Citation: Zhang Sai, Zhang Mingkai, Qu Yongquan. Solid Frustrated Lewis Pairs Constructed on CeO2 for Small-Molecule Activation[J]. Acta Physico-Chimica Sinica, ;2020, 36(9): 191105. doi: 10.3866/PKU.WHXB201911050 shu

Solid Frustrated Lewis Pairs Constructed on CeO2 for Small-Molecule Activation


  • Author Bio:

    Dr Yongquan Qu received his BS in Materials Science and Engineering from Nanjing University in 2001, MS in Chemistry from the Dalian Institute of Chemical Physics in 2004, and PhD in Chemistry from the University of California, Davis, in 2009. He worked as a postdoctoral research fellow in the University of California, Los Angeles, from 2009 to 2011. He became a faculty member of the Center for Applied Chemical Research, Frontier Institute of Science and Technology, Xi'an Jiaotong University, China, in 2012. His research interests focus on heterogeneous catalysis in the areas of organic synthesis, clean energy production and environmental remediation. Details can be found at: http://gr.xjtu.edu.cn/web/yongquan
  • Corresponding author: Qu Yongquan, yongquan@mail.xjtu.edu.cn
  • Received Date: 12 November 2019
    Revised Date: 13 January 2020
    Accepted Date: 13 January 2020
    Available Online: 5 February 2020

    Fund Project: The project was supported by the National Natural Science Foundation of China (21872109) and the China Postdoctoral Science Foundation (2018T111034). Y. Qu is supported by the Cyrus Tang Foundation through the Tang Scholar program. S. Zhang is supported by the Fundamental Research Funds for the Central Universities, China (xjj2018033) and the Natural Science Foundation of Shaanxi Province, China (2019JQ-039)the National Natural Science Foundation of China 21872109the Natural Science Foundation of Shaanxi Province, China 2019JQ-039the Cyrus Tang Foundation through the Tang Scholar program. S. Zhang is supported by the Fundamental Research Funds for the Central Universities, China xjj2018033the China Postdoctoral Science Foundation 2018T111034

  • Solid materials containing frustrated Lewis pairs (FLPs) as active sites have attracted much attention due to their ability to activate and transform small molecules. However, it is still highly challenging to precisely construct FLP sites on the surfaces of nanomaterials, thereby limiting the applications of these materials. Nanostructured ceria (CeO2) is commonly employed as a catalyst or functional support, and exhibits both Lewis acid and basic properties as well as abundant and easily regulated surface defects, which originate from the reversible Ce3+/Ce4+ redox pair. When the Lewis acid and base sites of CeO2 are independent of each other, the combined Lewis acid-base sites play a similar role to that of homogeneous FLP sites. Thus, the rich surface properties of nanostructured CeO2 provide significant potential for the construction of solid FLPs.Herein, we demonstrate that solid FLP sites can be successfully constructed on the surface of CeO2(110) via the regulation of surface defect clusters, which can be used to create new Lewis acid sites composed of two adjacent Ce3+ atoms on the surface. Novel interfacial FLP sites can then be formed by combining these Lewis acid sites with neighboring surface lattice oxygens, which act as Lewis base sites. Porous CeO2 nanorods (PN-CeO2) with boundary surface defects were prepared by a special two-step hydrothermal process, and exhibited remarkable catalytic FLP properties. Hydrogen molecules could be effectively activated on the surface of PN-CeO2 with a low activation energy of 0.17 eV via a heterolytic cleavage process. Hydrogenation of alkenes and alkynes to alkanes could then be realized by the activated hydrogen under mild reaction conditions.PN-CeO2 nanorods with FLP active sites were also able to activate CO2 molecules effectively. Unlike in other solid FLP sites, CO2 molecule activation was realized via a Lewis base site binding with the C atom while two Lewis acid sites bound the two O atoms, owing to the unique configuration of the FLP sites in PN-CeO2. When combined with the epoxidation of olefins by "isolated" Ce3+ sites in PN-CeO2, the FLP-inspired activated CO2 could be used to transform olefins and CO2 to cyclic carbonates through a selective tandem transformation route. In addition, density functional theory studies indicate that the FLP sites on CeO2(110) can activate the C―H bond of CH4 with activation energies as low as 0.63 eV, which can be attributed to the enhanced acidity and basicity of the FLP sites.With this improved understanding of solid FLP sites constructed on ceria, we have also been able to summarize the challenges and prospects in this field, including their construction, characterization, and mechanism analysis.
  • 加载中
    1. [1]

      Ma, Y.; Zhang, S.; Chang, C.; Huang, Z.; Ho, J. C.; Qu, Y. Chem. Soc. Rev. 2018, 47, 5541. doi: 10.1039/C7CS00691H  doi: 10.1039/C7CS00691H

    2. [2]

      Welch, G. C.; San Juan, R. R.; Masuda, J. D.; Stephan, D. W. Science2006, 314, 1124. doi: 10.1126/science.1134230  doi: 10.1126/science.1134230

    3. [3]

      Scott, D. J.; Fuchter, M. J.; Ashley, A. E. Chem. Sev. Rev. 2017, 46, 5689. doi: 10.1039/C7CS00154A  doi: 10.1039/C7CS00154A

    4. [4]

      Stephan, D. W. J. Am. Chem. Soc. 2015, 137, 10018. doi: 10.1021/jacs.5b06794  doi: 10.1021/jacs.5b06794

    5. [5]

      Stephan, D. W. Acc. Chem. Res. 2015, 48, 306. doi: 10.1021/ar500375j  doi: 10.1021/ar500375j

    6. [6]

      Wang, L.; Kehr, G.; Daniliuc, C. G.; Brinkkötter, M.; Wiegand, T.; Wübker, A. L.; Eckert, H.; Liu, L.; Brandenburg, J. G.; Grimme, S.; Erker, G. Chem. Sci. 2018, 9, 4859. doi: 10.1039/C8SC01089G  doi: 10.1039/C8SC01089G

    7. [7]

      Lu, G.; Zhang, P.; Sun, D.; Wang, L.; Zhou, K.; Wang, Z. X.; Guo, G. C. Chem. Sci. 2014, 5, 1082. doi: 10.1039/C3SC52851K  doi: 10.1039/C3SC52851K

    8. [8]

      Trunk, M.; Teichert, J. F.; Thomas, A. J. Am. Chem. Soc. 2017, 139, 3615. doi: 10.1021/jacs.6b13147  doi: 10.1021/jacs.6b13147

    9. [9]

      Mahdi, T.; Stephan, D. W. Angew. Chem. Int. Ed. 2015, 54, 8511. doi: 10.1002/anie.201503087  doi: 10.1002/anie.201503087

    10. [10]

      Primo, A.; Neatu, F.; Florea, M.; Parvulescu, V.; Garcia, H. Nat. Commun. 2014, 5, 5291. doi: 10.1038/ncomms6291  doi: 10.1038/ncomms6291

    11. [11]

      Stephan, D. W. Chem 2018, 4, 2483. doi: 10.1016/j.chempr.2018.09.008  doi: 10.1016/j.chempr.2018.09.008

    12. [12]

      Shyshkanov, S.; Nguyen, T.; Ebrahim, F. M.; Stylianou, K.; Dyson, P. Angew. Chem. Int. Ed. 2019, 58, 5371. doi: 10.1002/anie.201901171  doi: 10.1002/anie.201901171

    13. [13]

      Niu, Z.; Zhang, W.; Lan, P. C.; Aguila, B.; Ma, S. Angew. Chem. Int. Ed. 2019, 58, 7420. doi: 10.1002/anie.201903763  doi: 10.1002/anie.201903763

    14. [14]

      Zhao, J.; Liu, X.; Chen, Z. ACS Catal. 2016, 7, 766. doi: 10.1021/acscatal.6b02727  doi: 10.1021/acscatal.6b02727

    15. [15]

      He, L.; Wood, T. E.; Wu, B.; Dong, Y.; Hoch, L. B.; Reyes, L. M.; Wang, D.; Kübel, C.; Qian, C.; Jia, J.; et al. ACS Nano 2016, 10, 5578. doi: 10.1021/acsnano.6b02346  doi: 10.1021/acsnano.6b02346

    16. [16]

      Dong, Y.; Ghuman, K. K.; Popescu, R.; Duchesne, P. N.; Zhou, W.; Loh, J. Y. Y.; Jelle, A. A.; Jia, J.; Wang, D.; Mu, X.; et al. Adv. Sci. 2018, 5, 1700732. doi: 10.1002/advs.201700732  doi: 10.1002/advs.201700732

    17. [17]

      Ma, Y.; Gao, W.; Zhang, Z.; Zhang, S.; Tian, Z.; Liu, Y.; Ho, J. C.; Qu, Y. Surf. Sci. Rep. 2018, 73, 1. doi: 10.1016/j.surfrep.2018.02.001  doi: 10.1016/j.surfrep.2018.02.001

    18. [18]

      Zhang, S.; Huang, Z. Q.; Ma, Y.; Gao, W.; Li, J.; Cao, F.; Li, L.; Chang, C. R.; Qu, Y. Nat. Commun. 2017, 8, 15266. doi: 10.1038/ncomms15266  doi: 10.1038/ncomms15266

    19. [19]

      Li, J.; Tian, Z.; Zhang, Z.; Zhou, X.; Zheng, Z.; Ma, Y.; Qu, Y. J. Mater. Chem. A 2014, 2, 164596. doi: 10.1039/C4TA03718A  doi: 10.1039/C4TA03718A

    20. [20]

      Zhang, S.; Chang, C.; Huang, Z.; Li, J.; Wu, Z.; Ma, Y.; Zhang, Z.; Wang, Y.; Qu, Y. J. Am. Chem. Soc. 2016, 138, 2629. doi: 10.1021/jacs.5b11413  doi: 10.1021/jacs.5b11413

    21. [21]

      Zhang, S.; Xia, Z.; Zou, Y.; Cao, F.; Liu, Y.; Ma, Y.; Qu, Y. J. Am. Chem. Soc. 2019, 11353. doi: 10.1021/jacs.9b03217  doi: 10.1021/jacs.9b03217

    22. [22]

      Huang, Z. Q.; Zhang, T.; Chang, C. R.; Li, J. ACS Catal. 2019, 9, 5523. doi: 10.1021/acscatal.9b00838  doi: 10.1021/acscatal.9b00838

    23. [23]

      Guo, X.; Fang, G.; Li, G.; Ma, H.; Fan, H.; Yu, L.; Ma, C.; Wu, X.; Deng, D.; Wei, M.; et al. Science 2014, 344, 616. doi: 10.1126/science.1253150  doi: 10.1126/science.1253150

    24. [24]

      Huang, Z. Q.; Zhang, T. Y.; Chang, C. R.; Li, J. ACS Catal. 2019, 9, 5523. doi: 10.1021/acscatal.9b00838  doi: 10.1021/acscatal.9b00838

    25. [25]

      Zhang, S.; Huang, Z.; Chen, X.; Gan, J.; Duan, X.; Yang, B.; Chang, C.; Qu, Y. J. Catal. 2019, 372, 142. doi: 10.1016/j.jcat.2019.02.033  doi: 10.1016/j.jcat.2019.02.033

  • 加载中
    1. [1]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    2. [2]

      Xueyang ZhaoBangwei DengHongtao XieYizhao LiQingqing YeFan Dong . Recent process in developing advanced heterogeneous diatomic-site metal catalysts for electrochemical CO2 reduction. Chinese Chemical Letters, 2024, 35(7): 109139-. doi: 10.1016/j.cclet.2023.109139

    3. [3]

      Xin JiangHan JiangYimin TangHuizhu ZhangLibin YangXiuwen WangBing Zhao . g-C3N4/TiO2-X heterojunction with high-efficiency carrier separation and multiple charge transfer paths for ultrasensitive SERS sensing. Chinese Chemical Letters, 2024, 35(10): 109415-. doi: 10.1016/j.cclet.2023.109415

    4. [4]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    5. [5]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    6. [6]

      Tao BanXi-Yang YuHai-Kuo TianZheng-Qing HuangChun-Ran Chang . One-step conversion of methane and formaldehyde to ethanol over SA-FLP dual-active-site catalysts: A DFT study. Chinese Chemical Letters, 2024, 35(4): 108549-. doi: 10.1016/j.cclet.2023.108549

    7. [7]

      Xiangyu ChenAihao XuDong WeiFang HuangJunjie MaHuibing HeJing Xu . Atomic cerium-doped CuOx catalysts for efficient electrocatalytic CO2 reduction to CH4. Chinese Chemical Letters, 2025, 36(1): 110175-. doi: 10.1016/j.cclet.2024.110175

    8. [8]

      Xiuzheng DengChanghai LiuXiaotong YanJingshan FanQian LiangZhongyu Li . Carbon dots anchored NiAl-LDH@In2O3 hierarchical nanotubes for promoting selective CO2 photoreduction into CH4. Chinese Chemical Letters, 2024, 35(6): 108942-. doi: 10.1016/j.cclet.2023.108942

    9. [9]

      Hui LiYanxing QiJia ChenJuanjuan WangMin YangHongdeng Qiu . Synthesis of amine-pillar[5]arene porous adsorbent for adsorption of CO2 and selectivity over N2 and CH4. Chinese Chemical Letters, 2024, 35(11): 109659-. doi: 10.1016/j.cclet.2024.109659

    10. [10]

      Jingtai BiYupeng ChengMengmeng SunXiaofu GuoShizhao WangYingying Zhao . Efficient and selective photocatalytic nitrite reduction to N2 through CO2 anion radical by eco-friendly tartaric acid activation. Chinese Chemical Letters, 2024, 35(11): 109639-. doi: 10.1016/j.cclet.2024.109639

    11. [11]

      Zhi Zhu Xiaohan Xing Qi Qi Wenjing Shen Hongyue Wu Dongyi Li Binrong Li Jialin Liang Xu Tang Jun Zhao Hongping Li Pengwei Huo . Fabrication of graphene modified CeO2/g-C3N4 heterostructures for photocatalytic degradation of organic pollutants. Chinese Journal of Structural Chemistry, 2023, 42(12): 100194-100194. doi: 10.1016/j.cjsc.2023.100194

    12. [12]

      Yunkang TongHaiqiao HuangHaolan LiMingle LiWen SunJianjun DuJiangli FanLei WangBin LiuXiaoqiang ChenXiaojun Peng . Cooperative bond scission by HRP/H2O2 for targeted prodrug activation. Chinese Chemical Letters, 2024, 35(12): 109663-. doi: 10.1016/j.cclet.2024.109663

    13. [13]

      Ke-Ai Zhou Lian Huang Xing-Ping Fu Li-Ling Zhang Yu-Ling Wang Qing-Yan Liu . Fluorinated metal-organic framework for methane purification from a ternary CH4/C2H6/C3H8 mixture. Chinese Journal of Structural Chemistry, 2023, 42(11): 100172-100172. doi: 10.1016/j.cjsc.2023.100172

    14. [14]

      Gang LangJing FengBo FengJunlan HuZhiling RanZhiting ZhouZhenju JiangYunxiang HeJunling Guo . Supramolecular phenolic network-engineered C–CeO2 nanofibers for simultaneous determination of isoniazid and hydrazine in biological fluids. Chinese Chemical Letters, 2024, 35(6): 109113-. doi: 10.1016/j.cclet.2023.109113

    15. [15]

      Simin WeiYaqing YangJunjie LiJialin WangJinlu TangNingning WangZhaohui Li . The Mn/Yb/Er triple-doped CeO2 nanozyme with enhanced oxidase-like activity for highly sensitive ratiometric detection of nitrite. Chinese Chemical Letters, 2024, 35(6): 109114-. doi: 10.1016/j.cclet.2023.109114

    16. [16]

      Ping Wang Tianbao Zhang Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328

    17. [17]

      Ziruo Zhou Wenyu Guo Tingyu Yang Dandan Zheng Yuanxing Fang Xiahui Lin Yidong Hou Guigang Zhang Sibo Wang . Defect and nanostructure engineering of polymeric carbon nitride for visible-light-driven CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100245-100245. doi: 10.1016/j.cjsc.2024.100245

    18. [18]

      Yubang Li Xixi Hu Daiqian Xie . The microscopic formation mechanism of O + H2 products from photodissociation of H2O. Chinese Journal of Structural Chemistry, 2024, 43(5): 100274-100274. doi: 10.1016/j.cjsc.2024.100274

    19. [19]

      Hualin JiangWenxi YeHuitao ZhenXubiao LuoVyacheslav FominskiLong YePinghua Chen . Novel 3D-on-2D g-C3N4/AgI.x.y heterojunction photocatalyst for simultaneous and stoichiometric production of H2 and H2O2 from water splitting under visible light. Chinese Chemical Letters, 2025, 36(2): 109984-. doi: 10.1016/j.cclet.2024.109984

    20. [20]

      Yufei Jia Fei Li Ke Fan . Surface reconstruction of Cu-based bimetallic catalysts for electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100255-100255. doi: 10.1016/j.cjsc.2024.100255

Metrics
  • PDF Downloads(42)
  • Abstract views(1178)
  • HTML views(307)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return