oxidative coupling of amines in the air using a delicate Ag nanowire@NH2-UiO-66 core-shell nanostructures. Chinese Chemical Letters, 2024, 35(4): 108587-. doi: 10.1016/j.cclet.2023.108587

    13. [13]

      Jiayu XuMeng LiBaoxia DongLigang Feng . Fully fluorinated hybrid zeolite imidazole/Prussian blue analogs with combined advantages for efficient oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(6): 108798-. doi: 10.1016/j.cclet.2023.108798

    14. [14]

      Zhenzhen Zhao Meichen Jiao Jiejie Ling Han Jiang Yan Gao Hao Xu Hai-Qing Li Jingang Jiang Peng Wu Le Xu . Toward the microporous zeolite family with tunable large-medium cage and pore opening. Chinese Journal of Structural Chemistry, 2024, 43(9): 100336-100336. doi: 10.1016/j.cjsc.2024.100336

    15. [15]

      Lijun YanShiqi ChenPenglu WangXiangyu LiuLupeng HanTingting YanYuejin LiDengsong Zhang . Hydrothermally stable metal oxide-zeolite composite catalysts for low-temperature NOx reduction with improved N2 selectivity. Chinese Chemical Letters, 2024, 35(6): 109132-. doi: 10.1016/j.cclet.2023.109132

    16. [16]

      Guo-Hong GaoRun-Ze ZhaoYa-Jun WangXiao MaYan LiJian ZhangJi-Sen Li . Core–shell heterostructure engineering of CoP nanowires coupled NiFe LDH nanosheets for highly efficient water/seawater oxidation. Chinese Chemical Letters, 2024, 35(8): 109181-. doi: 10.1016/j.cclet.2023.109181

    17. [17]

      Ming HuangXiuju CaiYan LiuZhuofeng Ke . Base-controlled NHC-Ru-catalyzed transfer hydrogenation and α-methylation/transfer hydrogenation of ketones using methanol. Chinese Chemical Letters, 2024, 35(7): 109323-. doi: 10.1016/j.cclet.2023.109323

    18. [18]

      Conghui WangLei XuZhenhua JiaTeck-Peng Loh . Recent applications of macrocycles in supramolecular catalysis. Chinese Chemical Letters, 2024, 35(4): 109075-. doi: 10.1016/j.cclet.2023.109075

    19. [19]

      Hongxia LiXiyang WangDu QiaoJiahao LiWeiping ZhuHonglin Li . Mechanism of nanoparticle aggregation in gas-liquid microfluidic mixing. Chinese Chemical Letters, 2024, 35(4): 108747-. doi: 10.1016/j.cclet.2023.108747

    20. [20]

      Yixin ZhangTing WangJixiang ZhangPengyu LuNeng ShiLiqiang ZhangWeiran ZhuNongyue He . Formation mechanism for stable system of nanoparticle/protein corona and phospholipid membrane. Chinese Chemical Letters, 2024, 35(4): 108619-. doi: 10.1016/j.cclet.2023.108619

Metrics
  • PDF Downloads(13)
  • Abstract views(630)
  • HTML views(104)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return