Citation: Lyu Hanlin, Hu Bing, Liu Guoliang, Hong Xinlin, Zhuang Lin. Inverse Decoration of ZnO on Small-Sized Cu/Sio2 with Controllable Cu-ZnO Interaction for CO2 Hydrogenation to Produce Methanol[J]. Acta Physico-Chimica Sinica, ;2020, 36(11): 191100. doi: 10.3866/PKU.WHXB201911008 shu

Inverse Decoration of ZnO on Small-Sized Cu/Sio2 with Controllable Cu-ZnO Interaction for CO2 Hydrogenation to Produce Methanol

  • Corresponding author: Hong Xinlin, hongxl@whu.edu.cn Zhuang Lin, lzhuang@whu.edu.cn
  • Received Date: 4 November 2019
    Revised Date: 15 December 2019
    Available Online: 6 January 2020

    Fund Project: the National Natural Science Foundation of China 21872106the Fundamental Research Funds for the Central Universities, China 2042019kf0019This work is financially supported by the National Natural Science Foundation of China (21872106, 21603244) and the Fundamental Research Funds for the Central Universities, China (2042019kf0019)the National Natural Science Foundation of China 21603244

  • Cu-ZnO is broadly used as a catalyst in CO2 reduction to produce methanol, but fabricating small-sized Cu-ZnO catalysts with strong Cu-ZnO interactions remains a challenge. In this work, a simple, low-cost method is proposed to synthesize small-sized Cu-ZnO/SiO2 with high activity and controllable Cu-ZnO interactions derived from copper silicate nanotubes. A series of Cu-ZnO/SiO2 samples with different amounts of ZnO were prepared. The activities of the as-prepared catalysts for methanol synthesis were tested, and the results revealed a volcano relationship with the weight fraction of ZnO. At 523 K, the methanol selectivity increased from 20% to 67% when 14% ZnO was added to the Cu/SiO2 catalyst, while the conversion of CO2 increased first and then decreased with the addition of ZnO. The optimum space time yield (STY) of 244 g·kg-1·h-1 was obtained on C-SiO2-7%ZnO at 543 K under 4.5 MPa H2/CO2. Furthermore, the synergistic effect of Cu and ZnO was studied by high resolution transmission electron microscopy (HRTEM), powder X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), in situ diffuse-reflectance infrared Fourier transform spectroscopy (DRIFTS), and temperature-programmed reduction (TPR) analyses. The HRTEM images showed that the Cu particles come in contact with ZnO more frequently with increased addition of ZnO, indicating that the catalysts with higher ZnO contents have a greater probability of formation of the Cu-ZnO interface, which promotes the catalytical activity of Cu-ZnO/SiO2. Meanwhile, the HRTEM images, XRD patterns, and TPR results showed that the addition of excess ZnO leads to an increase in the size of the Cu particles, which in turn decreases the total number of active sites and further degrades the activity of the catalysts. The activation energy (Ea) for methanol synthesis and reverse water gas shift (RWGS) was calculated based on the results of the catalytical test. With the addition of ZnO, Ea for methanol synthesis decreased from 72.5 to 34.8 kJ·mol-1, while that for RWGS increased from 61.3 to 102.7 kJ·mol-1, illustrating that ZnO promotes the synergistic effect of Cu-ZnO. The results of XPS and in situ DRIFTS showed that the amount of Cu+ species decreases with the addition of ZnO, indicating that the Cu-ZnO interface serves as the active site. The Cu surface area and the turnover frequency (TOF) of methanol were calculated based on the H2-TPR curves. The TOF of methanol on the Cu-ZnO/SiO2 catalysts at 543 K increased from 1.5 × 10-3 to 3.9 × 10-3 s-1 with the addition of ZnO, which further confirmed the promotion effect of the Cu-ZnO interface on the methanol synthesis. This study provides a method to construct Cu-ZnO interfaces based on copper silicate and to investigate the influence of ZnO on Cu-ZnO/SiO2 catalysts.
  • 加载中
    1. [1]

      Centi, G.; Perathoner, S. Catal. Today 2009, 148, 191. doi: 10.1016/j.cattod.2009.07.075  doi: 10.1016/j.cattod.2009.07.075

    2. [2]

      Kaeding, W. W.; Butter, S. A. J. Catal. 1980, 61, 155. doi: 10.1016/0021-9517(80)90351-6  doi: 10.1016/0021-9517(80)90351-6

    3. [3]

      Olah, G. A. Angew. Chem. Int. Edit. 2005, 44, 2636. doi: 10.1002/anie.200462121  doi: 10.1002/anie.200462121

    4. [4]

      Olah, G. A.; Goeppert, A.; Prakash, G. K. S. J. Org. Chem. 2009, 74, 487. doi: 10.1021/jo801260f  doi: 10.1021/jo801260f

    5. [5]

      Liao, F.; Wu, X. P.; Zheng, J.; Li, M. M. J.; Kroner, A.; Zeng, Z.; Hong, X.; Yuan, Y.; Gong, X. Q.; Tsang, S. C. E. Green Chem. 2017, 19, 270. doi: 10.1039/c6gc02366e  doi: 10.1039/c6gc02366e

    6. [6]

      Yu, K. M. K.; Curcic, I.; Gabriel, J.; Tsang, S. C. E. ChemSusChem 2008, 1, 893. doi: 10.1002/cssc.200800169  doi: 10.1002/cssc.200800169

    7. [7]

      Hu, B.; Yin, Y.; Liu, G.; Chen, S.; Hong, X.; Tsang, S. C. E. J. Catal. 2018, 359, 17. doi: 10.1016/j.jcat.2017.12.029  doi: 10.1016/j.jcat.2017.12.029

    8. [8]

      Lee, J. S.; Lee, K. H.; Lee, S. Y.; Kim, Y. G. J. Catal. 1993, 144, 414. doi: 10.1006/jcat.1993.1342  doi: 10.1006/jcat.1993.1342

    9. [9]

      Klier, K. Adv. Catal. 1982, 243. doi: 10.1016/s0360-0564(08)60455-1  doi: 10.1016/s0360-0564(08)60455-1

    10. [10]

      Liu, X. M.; Lu, G. Q.; Yan, Z. F.; Beltramini, J. Ind. Eng. Chem. Res. 2003, 42, 6518. doi: 10.1021/ie020979s  doi: 10.1021/ie020979s

    11. [11]

      Tisseraud, C.; Comminges, C.; Belin, T.; Ahouari, H.; Soualah, A.; Pouilloux, Y.; Le Valant, A. J. Catal. 2015, 330, 533. doi: 10.1016/j.jcat.2015.04.035  doi: 10.1016/j.jcat.2015.04.035

    12. [12]

      Kattel, S.; Ramirez, P. J.; Chen, J. G.; Rodriguez, J. A.; Liu, P. Science 2017, 355, 1296. doi: 10.1126/science.aal3573  doi: 10.1126/science.aal3573

    13. [13]

      Lisiecki, I.; Pileni, M. P. J. Am. Chem. Soc. 1993, 115, 3887. doi: 10.1021/ja00063a006  doi: 10.1021/ja00063a006

    14. [14]

      Tang, X. F.; Yang, Z. G.; Wang, W. J. Colloid Surf. A-Physicochem. Eng. Asp. 2010, 360, 99. doi: 10.1016/j.colsurfa.2010.02.011  doi: 10.1016/j.colsurfa.2010.02.011

    15. [15]

      Yang, H.; Gao, P.; Zhang, C.; Zhong, L.; Li, X.; Wang, S.; Wang, H.; Wei, W.; Sun, Y. Catal. Commun. 2016, 84, 56. doi: 10.1016/j.catcom.2016.06.010  doi: 10.1016/j.catcom.2016.06.010

    16. [16]

      Hashmi, A. S. K.; Hutchings, G. J. Angew. Chem. Int. Edit. 2006, 45, 7896. doi: 10.1002/anie.200602454  doi: 10.1002/anie.200602454

    17. [17]

      Jiang, X.; Koizumi, N.; Guo, X.; Song, C. Appl. Catal. B-Environ. 2015, 170–171, 173. doi: 10.1016/j.apcatb.2015.01.010  doi: 10.1016/j.apcatb.2015.01.010

    18. [18]

      van den Berg, R.; Prieto, G.; Korpershoek, G.; van der Wal, L. I.; van Bunningen, A. J.; Lægsgaard-Jørgensen, S.; de Jongh, P. E.; de Jong, K. P. Nat. Commun. 2016, 7, 13057. doi: 10.1038/ncomms13057  doi: 10.1038/ncomms13057

    19. [19]

      Wang, X.; Zhuang, J.; Chen, J.; Zhou, K.; Li, Y. Angew. Chem. 2004, 116, 2051. doi: 10.1002/ange.200353507  doi: 10.1002/ange.200353507

    20. [20]

      Wang, Y.; Wang, G.; Wang, H.; Cai, W.; Zhang, L. Chem. Commun. 2008, 6555. doi: 10.1039/b816751f  doi: 10.1039/b816751f

    21. [21]

      Zhang, F.; An, Y.; Zhai, W.; Gao, X.; Feng, J.; Ci, L.; Xiong, S. Mater. Res. Bull. 2015, 70, 573. doi: 10.1016/j.materresbull.2015.05.029  doi: 10.1016/j.materresbull.2015.05.029

    22. [22]

      Sheng, Y.; Zeng, H. C. Chem. Mater. 2015, 27, 658. doi: 10.1021/cm502691s  doi: 10.1021/cm502691s

    23. [23]

      Wang, Z. Q.; Xu, Z. N.; Peng, S. Y.; Zhang, M. J.; Lu, G.; Chen, Q. S.; Chen, Y.; Guo, G. C. ACS Catal. 2015, 5, 4255. doi: 10.1021/acscatal.5b00682  doi: 10.1021/acscatal.5b00682

    24. [24]

      Sing, K. S. W.; Everett, D. H.; Haul, R. A. W.; Moscou, L.; Pierotti, R. A.; Rouquerol, J.; Siemieniewska, T. Pure Appl. Chem. 1985, 57, 603. doi: 10.1351/pac198557040603  doi: 10.1351/pac198557040603

    25. [25]

      Fujitani, T.; Saito, M.; Kanai, Y.; Watanabe, T.; Nakamura, J.; Uchijima, T. Appl. Catal. A-Gen. 1995, 125, L199. doi: 10.1016/0926-860x(95)00049-6  doi: 10.1016/0926-860x(95)00049-6

    26. [26]

      Lei, H.; Nie, R.; Wu, G.; Hou, Z. Fuel 2015, 154, 161. doi: 10.1016/j.fuel.2015.03.052  doi: 10.1016/j.fuel.2015.03.052

    27. [27]

      Li, C.; Yuan, X.; Fujimoto, K. Appl. Catal. A-Gen. 2014, 469, 306. doi: 10.1016/j.apcata.2013.10.010  doi: 10.1016/j.apcata.2013.10.010

    28. [28]

      Liu, Y.; Zhang, Y.; Wang, T.; Tsubaki, N. Chem. Lett. 2007, 36, 1182. doi: 10.1246/cl.2007.1182  doi: 10.1246/cl.2007.1182

    29. [29]

      Liao, F.; Huang, Y.; Ge, J.; Zheng, W.; Tedsree, K.; Collier, P.; Hong, X.; Tsang, S. C. Angew. Chem. Int. Edit. 2011, 50, 2162. doi: 10.1002/anie.201007108  doi: 10.1002/anie.201007108

    30. [30]

      Li, H.; Su, Z.; Hu, S.; Yan, Y. Appl. Catal. B 2017, 207, 134. doi: 10.1016/j.apcatb.2017.02.013  doi: 10.1016/j.apcatb.2017.02.013

    31. [31]

      Liu, T.; Yao, T.; Wei, L.; Shi, Z.; Han, L.; Yuan, H.; Li, B.; Dong, L.; Wang, F.; Sun, C. Z. J. Phys. Chem. C 2017, 121, 12757. doi: 10.1021/acs.jpcc.7b02052  doi: 10.1021/acs.jpcc.7b02052

    32. [32]

      Liu, P.; Hensen, E. J. M. J. Am. Chem. Soc. 2013, 135, 14032. doi: 10.1021/ja406820f  doi: 10.1021/ja406820f

    33. [33]

      Schumann, J.; Kröhnert, J.; Frei, E.; Schlögl, R.; Trunschke, A. Top. Catal. 2017, 60, 1735. doi: 10.1007/s11244-017-0850-9  doi: 10.1007/s11244-017-0850-9

    34. [34]

      Gervasini, A.; Bennici, S. Appl. Catal. A-Gen. 2005, 281, 199. doi: 10.1016/j.apcata.2004.11.030  doi: 10.1016/j.apcata.2004.11.030

    35. [35]

      van der Grift, C. J. G.; Wielers, A. F. H.; Joghi, B. P. J.; van Beijnum, J.; de Boer, M.; Versluijs-Helder, M.; Geus, J. W. J. Catal. 1991, 131, 178. doi: 10.1016/0021-9517(91)90334-z  doi: 10.1016/0021-9517(91)90334-z

    36. [36]

      Gao, P.; Li, F.; Zhan, H.; Zhao, N.; Xiao, F.; Wei, W.; Zhong, L.; Wang, H.; Sun, Y. J. Catal. 2013, 298, 51. doi: 10.1016/j.jcat.2012.10.030  doi: 10.1016/j.jcat.2012.10.030

    37. [37]

      Fujitani, T.; Nakamura, I.; Uchijima, T.; Nakamura, J. Surf. Sci. 1997, 383, 285. doi: 10.1016/s0039-6028(97)00192-1  doi: 10.1016/s0039-6028(97)00192-1

    38. [38]

      Fujitani, T.; Nakamura, I.; Watanabe, T.; Uchijima, T.; Nakamura, J. Catal. Lett. 1995, 35, 297. doi: 10.1007/bf00807186  doi: 10.1007/bf00807186

    39. [39]

      Yoshihara, J.; Campbell, C. T. J. Catal. 1996, 161, 776. doi: 10.1006/jcat.1996.0240  doi: 10.1006/jcat.1996.0240

  • 加载中
    1. [1]

      Ping Wang Tianbao Zhang Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328

    2. [2]

      Yufei Jia Fei Li Ke Fan . Surface reconstruction of Cu-based bimetallic catalysts for electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100255-100255. doi: 10.1016/j.cjsc.2024.100255

    3. [3]

      Xiuzheng DengYi KeJiawen DingYingtang ZhouHui HuangQian LiangZhenhui Kang . Construction of ZnO@CDs@Co3O4 sandwich heterostructure with multi-interfacial electron-transfer toward enhanced photocatalytic CO2 reduction. Chinese Chemical Letters, 2024, 35(4): 109064-. doi: 10.1016/j.cclet.2023.109064

    4. [4]

      Yuxiang Zhang Jia Zhao Sen Lin . Nitrogen doping retrofits the coordination environment of copper single-atom catalysts for deep CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100415-100415. doi: 10.1016/j.cjsc.2024.100415

    5. [5]

      Liang Ma Zhou Li Zhiqiang Jiang Xiaofeng Wu Shixin Chang Sónia A. C. Carabineiro Kangle Lv . Effect of precursors on the structure and photocatalytic performance of g-C3N4 for NO oxidation and CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100416-100416. doi: 10.1016/j.cjsc.2023.100416

    6. [6]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    7. [7]

      Muhammad Humayun Mohamed Bououdina Abbas Khan Sajjad Ali Chundong Wang . Designing single atom catalysts for exceptional electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100193-100193. doi: 10.1016/j.cjsc.2023.100193

    8. [8]

      Hong Dong Feng-Ming Zhang . Covalent organic frameworks for artificial photosynthetic diluted CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100307-100307. doi: 10.1016/j.cjsc.2024.100307

    9. [9]

      Junchen PengXue YinDandan DongZhongyuan GuoQinqin WangMinmin LiuFei HeBin DaiChaofeng Huang . Promotion effect of epoxy group neighboring single-atom Cu site on acetylene hydrochlorination. Chinese Chemical Letters, 2024, 35(6): 109508-. doi: 10.1016/j.cclet.2024.109508

    10. [10]

      Tianbo JiaLili WangZhouhao ZhuBaikang ZhuYingtang ZhouGuoxing ZhuMingshan ZhuHengcong Tao . Modulating the degree of O vacancy defects to achieve selective control of electrochemical CO2 reduction products. Chinese Chemical Letters, 2024, 35(5): 108692-. doi: 10.1016/j.cclet.2023.108692

    11. [11]

      Ziruo Zhou Wenyu Guo Tingyu Yang Dandan Zheng Yuanxing Fang Xiahui Lin Yidong Hou Guigang Zhang Sibo Wang . Defect and nanostructure engineering of polymeric carbon nitride for visible-light-driven CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100245-100245. doi: 10.1016/j.cjsc.2024.100245

    12. [12]

      Qin ChengMing HuangQingqing YeBangwei DengFan Dong . Indium-based electrocatalysts for CO2 reduction to C1 products. Chinese Chemical Letters, 2024, 35(6): 109112-. doi: 10.1016/j.cclet.2023.109112

    13. [13]

      Xueyang ZhaoBangwei DengHongtao XieYizhao LiQingqing YeFan Dong . Recent process in developing advanced heterogeneous diatomic-site metal catalysts for electrochemical CO2 reduction. Chinese Chemical Letters, 2024, 35(7): 109139-. doi: 10.1016/j.cclet.2023.109139

    14. [14]

      Qian-Qian TangLi-Fang FengZhi-Peng LiShi-Hao WuLong-Shuai ZhangQing SunMei-Feng WuJian-Ping Zou . Single-atom sites regulation by the second-shell doping for efficient electrochemical CO2 reduction. Chinese Chemical Letters, 2024, 35(9): 109454-. doi: 10.1016/j.cclet.2023.109454

    15. [15]

      Tinghui Yang Min Kuang Jianping Yang . Mesoporous CuCe dual-metal catalysts for efficient electrochemical reduction of CO2 to methane. Chinese Journal of Structural Chemistry, 2024, 43(8): 100350-100350. doi: 10.1016/j.cjsc.2024.100350

    16. [16]

      Di Wang Qing-Song Chen Yi-Ran Lin Yun-Xin Hou Wei Han Juan Yang Xin Li Zhen-Hai Wen . Tuning strategies and electrolyzer design for Bi-based nanomaterials towards efficient CO2 reduction to formic acid. Chinese Journal of Structural Chemistry, 2024, 43(8): 100346-100346. doi: 10.1016/j.cjsc.2024.100346

    17. [17]

      Maomao Liu Guizeng Liang Ningce Zhang Tao Li Lipeng Diao Ping Lu Xiaoliang Zhao Daohao Li Dongjiang Yang . Electron-rich Ni2+ in Ni3S2 boosting electrocatalytic CO2 reduction to formate and syngas. Chinese Journal of Structural Chemistry, 2024, 43(8): 100359-100359. doi: 10.1016/j.cjsc.2024.100359

    18. [18]

      Zhijia ZhangShihao SunYuefang ChenYanhao WeiMengmeng ZhangChunsheng LiYan SunShaofei ZhangYong Jiang . Epitaxial growth of Cu2-xSe on Cu (220) crystal plane as high property anode for sodium storage. Chinese Chemical Letters, 2024, 35(7): 108922-. doi: 10.1016/j.cclet.2023.108922

    19. [19]

      Hanqing Zhang Xiaoxia Wang Chen Chen Xianfeng Yang Chungli Dong Yucheng Huang Xiaoliang Zhao Dongjiang Yang . Selective CO2-to-formic acid electrochemical conversion by modulating electronic environment of copper phthalocyanine with defective graphene. Chinese Journal of Structural Chemistry, 2023, 42(10): 100089-100089. doi: 10.1016/j.cjsc.2023.100089

    20. [20]

      Wenhao ChenMuxuan WuHan ChenLue MoYirong Zhu . Cu2Se@C thin film with three-dimensional braided structure as a cathode material for enhanced Cu2+ storage. Chinese Chemical Letters, 2024, 35(5): 108698-. doi: 10.1016/j.cclet.2023.108698

Metrics
  • PDF Downloads(14)
  • Abstract views(792)
  • HTML views(75)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return