Citation: Li Lin, Shen Shuiyun, Wei Guanghua, Zhang Junliang. Electrocatalytic Activity of Hemin-Derived Hollow Non-Precious Metal Catalyst for Oxygen Reduction Reaction[J]. Acta Physico-Chimica Sinica, ;2021, 37(3): 191101. doi: 10.3866/PKU.WHXB201911011 shu

Electrocatalytic Activity of Hemin-Derived Hollow Non-Precious Metal Catalyst for Oxygen Reduction Reaction

  • Corresponding author: Zhang Junliang, junliang.zhang@sjtu.edu.cn
  • Received Date: 6 November 2019
    Revised Date: 25 November 2019
    Accepted Date: 25 November 2019
    Available Online: 29 November 2019

    Fund Project: the National Key Research and Development Program of China 2016YFB0101200the National Natural Science Foundation of China 21533005The project was supported by the National Natural Science Foundation of China (21533005) and the National Key Research and Development Program of China (2016YFB0101200)

  • In recent years, increasing efforts have been undertaken to develop non-precious metal (NPM) catalysts with both high activity and stability toward the oxygen reduction reaction (ORR), since they are much less expensive than commercially available Pt-based electrocatalysts. Transition metal macrocyclic compounds contain transition metal, nitrogen, and carbon species, hence becoming promising precursors for the synthesis of NPM catalysts. Hemin, a natural transition-metal-based macrocyclic compound, is widely applied to the synthesis of NPM electrocatalysts. However, the ORR activity of hemin-derived electrocatalysts must be improved considerably as compared with that of state-of-the-art NPM electrocatalysts. Morphology control is an efficient method to increase the exposure of active sites, thus enhancing the ORR activity. Here, we fabricated a hollow NPM electrocatalyst (hemin hollow derivative, Hemin-HD) using hemin as the precursor and NaCl as the template. First, hemin and NaCl were dispersed and mixed in solution. With an increase in the temperature, the solution was vapored and NaCl began to crystallize. Hemin wrapped the outer surface of NaCl because of the ionic interaction between these two compounds. The as-obtained powders were collected and carbonized at high temperature under a nitrogen atmosphere. Then, the NaCl template was removed by washing, and the hollow material Hemin-HD was obtained. Physicochemical characterization by transmission electron microscopy (TEM), X-ray diffraction (XRD), surface area measurements and X-ray photoelectron spectroscopy (XPS) confirmed that the surface area and pore volume of the as-obtained Hemin-HD electrocatalyst increased by a factor of 6.5 and 3.8, respectively, relative to those of the Hemin-D (hemin derivative) sample without the NaCl template. Owing to the hollow structure and increased surface area, the Fe and N content on the Hemin-HD surface were higher than those on the Hemin-D surface. Consequently, Hemin-HD showed better ORR activity in alkali solution than Hemin-D did, this was confirmed by the fact that the half-wave potential of Hemin-HD was greater than that of Hemin-D by 20 mV, and faster kinetics were observed for the former, as calculated by the Tafel slope. The performance of Hemin-HD was comparable to that of commercial Pt/C catalysts for the ORR in alkali solution. It is believed that the hollow structure allows the dispersion of active sites on both the inner and outer surfaces, thus facilitating the exposure of a great number of active sites. Besides, the pore structure of the electrocatalyst is expected to boost mass transfer and improve the contact between the active sites and reactants, thus enhancing the ORR activity.
  • 加载中
    1. [1]

      Gasteiger, H. A.; Yan, S. G. J. Power Sources 2004, 127 (1–2), 162. doi: 10.1016/j.jpowsour.2003.09.013  doi: 10.1016/j.jpowsour.2003.09.013

    2. [2]

      Chen, C.; Zhang, X.; Zhou, Z.; Zhang, X.; Sun, S. Acta Phys. -Chim. Sin. 2017, 33 (9), 1875.  doi: 10.3866/PKU.WHXB201705088

    3. [3]

      Ding, W.; Li, L.; Xiong, K.; Wang, Y.; Li, W.; Nie, Y.; Chen, S.; Qi, X.; Wei, Z. J. Am. Chem. Soc. 2015, 137 (16), 5414. doi: 10.1021/jacs.5b00292  doi: 10.1021/jacs.5b00292

    4. [4]

      Wang, Q.; Liu, D.; He, X. Acta Phys. -Chim. Sin. 2019, 35 (7), 740.  doi: 10.3866/PKU.WHXB201809003

    5. [5]

      Jasinski, R. Nature 1964, 201, 1212. doi: 10.1038/2011212a0  doi: 10.1038/2011212a0

    6. [6]

      Lalande, G.; Côté, R.; Tamizhmani, G.; Guay, D.; Dodelet, J. P.; Dignard-Bailey, L.; Weng, L. T.; Bertrand, P. Electrochim. Acta 1995, 40 (16), 2635. doi: 10.1016/0013-4686(95)00104-M  doi: 10.1016/0013-4686(95)00104-M

    7. [7]

      Charreteur, F.; Jaouen, F.; Dodelet, J. P. Electrochim. Acta 2009, 54 (26), 6622. doi: 10.1016/j.electacta.2009.06.058  doi: 10.1016/j.electacta.2009.06.058

    8. [8]

      Jaouen, F.; Herranz, J.; Lefevre, M.; Dodelet, J. P.; Kramm, U. I.; Herrmann, I.; Bogdanoff, P.; Maruyama, J.; Nagaoka, T.; Garsuch, A.; et al. ACS Appl. Mater. Interfaces 2009, 1 (8), 1623. doi: 10.1021/am900219g  doi: 10.1021/am900219g

    9. [9]

      Huang, H. C.; Shown, I.; Chang, S. T.; Hsu, H. C.; Du, H. Y.; Kuo, M. C.; Wong, K. T.; Wang, S. F.; Wang, C. H.; Chen, L. C.; et al. Adv. Funct. Mater. 2012, 22 (16), 3500. doi: 10.1002/adfm.201200264  doi: 10.1002/adfm.201200264

    10. [10]

      Pylypenko, S.; Mukherjee, S.; Olson, T. S.; Atanassov, P. Electrochim. Acta 2008, 53 (27), 7875. doi: 10.1016/j.electacta.2008.05.047  doi: 10.1016/j.electacta.2008.05.047

    11. [11]

      He, Q. G.; Yang, X. F.; Ren, X. M.; Koel, B. E.; Ramaswamy, N.; Mukerjee, S.; Kostecki, R. J. Power Sources 2011, 196 (18), 7404. doi: 10.1016/j.jpowsour.2011.04.016  doi: 10.1016/j.jpowsour.2011.04.016

    12. [12]

      Yang, Q.; Gao, G.; Wang, X. Acta Phys. -Chim. Sin. 2000, 16 (8), 741.  doi: 10.3866/PKU.WHXB20000813

    13. [13]

      Mo, Z.; Zheng, R.; Peng, H.; Liang, H.; Liao, S. J. Power Sources 2014, 245, 801. doi: 10.1016/j.jpowsour.2013.07.038  doi: 10.1016/j.jpowsour.2013.07.038

    14. [14]

      Jiang, R.; Tran, D. T.; McClure, J.; Chu, D. Electrochem. Commun. 2012, 19, 73. doi: 10.1016/j.elecom.2012.03.013  doi: 10.1016/j.elecom.2012.03.013

    15. [15]

      Xi, P. B.; Liang, Z. X.; Liao, S. J. Int. J. Hydrogen Energy 2012, 37 (5), 4606. doi: 10.1016/j.ijhydene.2011.05.102  doi: 10.1016/j.ijhydene.2011.05.102

    16. [16]

      Jiang, R.; Chu, D. J. Power Sources 2014, 245, 352. doi: 10.1016/j.jpowsour.2013.06.123  doi: 10.1016/j.jpowsour.2013.06.123

    17. [17]

      Jiang, R.; Tran, D. T.; McClure, J. P.; Chu, D. Electrochim. Acta 2012, 75, 185. doi: 10.1016/j.electacta.2012.04.098  doi: 10.1016/j.electacta.2012.04.098

    18. [18]

      Xie, Y.; Tang, C.; Hao, Z.; Lv, Y.; Yang, R.; Wei, X.; Deng, W.; Wang, A.; Yi, B.; Song, Y. Faraday Discuss. 2014, 176, 393. doi: 10.1039/c4fd00121d  doi: 10.1039/c4fd00121d

    19. [19]

      Wang, J. Wei, Z. D. Acta Phys. -Chim. Sin. 2017, 33 (5), 886.  doi: 10.3866/PKU.WHXB201702092

    20. [20]

      Zhai, X., Ding, Y. Acta Phys. -Chim. Sin. 2017, 33 (7), 1366.  doi: 10.3866/PKU.WHXB201704173

    21. [21]

      Silva, R.; Voiry, D.; Chhowalla, M.; Asefa, T. J. Am. Chem. Soc. 2013, 135 (21), 7823. doi: 10.1021/ja402450a  doi: 10.1021/ja402450a

    22. [22]

      Yuan, X.; Li, L.; Ma, Z.; Yu, X.; Wen, X.; Ma, Z. F.; Zhang, L.; Wilkinson, D. P.; Zhang, J. Sci. Rep. 2016, 6, 20005. doi: 10.1038/srep20005  doi: 10.1038/srep20005

    23. [23]

      Wu, J.; Jin, C.; Yang, Z.; Tian, J.; Yang, R. Carbon 2015, 82, 562. doi: 10.1016/j.carbon.2014.11.008  doi: 10.1016/j.carbon.2014.11.008

    24. [24]

      Yan, J.; Meng, H.; Xie, F.; Yuan, X.; Yu, W.; Lin, W.; Ouyang, W.; Yuan, D. J. Power Sources 2014, 245, 772. doi: 10.1016/j.jpowsour.2013.07.003  doi: 10.1016/j.jpowsour.2013.07.003

    25. [25]

      Cheon, J. Y.; Kim, T.; Choi, Y.; Jeong, H. Y.; Kim, M. G.; Sa, Y. J.; Kim, J.; Lee, Z.; Yang, T. H.; Kwon, K.; et al. Sci. Rep. 2013, 3, 2715. doi: 10.1038/srep02715  doi: 10.1038/srep02715

    26. [26]

      Tan, Y.; Xu, C.; Chen, G.; Fang, X.; Zheng, N.; Xie, Q. Adv. Funct. Mater. 2012, 22 (21), 4584. doi: 10.1002/adfm.201201244  doi: 10.1002/adfm.201201244

    27. [27]

      Zheng, X.; Cao, X.; Li, X.; Tian, J.; Jin, C.; Yang, R. Nanoscale 2017, 9 (3), 1059. doi: 10.1039/c6nr07380h  doi: 10.1039/c6nr07380h

    28. [28]

      Xu, Z.; Zhuang, X.; Yang, C.; Cao, J.; Yao, Z.; Tang, Y.; Jiang, J.; Wu, D.; Feng, X. Adv. Mater. 2016, 28 (10), 1981. doi: 10.1002/adma.201505131  doi: 10.1002/adma.201505131

    29. [29]

      Liang, H. W.; Zhuang, X.; Bruller, S.; Feng, X.; Mullen, K. Nat. Commun. 2014, 5, 4973. doi: 10.1038/ncomms5973  doi: 10.1038/ncomms5973

    30. [30]

      Yang, J.; Liu, D. J.; Kariuki, N. N.; Chen, L. X. Chem. Commun. 2008, No. 3, 329. doi: 10.1039/b713096a  doi: 10.1039/b713096a

    31. [31]

      Malko, D.; Kucernak, A.; Lopes, T. J. Am. Chem. Soc. 2016, 138 (49), 16056. doi: 10.1021/jacs.6b09622  doi: 10.1021/jacs.6b09622

    32. [32]

      Li, L.; Shen, S.; Wei, G.; Li, X.; Yang, K.; Feng, Q.; Zhang, J. ACS Appl. Mater. Interfaces 2019, 11 (15), 14126. doi: 10.1021/acsami.8b22494  doi: 10.1021/acsami.8b22494

    33. [33]

      Zhou, Y.; Cheng, Q.; Huang, Q.; Zou, Z.; Yan, L.; Yang, H. Acta Phys. -Chim. Sin. 2017, 33 (7), 1429.  doi: 10.3866/PKU.WHXB201704131

    34. [34]

      Lin, L.; Zhu, Q.; Xu, A. W. J. Am. Chem. Soc. 2014, 136 (31), 11027. doi: 10.1021/ja504696r  doi: 10.1021/ja504696r

    35. [35]

      Li, L.; Yuan, X.; Ma, Z.; Ma, Z. F. J. Electrochem. Soc. 2015, 162 (4), F359. doi: 10.1149/2.0081504jes  doi: 10.1149/2.0081504jes

  • 加载中
    1. [1]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    2. [2]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    3. [3]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    4. [4]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    5. [5]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    6. [6]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    7. [7]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    8. [8]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

    9. [9]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    10. [10]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    11. [11]

      Tong Zhou Jun Li Zitian Wen Yitian Chen Hailing Li Zhonghong Gao Wenyun Wang Fang Liu Qing Feng Zhen Li Jinyi Yang Min Liu Wei Qi . Experiment Improvement of “Redox Reaction and Electrode Potential” Based on the New Medical Concept. University Chemistry, 2024, 39(8): 276-281. doi: 10.3866/PKU.DXHX202401005

    12. [12]

      Ji-Quan Liu Huilin Guo Ying Yang Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031

    13. [13]

      Rong Tian Yadi Yang Naihao Lu . Comprehensive Experimental Design of Undergraduate Students Based on Interdisciplinarity: Study on the Effect of Quercetin on Chlorination Activity of Myeloperoxidase. University Chemistry, 2024, 39(8): 247-254. doi: 10.3866/PKU.DXHX202312064

    14. [14]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    15. [15]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    16. [16]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    17. [17]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    18. [18]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    19. [19]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    20. [20]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

Metrics
  • PDF Downloads(13)
  • Abstract views(839)
  • HTML views(147)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return