Citation: Li Lin, Shen Shuiyun, Wei Guanghua, Zhang Junliang. Electrocatalytic Activity of Hemin-Derived Hollow Non-Precious Metal Catalyst for Oxygen Reduction Reaction[J]. Acta Physico-Chimica Sinica, ;2021, 37(3): 191101. doi: 10.3866/PKU.WHXB201911011 shu

Electrocatalytic Activity of Hemin-Derived Hollow Non-Precious Metal Catalyst for Oxygen Reduction Reaction

  • Corresponding author: Zhang Junliang, junliang.zhang@sjtu.edu.cn
  • Received Date: 6 November 2019
    Revised Date: 25 November 2019
    Accepted Date: 25 November 2019
    Available Online: 29 November 2019

    Fund Project: the National Key Research and Development Program of China 2016YFB0101200the National Natural Science Foundation of China 21533005The project was supported by the National Natural Science Foundation of China (21533005) and the National Key Research and Development Program of China (2016YFB0101200)

  • In recent years, increasing efforts have been undertaken to develop non-precious metal (NPM) catalysts with both high activity and stability toward the oxygen reduction reaction (ORR), since they are much less expensive than commercially available Pt-based electrocatalysts. Transition metal macrocyclic compounds contain transition metal, nitrogen, and carbon species, hence becoming promising precursors for the synthesis of NPM catalysts. Hemin, a natural transition-metal-based macrocyclic compound, is widely applied to the synthesis of NPM electrocatalysts. However, the ORR activity of hemin-derived electrocatalysts must be improved considerably as compared with that of state-of-the-art NPM electrocatalysts. Morphology control is an efficient method to increase the exposure of active sites, thus enhancing the ORR activity. Here, we fabricated a hollow NPM electrocatalyst (hemin hollow derivative, Hemin-HD) using hemin as the precursor and NaCl as the template. First, hemin and NaCl were dispersed and mixed in solution. With an increase in the temperature, the solution was vapored and NaCl began to crystallize. Hemin wrapped the outer surface of NaCl because of the ionic interaction between these two compounds. The as-obtained powders were collected and carbonized at high temperature under a nitrogen atmosphere. Then, the NaCl template was removed by washing, and the hollow material Hemin-HD was obtained. Physicochemical characterization by transmission electron microscopy (TEM), X-ray diffraction (XRD), surface area measurements and X-ray photoelectron spectroscopy (XPS) confirmed that the surface area and pore volume of the as-obtained Hemin-HD electrocatalyst increased by a factor of 6.5 and 3.8, respectively, relative to those of the Hemin-D (hemin derivative) sample without the NaCl template. Owing to the hollow structure and increased surface area, the Fe and N content on the Hemin-HD surface were higher than those on the Hemin-D surface. Consequently, Hemin-HD showed better ORR activity in alkali solution than Hemin-D did, this was confirmed by the fact that the half-wave potential of Hemin-HD was greater than that of Hemin-D by 20 mV, and faster kinetics were observed for the former, as calculated by the Tafel slope. The performance of Hemin-HD was comparable to that of commercial Pt/C catalysts for the ORR in alkali solution. It is believed that the hollow structure allows the dispersion of active sites on both the inner and outer surfaces, thus facilitating the exposure of a great number of active sites. Besides, the pore structure of the electrocatalyst is expected to boost mass transfer and improve the contact between the active sites and reactants, thus enhancing the ORR activity.
  • 加载中
    1. [1]

      Gasteiger, H. A.; Yan, S. G. J. Power Sources 2004, 127 (1–2), 162. doi: 10.1016/j.jpowsour.2003.09.013  doi: 10.1016/j.jpowsour.2003.09.013

    2. [2]

      Chen, C.; Zhang, X.; Zhou, Z.; Zhang, X.; Sun, S. Acta Phys. -Chim. Sin. 2017, 33 (9), 1875.  doi: 10.3866/PKU.WHXB201705088

    3. [3]

      Ding, W.; Li, L.; Xiong, K.; Wang, Y.; Li, W.; Nie, Y.; Chen, S.; Qi, X.; Wei, Z. J. Am. Chem. Soc. 2015, 137 (16), 5414. doi: 10.1021/jacs.5b00292  doi: 10.1021/jacs.5b00292

    4. [4]

      Wang, Q.; Liu, D.; He, X. Acta Phys. -Chim. Sin. 2019, 35 (7), 740.  doi: 10.3866/PKU.WHXB201809003

    5. [5]

      Jasinski, R. Nature 1964, 201, 1212. doi: 10.1038/2011212a0  doi: 10.1038/2011212a0

    6. [6]

      Lalande, G.; Côté, R.; Tamizhmani, G.; Guay, D.; Dodelet, J. P.; Dignard-Bailey, L.; Weng, L. T.; Bertrand, P. Electrochim. Acta 1995, 40 (16), 2635. doi: 10.1016/0013-4686(95)00104-M  doi: 10.1016/0013-4686(95)00104-M

    7. [7]

      Charreteur, F.; Jaouen, F.; Dodelet, J. P. Electrochim. Acta 2009, 54 (26), 6622. doi: 10.1016/j.electacta.2009.06.058  doi: 10.1016/j.electacta.2009.06.058

    8. [8]

      Jaouen, F.; Herranz, J.; Lefevre, M.; Dodelet, J. P.; Kramm, U. I.; Herrmann, I.; Bogdanoff, P.; Maruyama, J.; Nagaoka, T.; Garsuch, A.; et al. ACS Appl. Mater. Interfaces 2009, 1 (8), 1623. doi: 10.1021/am900219g  doi: 10.1021/am900219g

    9. [9]

      Huang, H. C.; Shown, I.; Chang, S. T.; Hsu, H. C.; Du, H. Y.; Kuo, M. C.; Wong, K. T.; Wang, S. F.; Wang, C. H.; Chen, L. C.; et al. Adv. Funct. Mater. 2012, 22 (16), 3500. doi: 10.1002/adfm.201200264  doi: 10.1002/adfm.201200264

    10. [10]

      Pylypenko, S.; Mukherjee, S.; Olson, T. S.; Atanassov, P. Electrochim. Acta 2008, 53 (27), 7875. doi: 10.1016/j.electacta.2008.05.047  doi: 10.1016/j.electacta.2008.05.047

    11. [11]

      He, Q. G.; Yang, X. F.; Ren, X. M.; Koel, B. E.; Ramaswamy, N.; Mukerjee, S.; Kostecki, R. J. Power Sources 2011, 196 (18), 7404. doi: 10.1016/j.jpowsour.2011.04.016  doi: 10.1016/j.jpowsour.2011.04.016

    12. [12]

      Yang, Q.; Gao, G.; Wang, X. Acta Phys. -Chim. Sin. 2000, 16 (8), 741.  doi: 10.3866/PKU.WHXB20000813

    13. [13]

      Mo, Z.; Zheng, R.; Peng, H.; Liang, H.; Liao, S. J. Power Sources 2014, 245, 801. doi: 10.1016/j.jpowsour.2013.07.038  doi: 10.1016/j.jpowsour.2013.07.038

    14. [14]

      Jiang, R.; Tran, D. T.; McClure, J.; Chu, D. Electrochem. Commun. 2012, 19, 73. doi: 10.1016/j.elecom.2012.03.013  doi: 10.1016/j.elecom.2012.03.013

    15. [15]

      Xi, P. B.; Liang, Z. X.; Liao, S. J. Int. J. Hydrogen Energy 2012, 37 (5), 4606. doi: 10.1016/j.ijhydene.2011.05.102  doi: 10.1016/j.ijhydene.2011.05.102

    16. [16]

      Jiang, R.; Chu, D. J. Power Sources 2014, 245, 352. doi: 10.1016/j.jpowsour.2013.06.123  doi: 10.1016/j.jpowsour.2013.06.123

    17. [17]

      Jiang, R.; Tran, D. T.; McClure, J. P.; Chu, D. Electrochim. Acta 2012, 75, 185. doi: 10.1016/j.electacta.2012.04.098  doi: 10.1016/j.electacta.2012.04.098

    18. [18]

      Xie, Y.; Tang, C.; Hao, Z.; Lv, Y.; Yang, R.; Wei, X.; Deng, W.; Wang, A.; Yi, B.; Song, Y. Faraday Discuss. 2014, 176, 393. doi: 10.1039/c4fd00121d  doi: 10.1039/c4fd00121d

    19. [19]

      Wang, J. Wei, Z. D. Acta Phys. -Chim. Sin. 2017, 33 (5), 886.  doi: 10.3866/PKU.WHXB201702092

    20. [20]

      Zhai, X., Ding, Y. Acta Phys. -Chim. Sin. 2017, 33 (7), 1366.  doi: 10.3866/PKU.WHXB201704173

    21. [21]

      Silva, R.; Voiry, D.; Chhowalla, M.; Asefa, T. J. Am. Chem. Soc. 2013, 135 (21), 7823. doi: 10.1021/ja402450a  doi: 10.1021/ja402450a

    22. [22]

      Yuan, X.; Li, L.; Ma, Z.; Yu, X.; Wen, X.; Ma, Z. F.; Zhang, L.; Wilkinson, D. P.; Zhang, J. Sci. Rep. 2016, 6, 20005. doi: 10.1038/srep20005  doi: 10.1038/srep20005

    23. [23]

      Wu, J.; Jin, C.; Yang, Z.; Tian, J.; Yang, R. Carbon 2015, 82, 562. doi: 10.1016/j.carbon.2014.11.008  doi: 10.1016/j.carbon.2014.11.008

    24. [24]

      Yan, J.; Meng, H.; Xie, F.; Yuan, X.; Yu, W.; Lin, W.; Ouyang, W.; Yuan, D. J. Power Sources 2014, 245, 772. doi: 10.1016/j.jpowsour.2013.07.003  doi: 10.1016/j.jpowsour.2013.07.003

    25. [25]

      Cheon, J. Y.; Kim, T.; Choi, Y.; Jeong, H. Y.; Kim, M. G.; Sa, Y. J.; Kim, J.; Lee, Z.; Yang, T. H.; Kwon, K.; et al. Sci. Rep. 2013, 3, 2715. doi: 10.1038/srep02715  doi: 10.1038/srep02715

    26. [26]

      Tan, Y.; Xu, C.; Chen, G.; Fang, X.; Zheng, N.; Xie, Q. Adv. Funct. Mater. 2012, 22 (21), 4584. doi: 10.1002/adfm.201201244  doi: 10.1002/adfm.201201244

    27. [27]

      Zheng, X.; Cao, X.; Li, X.; Tian, J.; Jin, C.; Yang, R. Nanoscale 2017, 9 (3), 1059. doi: 10.1039/c6nr07380h  doi: 10.1039/c6nr07380h

    28. [28]

      Xu, Z.; Zhuang, X.; Yang, C.; Cao, J.; Yao, Z.; Tang, Y.; Jiang, J.; Wu, D.; Feng, X. Adv. Mater. 2016, 28 (10), 1981. doi: 10.1002/adma.201505131  doi: 10.1002/adma.201505131

    29. [29]

      Liang, H. W.; Zhuang, X.; Bruller, S.; Feng, X.; Mullen, K. Nat. Commun. 2014, 5, 4973. doi: 10.1038/ncomms5973  doi: 10.1038/ncomms5973

    30. [30]

      Yang, J.; Liu, D. J.; Kariuki, N. N.; Chen, L. X. Chem. Commun. 2008, No. 3, 329. doi: 10.1039/b713096a  doi: 10.1039/b713096a

    31. [31]

      Malko, D.; Kucernak, A.; Lopes, T. J. Am. Chem. Soc. 2016, 138 (49), 16056. doi: 10.1021/jacs.6b09622  doi: 10.1021/jacs.6b09622

    32. [32]

      Li, L.; Shen, S.; Wei, G.; Li, X.; Yang, K.; Feng, Q.; Zhang, J. ACS Appl. Mater. Interfaces 2019, 11 (15), 14126. doi: 10.1021/acsami.8b22494  doi: 10.1021/acsami.8b22494

    33. [33]

      Zhou, Y.; Cheng, Q.; Huang, Q.; Zou, Z.; Yan, L.; Yang, H. Acta Phys. -Chim. Sin. 2017, 33 (7), 1429.  doi: 10.3866/PKU.WHXB201704131

    34. [34]

      Lin, L.; Zhu, Q.; Xu, A. W. J. Am. Chem. Soc. 2014, 136 (31), 11027. doi: 10.1021/ja504696r  doi: 10.1021/ja504696r

    35. [35]

      Li, L.; Yuan, X.; Ma, Z.; Ma, Z. F. J. Electrochem. Soc. 2015, 162 (4), F359. doi: 10.1149/2.0081504jes  doi: 10.1149/2.0081504jes

  • 加载中
    1. [1]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    2. [2]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    3. [3]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    4. [4]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    5. [5]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    6. [6]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    7. [7]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    8. [8]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    9. [9]

      Yang WANGXiaoqin ZHENGYang LIUKai ZHANGJiahui KOULinbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165

    10. [10]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    11. [11]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

    12. [12]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    13. [13]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    14. [14]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    15. [15]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

    16. [16]

      Xue Dong Xiaofu Sun Shuaiqiang Jia Shitao Han Dawei Zhou Ting Yao Min Wang Minghui Fang Haihong Wu Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012

    17. [17]

      Yiping HUANGLiqin TANGYufan JICheng CHENShuangtao LIJingjing HUANGXuechao GAOXuehong GU . Hollow fiber NaA zeolite membrane for deep dehydration of ethanol solvent by vapor permeation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 225-234. doi: 10.11862/CJIC.20240224

    18. [18]

      Xin Han Zhihao Cheng Jinfeng Zhang Jie Liu Cheng Zhong Wenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 100033-. doi: 10.3866/PKU.WHXB202404023

    19. [19]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    20. [20]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

Metrics
  • PDF Downloads(13)
  • Abstract views(933)
  • HTML views(165)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return