Citation: Miao Wang, Hongning Zheng, Fei Xu. Collagen-like Peptide Self-Assembly via Phenyl Isocyanate Induction[J]. Acta Physico-Chimica Sinica, ;2021, 37(10): 191103. doi: 10.3866/PKU.WHXB201911039 shu

Collagen-like Peptide Self-Assembly via Phenyl Isocyanate Induction

  • Corresponding author: Fei Xu, feixu@jiangnan.edu.cn
  • These authors contributed equally to this work.
  • Received Date: 20 November 2019
    Revised Date: 18 December 2019
    Accepted Date: 23 December 2019
    Available Online: 27 December 2019

    Fund Project: the National Natural Science Foundation of China 21603088the National Natural Science Foundation of China 51603089the China Postdoctoral Science Foundation 2017M611687

  • Synthetic matrices provide powerful tools for dissecting molecular interactions involved in the organization of the extracellular matrix (ECM), establishment of cell axis polarity, and suppression of neoplasticity in pre-cancerous endothelial cells. Collagen is the most abundant protein in extracellular matrix. A de novo approach is essential for the synthesis of collagen matrices which can have a broad impact on the understanding of matrix biology and our capacity to construct safe and medically useful biomaterials. Conventionally, the ECM has been studied by an analytical "top-down" approach, where the individual components of the matrix are first isolated and then characterized to explore their biochemical and functional properties. Since native collagen is difficult to modify and can engender pathogenic and immunological side effects, its application on tissue regeneration is limited. Therefore, we attempted to synthesize artificial collagen directly through small organic molecule recognition. The collagen-like peptides possess various benefits such as being clean, programmable, and easy to modify; therefore, in recent years, they have been used as ideal substrates for the synthesis of collagen nanomaterials. The self-assembly of collagen-like peptides is mainly driven by various non-covalent interactions such as electrostatic attraction, π-π stacking, and metal coordination. This renders a difficulty in the rational design of uniform nanostructures from short synthesized peptides and demands a novel strategy. To date, small organic molecules have been rarely used for the self-assembly of collagen-like peptides. In the present study, we attempted to use the small organic molecules for the combined supramolecular self-assembly of collagen-like peptides. Initially, the collagen-like peptides, (POG)6 and (POG)8, synthesized by the solid-phase synthesis technique, were both modified chemically using 4, 4'-methylene bis(phenyl isocyanate) to obtain the collagen-like hybrid peptides, AP6 and AP8, respectively. Phenyl isocyanate contributes to the formation of potential weak forces, such as hydrogen bonds and π-π stacking at the N-terminal regions of the collagen-like hybrid peptides. The purity and molecular weight of the collagen-like hybrid peptides were analyzed using analytical high-performance liquid chromatography (HPLC) and matrix-assisted laser desorption ionization time of flight (MALDI-TOF), respectively. The stability of AP6 and AP8 triple helices was analyzed by circular dichroism (CD) spectroscopy. The small organic molecule 4, 4'-methylene bis(phenyl isocyanate) promoted the unfolding of (POG)6 and increased the melting temperature (Tm) of (POG)8 from 37.7 to 58.8 ℃to form a triple helix. The hydrodynamic radii of collagen-like hybrid peptides were measured by dynamic light scattering (DLS). Atomic force microscopy (AFM) and transmission electron microscopy (TEM) were used to analyze the morphology of the aggregation states. AFM results showed that the collagen-like hybrid peptides, AP6 and AP8, formed nanofibers spontaneously. Consistent with the AFM results, TEM showed that the AP6 and AP8 collagen-like hybrid peptides also formed nanofiber structures. The formation of stable complexes was attributed to the presence of multiple weak interactions such as hydrogen bonding, π-π stacking, and hydrophobic interactions. In the present study, we demonstrated that the chemical modification of collagen-like polypeptides at the N-terminus via the small organic molecule, 4, 4'-methylene bis(phenyl isocyanate), promoted the intramolecular and intermolecular assembly of collagen-like peptides. A simple and effective strategy has been developed in this study to promote the self-assembly of collagen-like peptides.
  • 加载中
    1. [1]

      Whitesides, G. M.; Mathias, J. P.; Seto, C. T. Science 1991, 254 (5036), 1312. doi: 10.1126/science.1962191  doi: 10.1126/science.1962191

    2. [2]

      Whitesides, G. M.; Grzybowski, B. Science 2002, 295 (5564), 2418. doi: 10.1126/science.1070821  doi: 10.1126/science.1070821

    3. [3]

      Seeman, N. C.; Fan, C.; Wang, S.; Schanze, K.; Fernandez, L. ACS Appl. Mater. Interfaces 2019, 11 (15), 13833. doi: 10.1021/acsami.9b04482  doi: 10.1021/acsami.9b04482

    4. [4]

      Baker, E. G.; Bartlett, G. J.; Porter Goff, K. L.; Woolfson, D. N. Acc. Chem. Res. 2017, 50 (9), 2085. doi: 10.1021/acs.accounts.7b00186  doi: 10.1021/acs.accounts.7b00186

    5. [5]

      Xing, R. R.; Zou, Q. L.; Yan, X. H. Acta Phys. -Chim. Sin. 2020, 36 (10), 1909048.  doi: 10.3866/PKU.WHXB201909048

    6. [6]

      Xu, X. J.; Xiao, X. Q.; Xu, S. H.; Liu, H. L. Acta Phys. -Chim. Sin. 2019, 35 (6), 598.  doi: 10.3866/PKU.WHXB201806034

    7. [7]

      Du, C. B.; Han, B. X. Acta Phys. -Chim. Sin. 2019, 35 (10), 1045.  doi: 10.3866/PKU.WHXB201905058

    8. [8]

      Yuan, C.; Ji, W.; Xing, R.; Li, J.; Gazit, E.; Yan, X. Nat. Rev. Chem. 2019, 3 (10), 567. doi: 10.1038/s41570-019-0129-8  doi: 10.1038/s41570-019-0129-8

    9. [9]

      Bai, Y.; Luo, Q.; Liu, J. Chem. Soc. Rev. 2016, 45 (10), 2756. doi: 10.1039/c6cs00004  doi: 10.1039/c6cs00004

    10. [10]

      Gelse, K.; Pöschl, E.; Aigner, T. Adv. Drug Deliv. Rev. 2003, 55 (12), 1531. doi: 10.1016/j.addr.2003.08.002  doi: 10.1016/j.addr.2003.08.002

    11. [11]

      Shoulders, M. D.; Raines, R. T. Annu. Rev. Biochem. 2009, 78 (1), 929. doi: 10.1146/annurev.biochem.77.032207.120833  doi: 10.1146/annurev.biochem.77.032207.120833

    12. [12]

      Kotch, F. W.; Raines, R. T. Proc. Natl. Acad. Sci. U. S. A. 2006, 103 (9), 3028. doi: 10.1073/pnas.0508783103  doi: 10.1073/pnas.0508783103

    13. [13]

      O'Leary, L. E.; Fallas, J. A.; Bakota, E. L.; Kang, M. K.; Hartgerink, J. D. Nat. Chem. 2011, 3 (10), 821. doi: 10.1038/nchem.1123  doi: 10.1038/nchem.1123

    14. [14]

      Tanrikulu, I. C.; Forticaux, A.; Jin, S.; Raines, R. T. Nat. Chem. 2016, 8 (11), 1008. doi: 10.1038/nchem.2556  doi: 10.1038/nchem.2556

    15. [15]

      Cejas, M. A.; Kinney, W. A.; Chen, C.; Vinter, J. G.; Almond, H. R. Jr.; Balss, K. M.; Maryanoff, C. A.; Schmidt, U.; Breslav, M.; Mahan, A.; et al. Proc. Natl. Acad. Sci. U. S. A. 2008, 105 (25), 8513. doi: 10.1073/pnas.080029110  doi: 10.1073/pnas.080029110

    16. [16]

      Cejas, M. A.; Kinney, W. A.; Chen, C.; Leo, G. C.; Tounge, B. A.; Vinter, J. G.; Joshi, P. P.; Maryanoff, B. E. J. Am. Chem. Soc. 2007, 129 (8), 2202. doi: 10.1021/ja066986f  doi: 10.1021/ja066986f

    17. [17]

      Przybyla, D. E.; Chmielewski, J. J. Am. Chem. Soc. 2008, 130 (38), 12610. doi: 10.1021/ja804942w  doi: 10.1021/ja804942w

    18. [18]

      Przybyla, D.; Rubert Pérez, C. M.; Gleaton, J.; Nandwana, V.; Chmielewski. J. J. Am. Chem. Soc. 2013, 135 (9), 3418. doi: 10.1021/ja307651e  doi: 10.1021/ja307651e

    19. [19]

      Pires, M. M.; Chmielewski, J. J. Am. Chem. Soc. 2009, 131 (7), 2706. doi: 10.1021/ja8088845  doi: 10.1021/ja8088845

    20. [20]

      He, M.; Wang, L.; Wu, J; Xiao, J. Chem. -Eur. J. 2016, 22 (6), 1914. doi: 10.1002/chem.20150437  doi: 10.1002/chem.20150437

    21. [21]

      Holmgren, S. K.; Bretscher, L. E.; Taylor, K. M.; Raines, R. T. Chem. Biol. 1999, 6 (2), 63. doi: 10.1016/S1074-5521(99)80003-9  doi: 10.1016/S1074-5521(99)80003-9

    22. [22]

      Feng, Y.; Melacini, G.; Goodman, M. Biochemistry 1997, 36 (29), 8716. doi: 10.1021/bi962980z  doi: 10.1021/bi962980z

    23. [23]

      Luo, J.; Tong, Y. W. ACS Nano 2011, 5 (10), 7739. doi: 10.1021/nn202822f  doi: 10.1021/nn202822f

    24. [24]

      Persikov, A. V.; Ramshaw, J. A.; Brodsky, B. J. Biol. Chem. 2005, 280 (19), 19343. doi: 10.1074/jbc.M501657200  doi: 10.1074/jbc.M501657200

    25. [25]

      Bai, W.; Jiang, Z.; Ribbe, A. E.; Thayumanavan, S. Angew. Chem. Int. Edit. 2016, 55 (36), 10707. doi: 10.1002/anie.201605050  doi: 10.1002/anie.201605050

    26. [26]

      Liang, J.; Lai, D. Y.; Wu, W. L.; Li, G. Z.; Li, J. B.; Fang, C. L. Acta Phys. -Chim. Sin. 2015, 31 (4), 722.  doi: 10.3866/PKU.WHXB20150303

    27. [27]

      Lee, E. S.; Gao, Z.; Kim, D.; Park, K.; Kwon, I. C.; Bae, Y. H. J. Control. Release 2008, 129 (3), 228. doi: 10.1016/j.jconrel.2008.04.024  doi: 10.1016/j.jconrel.2008.04.024

    28. [28]

      Xu, X. D.; Lin, B. B.; Feng, J.; Wang, Y.; Cheng, S. X.; Zhang, X. Z.; Zhuo, R. X. Macromol. Rapid Commun. 2012, 33 (5), 426. doi: 10.1002/marc.201100689  doi: 10.1002/marc.201100689

    29. [29]

      Wiranharma, N.; Tong, Y. W.; Yang, Y. Y. Biomaterials 2009, 30 (17), 3100. doi: 10.1016/j.biomaterials.2009.03.006  doi: 10.1016/j.biomaterials.2009.03.006

    30. [30]

      Kubo, T.; Morikawa, M.; Ohba, H.; Fujii, M. Org. Lett. 2003, 5 (15), 2623. doi: 10.1021/ol034721p  doi: 10.1021/ol034721p

    31. [31]

      Brown, F. R.; Di Corato, A.; Lorenzi, G. P.; Blout, E. R. J. Mol. Biol. 1972, 63 (1), 85. doi: 10.1016/0022-2836(72)90523-2  doi: 10.1016/0022-2836(72)90523-2

    32. [32]

      Sakakibara, S.; Kishida, Y.; Okuyama, K.; Tanaka, N.; Ashida, T.; Kakudo, M. J. Mol. Biol. 1972, 65 (2), 371. doi: 10.1016/0022-2836(72)90288-4  doi: 10.1016/0022-2836(72)90288-4

    33. [33]

      Kar, K.; Amin, P.; Bryan, M. A.; Persikov, A. V.; Mohs, A.; Wang, Y. H.; Brodsky, B. J. Biol. Chem. 2006, 281 (44), 33283. doi: 10.1074/jbc.M605747200  doi: 10.1074/jbc.M605747200

    34. [34]

      Parmar, A. S.; James, J. K.; Grisham, D. R.; Pike, D. H.; Nanda, V. J. Am. Chem. Soc. 2016, 138 (13), 4362. doi: 10.1021/jacs.5b10304  doi: 10.1021/jacs.5b10304

  • 加载中
    1. [1]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    2. [2]

      Zunyuan Xie Lijin Yang Zixiao Wan Xiaoyu Liu Yushan He . Exploration of the Preparation and Characterization of Nano Barium Titanate and Its Application in Inorganic Chemistry Laboratory Teaching. University Chemistry, 2024, 39(4): 62-69. doi: 10.3866/PKU.DXHX202310137

    3. [3]

      Juan Yuan Bin Zhang Jinping Wu Mengfan Wang . Design of a Comprehensive Experiment on Preparation and Characterization of Cu2(Salen)2 Nanomaterials with Two Distinct Morphologies. University Chemistry, 2024, 39(10): 420-425. doi: 10.3866/PKU.DXHX202402014

    4. [4]

      Simin Fang Wei Huang Guanghua Yu Cong Wei Mingli Gao Guangshui Li Hongjun Tian Wan Li . Integrating Science and Education in a Comprehensive Chemistry Design Experiment: The Preparation of Copper(I) Oxide Nanoparticles and Its Application in Dye Water Remediation. University Chemistry, 2024, 39(8): 282-289. doi: 10.3866/PKU.DXHX202401023

    5. [5]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    6. [6]

      Ruoxi Sun Yiqian Xu Shaoru Rong Chunmiao Han Hui Xu . The Enchanting Collision of Light and Time Magic: Exploring the Footprints of Long Afterglow Lifetime. University Chemistry, 2024, 39(5): 90-97. doi: 10.3866/PKU.DXHX202310001

    7. [7]

      Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020

    8. [8]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    9. [9]

      Xiaofei NIUKe WANGFengyan SONGShuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057

    10. [10]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    11. [11]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    12. [12]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    13. [13]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    14. [14]

      Haiyuan Wang Yiming Tang Haoran Guo Guohui Chen Yajing Sun Chao Zhao Zhen Zhang . Comprehensive Chemistry Experimental Teaching Design Based on the Integration of Science and Education: Preparation and Catalytic Properties of Silver Nanomaterials. University Chemistry, 2024, 39(10): 219-228. doi: 10.12461/PKU.DXHX202404067

    15. [15]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    16. [16]

      Min LIXianfeng MENG . Preparation and microwave absorption properties of ZIF-67 derived Co@C/MoS2 nanocomposites. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1932-1942. doi: 10.11862/CJIC.20240065

    17. [17]

      Yinyin Qian Rui Xu . Utilizing VESTA Software in the Context of Material Chemistry: Analyzing Twin Crystal Nanostructures in Indium Antimonide. University Chemistry, 2024, 39(3): 103-107. doi: 10.3866/PKU.DXHX202307051

    18. [18]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    19. [19]

      Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023

    20. [20]

      Jinghua Wang Yanxin Yu Yanbiao Ren Yesheng Wang . Integration of Science and Education: Investigation of Tributyl Citrate Synthesis under the Promotion of Hydrate Molten Salts for Research and Innovation Training. University Chemistry, 2024, 39(11): 232-240. doi: 10.3866/PKU.DXHX202402057

Metrics
  • PDF Downloads(9)
  • Abstract views(241)
  • HTML views(26)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return