Citation: Sun Chengzhen, Zhou Runfeng, Bai Bofeng. Electrostatic Effect-based Selective Permeation Characteristics of Graphene Nanopores[J]. Acta Physico-Chimica Sinica, ;2020, 36(11): 191104. doi: 10.3866/PKU.WHXB201911044 shu

Electrostatic Effect-based Selective Permeation Characteristics of Graphene Nanopores

  • Corresponding author: Sun Chengzhen, sun-cz@xjtu.edu.cn
  • Received Date: 25 November 2019
    Revised Date: 15 December 2019
    Accepted Date: 16 December 2019
    Available Online: 20 December 2019

    Fund Project: the National Natural Science Foundation of China 51876169the National Natural Science Foundation of China 51425603the General Open Project of Key Laboratory of Thermal Power Technology, China TPL2017BB009The project was supported by the National Natural Science Foundation of China (51876169, 51425603) and the General Open Project of Key Laboratory of Thermal Power Technology, China (TPL2017BB009)

  • Two-dimensional graphene nanopores have proved to be a very effective molecular sieve with ultra-high molecular permeance due to the atomic thickness of graphene sheets. The mechanism of graphene nanopores for molecular sieving is generally the size-sieving effect of different molecules. However, high-selective molecular separation is difficult to realize based only on the size-sieving effect. Therefore, graphene nanopore-based membranes usually present high permeance but a moderate selectivity, such that the separation performance cannot far exceed those of traditional separation membranes. In this study, the effects of charges on graphene surfaces on the selective permeation of CO2/N2 mixtures through a graphene nanopore is studied using molecular dynamics simulations; its purpose to realize electrostatic effect-based selective molecular permeation through graphene nanopores and find a promising method to improve the selectivity of molecular separation. The simulation results show that graphene nanopores with negative charges have higher CO2 permeance and lower N2 permeance and, thus, present a high selectivity for the separation of the CO2/N2 mixtures. The graphene nanopore with positive charges, however, does not improve the selectivity. The electrostatic effect-based selectivity of graphene nanopores is related to the different molecular adsorption abilities on the graphene surface with charges. For negative charges, the adsorption ability of CO2 molecules increases and the number of permeated molecules via surface mechanism increases and the experience time during the permeation process also increases; ultimately the CO2 permeance increases with increasing the charge density. For the molecules permeated through the surface mechanism, they are firstly adsorbed onto the graphene surface and then diffuse to the pore region for the ultimate permeation; thus, their experience time is longer than that of the molecules permeated through a direct mechanism. Therefore, a longer experience time means a more significant contribution of the surface flux to the total flux. At high surface charge densities, the contribution of surface flux is dominated and thus the experience time is longer. For CO2 molecules, the permeation rates increase with increasing the surface charge density. Namely, a higher experience time corresponds to a higher permeation rate for CO2 molecules. A decrease of N2 permeance with increasing the charge density is correlated to the increasing CO2 permeance via the inhibition effects of non-permeating components on the permeation of permeating components. For positive charges, the adsorption abilities of CO2 and N2 molecules have no obvious variation with the charge density and their permeance is constant; therefore, the graphene nanopore still has no electrostatic effect-based selectivity.
  • 加载中
    1. [1]

      Balandin, A. A.; Ghosh, S.; Bao, W. Z.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C. N. Nano Lett. 2008, 8, 902. doi: 10.1021/nl0731872  doi: 10.1021/nl0731872

    2. [2]

      Chen, S. S.; Wu, Q. Z.; Mishra, C.; Kang, J. Y.; Zhang, H. J.; Cho, K. J.; Cai, W. W.; Balandin, A. A.; Ruoff, R. S. Nat. Mater. 2012, 11, 203. doi: 10.1038/nmat3207  doi: 10.1038/nmat3207

    3. [3]

      Lee, C.; Wei, X. D.; Kysar, J. W.; Hone, J. Science 2008, 321, 385. doi: 10.1126/science.1157996  doi: 10.1126/science.1157996

    4. [4]

      Geim, A. K.; Novoselov, K. S. Nat. Mater. 2007, 6, 183. doi: 10.1038/nmat1849  doi: 10.1038/nmat1849

    5. [5]

      Wen, B. Y.; Sun, C. Z.; Bai, B. F. Acta Phys. -Chim. Sin. 2015, 31, 261.  doi: 10.3866/PKU.WHXB201411271

    6. [6]

      Lei, G. P.; Liu, C.; Xie, H. Acta Phys. -Chim. Sin. 2015, 31, 660.  doi: 10.3866/PKU.WHXB201501291

    7. [7]

      Koenig, S. P.; Wang, L. D.; Pellegrino, J.; Bunch, J. S. Nat. Nanotechnol. 2012, 7, 728. doi: 10.1038/nnano.2012.162  doi: 10.1038/nnano.2012.162

    8. [8]

      Jiang, D. E.; Cooper, V. R.; Dai, S. Nano Lett. 2009, 9, 4019. doi: 10.1021/nl9021946  doi: 10.1021/nl9021946

    9. [9]

      Du, H. L.; Li, J. Y.; Zhang, J.; Su, G.; Li, X. Y.; Zhao, Y. L. J. Phys. Chem. C 2011, 115, 23261. doi: 10.1021/jp206258u  doi: 10.1021/jp206258u

    10. [10]

      Kim, H. W.; Yoon, H. W.; Yoon, S. M.; Yoo, B. M.; Aho, B. K.; Cho, Y. H.; Shin, J. H.; Yang, C.; Paik, U.; Kwon, U.; et al. Science 2013, 342, 91. doi: 10.1126/science.1236098  doi: 10.1126/science.1236098

    11. [11]

      Li, H.; Song, Z. N.; Zhang, X. J.; Huang, Y.; Li, S. G.; Mao, Y. T.; Ploehn, H. J.; Bao, Y.; Yu, M. Science 2013, 342, 95. doi: 10.1126/science.1236686  doi: 10.1126/science.1236686

    12. [12]

      Sun, C. Z.; Liu, M.; Bai, B. F. Carbon 2019, 153, 481. doi: 10.1016/j.carbon.2019.07.052  doi: 10.1016/j.carbon.2019.07.052

    13. [13]

      Schrier, J. ACS Appl. Mater. Interfaces 2012, 4, 3745. doi: 10.1021/am300867d  doi: 10.1021/am300867d

    14. [14]

      Shan, M. X.; Xue, Q. Z.; Jing, N. N.; Ling, C. C.; Zhang, T.; Yan, Z. F.; Zheng, J. T. Nanoscale2012, 4, 5477. doi: 10.1039/C2NR31402A  doi: 10.1039/C2NR31402A

    15. [15]

      Drahushuk, L. W.; Strano, M. S. Langmuir 2012, 28, 16671. doi: 10.1021/la303468r  doi: 10.1021/la303468r

    16. [16]

      Sun, C. Z.; Boutilier, M. S. H.; Au, H.; Poesio, P.; Bai, B.; Karnik, R.; Hadjiconstantinou, N. G. Langmuir 2014, 30, 675. doi: 10.1021/la403969g  doi: 10.1021/la403969g

    17. [17]

      Wen, B. Y.; Sun, C. Z.; Bai, B. F. Phys. Chem. Chem. Phys. 2015, 17, 23619. doi: 10.1039/C5CP03195H  doi: 10.1039/C5CP03195H

    18. [18]

      Sun, C. Z.; Bai, B. F. Acta Phys. -Chim. Sin. 2018, 34, 1136.  doi: 10.3866/PKU.WHXB201801301

    19. [19]

      Liu, H. J.; Dai, S.; Jiang, D. E. Nanoscale 2013, 5, 9984. doi: 10.1039/C3NR02852F  doi: 10.1039/C3NR02852F

    20. [20]

      Wu, T. T.; Xue, Q. Z.; Ling, C. C.; Shan, M. X.; Liu, Z. L.; Tao, Y. H.; Li, X. F. J. Phys. Chem. C 2014, 118, 7369. doi: 10.1021/jp4096776  doi: 10.1021/jp4096776

    21. [21]

      Hauser, A. W.; Schwerdtfeger, P. Phys. Chem. Chem. Phys. 2012, 14, 13292. doi: 10.1039/C2CP41889D  doi: 10.1039/C2CP41889D

    22. [22]

      Celebi, K.; Buchheim, J.; Wyss, R. M.; Droudian, A.; Gasser, P.; Shorubalko, I.; Kye, J. I.; Lee, C.; Park, H. G. Science 2014, 344, 289. doi: 10.1126/science.1249097  doi: 10.1126/science.1249097

    23. [23]

      Boutilier, M. S. H.; Jang, D.; Idrobo, J. C.; Kidambi, P. R.; Hadjiconstantinou, N. G.; Karnik, R. ACS Nano 2017, 11, 5726. doi: 10.1021/acsnano.7b01231  doi: 10.1021/acsnano.7b01231

    24. [24]

      Russo, C. J.; Golovchenko, J. A. Proc. Natl. Acad. Sci. U. S. A. 2012, 109, 5953. doi: 10.1073/pnas.1119827109  doi: 10.1073/pnas.1119827109

    25. [25]

      O'Hern, S. C.; Boutilier, M. S. H.; Idrobo, J. C.; Song, Y.; Kong, J.; Laoui, T.; Atieh, M.; Karnik, R. Nano Lett. 2014, 14, 1234. doi: 10.1021/nl404118f  doi: 10.1021/nl404118f

    26. [26]

      Stuart, S. J.; Tutein, A. B.; Harrison, J. A. J. Chem. Phys. 2000, 112, 6472. doi: 10.1063/1.481208  doi: 10.1063/1.481208

    27. [27]

      Stassen, H. J. Mol. Struct. Theochem 1999, 464, 107. doi: 10.1016/S0166-1280(98)00540-5  doi: 10.1016/S0166-1280(98)00540-5

    28. [28]

      Chae, K.; Violi, A. J. Chem. Phys. 2011, 134, 044537. doi: 10.1063/1.3512918  doi: 10.1063/1.3512918

    29. [29]

      Liu, H. J.; Chen, Z. F.; Dai, S.; Jiang, D. E. J. Solid State Chem. 2015, 224, 2. doi: 10.1016/j.jssc.2014.01.030  doi: 10.1016/j.jssc.2014.01.030

    30. [30]

      Huheey, J.; Cottrell, T. L. The Strengths of Chemical Bonds; Butterworths: London, 1958.

    31. [31]

      http://www.wiredchemist.com/chemistry/data/bond_energies_lengths.html (accessed Oct 27, 2019).

    32. [32]

      Harris, J. G.; Yung, K. H. J. Phys. Chem. 1995, 99, 12021. doi: 10.1021/j100031a034  doi: 10.1021/j100031a034

    33. [33]

      Sun, C. Z.; Bai, B. F. Sci. Bull. 2017, 62, 554. doi: 10.1016/j.scib.2017.03.004  doi: 10.1016/j.scib.2017.03.004

  • 加载中
    1. [1]

      Pei Li Yuenan Zheng Zhankai Liu An-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 100034-. doi: 10.3866/PKU.WHXB202406012

    2. [2]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    3. [3]

      Jiali CHENGuoxiang ZHAOYayu YANWanting XIAQiaohong LIJian ZHANG . Machine learning exploring the adsorption of electronic gases on zeolite molecular sieves. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 155-164. doi: 10.11862/CJIC.20240408

    4. [4]

      Yiping HUANGLiqin TANGYufan JICheng CHENShuangtao LIJingjing HUANGXuechao GAOXuehong GU . Hollow fiber NaA zeolite membrane for deep dehydration of ethanol solvent by vapor permeation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 225-234. doi: 10.11862/CJIC.20240224

    5. [5]

      Shanghua Li Malin Li Xiwen Chi Xin Yin Zhaodi Luo Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003

    6. [6]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    7. [7]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    8. [8]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    9. [9]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    10. [10]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    11. [11]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    12. [12]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    13. [13]

      Supin Zhao Jing Xie . Understanding the Vibrational Stark Effect of Water Molecules Using Quantum Chemistry Calculations. University Chemistry, 2025, 40(3): 178-185. doi: 10.12461/PKU.DXHX202406024

    14. [14]

      Rui Gao Ying Zhou Yifan Hu Siyuan Chen Shouhong Xu Qianfu Luo Wenqing Zhang . Design, Synthesis and Performance Experiment of Novel Photoswitchable Hybrid Tetraarylethenes. University Chemistry, 2024, 39(5): 125-133. doi: 10.3866/PKU.DXHX202310050

    15. [15]

      Kai Yang Gehua Bi Yong Zhang Delin Jin Ziwei Xu Qian Wang Lingbao Xing . Comprehensive Polymer Chemistry Experiment Design: Preparation and Characterization of Rigid Polyurethane Foam Materials. University Chemistry, 2024, 39(4): 206-212. doi: 10.3866/PKU.DXHX202308045

    16. [16]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . 基于激发态手性铜催化的烯烃EZ异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    17. [17]

      Zehua Zhang Haitao Yu Yanyu Qi . 多重共振TADF分子的设计策略. Acta Physico-Chimica Sinica, 2025, 41(1): 2309042-. doi: 10.3866/PKU.WHXB202309042

    18. [18]

      Yong Shu Xing Chen Sai Duan Rongzhen Liao . How to Determine the Equilibrium Bond Distance of Homonuclear Diatomic Molecules: A Case Study of H2. University Chemistry, 2024, 39(7): 386-393. doi: 10.3866/PKU.DXHX202310102

    19. [19]

      Yaping Li Sai An Aiqing Cao Shilong Li Ming Lei . The Application of Molecular Simulation Software in Structural Chemistry Education: First-Principles Calculation of NiFe Layered Double Hydroxide. University Chemistry, 2025, 40(3): 160-170. doi: 10.12461/PKU.DXHX202405185

    20. [20]

      Yanglin Jiang Mingqing Chen Min Liang Yige Yao Yan Zhang Peng Wang Jianping Zhang . Experimental and Theoretical Investigations of Solvent Polarity Effect on ESIPT Mechanism in 4′-N,N-diethylamino-3-hydroxybenzoflavone. Acta Physico-Chimica Sinica, 2025, 41(2): 100012-. doi: 10.3866/PKU.WHXB202309027

Metrics
  • PDF Downloads(9)
  • Abstract views(983)
  • HTML views(172)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return