Citation: Lingshan Chen, Yuanxiu Hong, Shisheng He, Zhen Fan, Jianzhong Du. Poly(ε-caprolactone)-Polypeptide Copolymer Micelles Enhance the Antibacterial Activities of Antibiotics[J]. Acta Physico-Chimica Sinica, ;2021, 37(10): 191005. doi: 10.3866/PKU.WHXB201910059 shu

Poly(ε-caprolactone)-Polypeptide Copolymer Micelles Enhance the Antibacterial Activities of Antibiotics

  • Corresponding author: Shisheng He, tjhss7418@tongji.edu.cn Zhen Fan, fanzhen2018@tongji.edu.cn Jianzhong Du, jzdu@tongji.edu.cn
  • These authors contributed equally to this work.
  • Received Date: 28 October 2019
    Revised Date: 6 December 2019
    Accepted Date: 9 December 2019
    Available Online: 19 December 2019

    Fund Project: the National Natural Science Foundation of China 21925505the National Natural Science Foundation of China 21674081the National Natural Science Foundation of China 51803152the Fundamental Research Fund for the Central Universities, China 22120180109the Natural Science Foundation of Shanghai, China 19ZR1478800

  • Bacterial infection is a major threat to human health, and can cause several diseases including gastroenteritis, influenza, tetanus, and tuberculosis. As conventional antibiotic treatment may cause various undesirable effects such as stomach disorder and bacterial resistance, it is necessary to improve the antibacterial efficiency of antibiotics. Here, we synthesized a peptide-based copolymer, poly(ε-caprolactone)-block-poly(glutamic acid)-block-poly(lysine-stat-phenylalanine)[PCL34-b-PGA30-b-P(Lys16-stat-Phe12)] by ring-opening polymerization (ROP) of ε-caprolactone and amino acid N-carboxyanhydride (NCA). Successful synthesis of the copolymer was verified by proton nuclear magnetic resonance and size exclusion chromatography. This copolymer can self-assemble into negatively charged micelles (-26.7 mV) under alkaline conditions by solvent switch method. The micelle structure was confirmed by transmission electron microscopy and dynamic light scattering, and revealed to have a diameter of ~42 nm. Antibiotics were loaded into micelles during the self-assembly process, and cell viability assay was conducted to evaluate its cytotoxicity with and without tobramycin. No obvious cytotoxicity was observed for both micelles when the concentration was lower than 300 μg·mL-1. The antibiotic-loaded micelles demonstrated very low minimum inhibitory concentrations (MICs) against both Gram-negative Escherichia coli (E. coli) (7.8 μg·mL-1) and Gram-positive Staphylococcus aureus (S. aureus) (18.2 μg·mL-1), while the MICs of free tobramycin were 3.9 and 1.0 μg·mL-1, respectively. The drug-loading content and efficiency of the micelles were 5.2% and 24.3%, respectively. Therefore, the MICs of the loaded tobramycin against E. coli and S. aureus were 0.4 and 0.9 μg·mL-1, respectively, suggesting that the micelle could enhance the antibacterial activity of antibiotics. Tobramycin-loaded micelles demonstrated a sustained release characteristic, with 85% of the antibiotics released after 8 h. In bacteria-induced acidic microenvironment, the coil conformation of PGA blocks transforms and PGA blocks shrink toward the micelle core. Concomitantly, the carboxyl side chains are protonated in an acidic environment, increasing the hydrophobicity of this micelle. Antibiotics will be captured when reaching the outer core to slow down the releasing process. Furthermore, the poly(lysine-stat-phenylalanine) [P(Lys-stat-Phe)] coronas with broad spectrum intrinsic antibacterial activity can penetrate the bacterial cell membrane, leading to leakage of the cellular contents of the bacteria and ultimately their death. Due to the sustained release property of micelle and the intrinsic activity of the antibacterial peptide segments, this micelle can greatly enhance the antibacterial activity of antibiotics. Overall, this antibiotic-loaded micelle provides a novel approach for significantly reducing the antibiotics dosage and avoiding the associated health risks.
  • 加载中
    1. [1]

      Morris, C. A.; Conway, H. D.; Everall, P. H. Lancet 1972, 300, 1375. doi: 10.1016/S0140-6736(72)92830-9  doi: 10.1016/S0140-6736(72)92830-9

    2. [2]

      Thomas, M.; Noah, N. D.; Male, G. E.; Stringer, M. F.; Kendall, M.; Gilbert, R. J.; Jones, P. H.; Phillips, K. D. Lancet 1977, 309, 1046. doi: 10.1016/S0140-6736(77)91272-7  doi: 10.1016/S0140-6736(77)91272-7

    3. [3]

      Brundage, J. F. Lancet Infect. Dis. 2006, 6, 303. doi: 10.1016/s1473-3099(06)70466-2  doi: 10.1016/s1473-3099(06)70466-2

    4. [4]

      Khoshnood, S.; Heidary, M.; Haeili, M.; Drancourt, M.; Darban-Sarokhalil, D.; Nasiri, M. J.; Lohrasbi, V. Int. J. Biol. Macromol. 2018, 120, 180. doi: 10.1016/j.ijbiomac.2018.08.037  doi: 10.1016/j.ijbiomac.2018.08.037

    5. [5]

      Galagan, J. E. Nat. Rev. Genet. 2014, 15, 307. doi: 10.1038/nrg3664  doi: 10.1038/nrg3664

    6. [6]

      Hersh, D.; Weiss, J.; Zychlinsky, A. Curr. Opin. Microbiol. 1998, 1, 43. doi: 10.1016/s1369-5274(98)80141-0  doi: 10.1016/s1369-5274(98)80141-0

    7. [7]

      Hostetler, K. Y.; Hall, L. B. Proc. Natl. Acad. Sci. U. S. A. 1982, 79, 1663. doi: 10.1073/pnas.79.5.1663  doi: 10.1073/pnas.79.5.1663

    8. [8]

      Anne, S.; Reisman, R. E. Ann. Allergy, Asthma, Immunol. 1995, 74, 167.

    9. [9]

      Granowitz, E. V.; Brown, R. B. Crit. Care Clin. 2008, 24, 421. doi: 10.1016/j.ccc.2007.12.011  doi: 10.1016/j.ccc.2007.12.011

    10. [10]

      Tan, Y. T.; Tillett, D. J.; McKay, I. A. Mol. Med. Today 2000, 6, 309. doi: 10.1016/s1357-4310(00)01739-1  doi: 10.1016/s1357-4310(00)01739-1

    11. [11]

      Hancock, R. E. W.; Lehrer, R. Trends Biotechnol. 1998, 16, 82. doi: 10.1016/s0167-7799(97)01156-6  doi: 10.1016/s0167-7799(97)01156-6

    12. [12]

      Davies, J. Science 1994, 264, 375. doi: 10.1126/science.8153624  doi: 10.1126/science.8153624

    13. [13]

      Jennings, M. C.; Minbiole, K. P. C.; Wuest, W. M. ACS Infect. Dis. 2015, 1, 288. doi: 10.1021/acsinfecdis.5b00047  doi: 10.1021/acsinfecdis.5b00047

    14. [14]

      Marambio-Jones, C.; Hoek, E. M. V. J. Nanopart. Res. 2010, 12, 1531. doi: 10.1007/s11051-010-9900-y  doi: 10.1007/s11051-010-9900-y

    15. [15]

      Sun, L.; Liu, A. X.; Huang, H. Y.; Tao, X. J.; Zhao, Y. B.; Zhang, Z. J. Acta Phys. -Chim. Sin. 2011, 27, 722.  doi: 10.3866/PKU.WHXB20110235

    16. [16]

      Reiad, N. A.; Salam, O. E. A.; Abadir, E. F.; Harraz, F. A. Chin. J. Polym. Sci. 2013, 31, 984. doi: 10.1007/s10118-013-1263-2  doi: 10.1007/s10118-013-1263-2

    17. [17]

      Huang, A.; Xu, S.; Wei, G.; Ma, L.; Gao, C. Y. Chin. J. Polym. Sci. 2009, 27, 865. doi: 10.1142/s025676790900459x  doi: 10.1142/s025676790900459x

    18. [18]

      Ghasemzadeh, H.; Sheikhahmadi, M.; Nasrollah, F. Chin. J. Polym. Sci. 2016, 34, 949. doi: 10.1007/s10118-016-1807-3  doi: 10.1007/s10118-016-1807-3

    19. [19]

      Sun, H.; Hong, Y. X.; Xi, Y. J.; Zou, Y. J.; Gao, J. Y.; Du, J. Z. Biomacromolecules 2018, 19, 1701. doi: 10.1021/acs.biomac.8b00208  doi: 10.1021/acs.biomac.8b00208

    20. [20]

      Zhou, C. C.; Wang, M. Z.; Zou, K. D.; Chen, J.; Zhu, Y. Q.; Du, J. Z. ACS Macro Lett. 2013, 2, 1021. doi: 10.1021/mz400480z  doi: 10.1021/mz400480z

    21. [21]

      Yuan, K.; Zhou, X.; Du, J. Z. Acta Phys. -Chim. Sin. 2017, 33, 656.  doi: 10.3866/PKU.WHXb201701162

    22. [22]

      Wang, M. Z.; Wang, T.; Yuan, K.; Du, J. Z. Chin. J. Polym. Sci. 2016, 34, 44. doi: 10.1007/s10118-016-1725-4  doi: 10.1007/s10118-016-1725-4

    23. [23]

      Li, T.; Xiang, S. F.; Dong, W. F.; Ma, P. M.; Shi, D. J.; Chen, M. Q. Acta Phys. -Chim. Sin. 2016, 32, 2761.  doi: 10.3866/PKU.WHXB201608261

    24. [24]

      Zou, Y. J.; He, S. S.; Du, J. Z. Chin. J. Polym. Sci. 2018, 36, 1239. doi: 10.1007/s10118-018-2156-1  doi: 10.1007/s10118-018-2156-1

    25. [25]

      Yu, K.; Tian, C.; Li, X.; Liao, X.; Shi, B. Acta Phys. -Chim. Sin. 2018, 34, 543.  doi: 10.3866/PKU.WHXB201709291

    26. [26]

      Xu, D. F.; Cai, J.; Zhang, L. N. Chin. J. Polym. Sci. 2016, 34, 1281. doi: 10.1007/s10118-016-1840-2  doi: 10.1007/s10118-016-1840-2

    27. [27]

      Wade, R. J.; Burdick, J. A. Nano Today 2014, 9, 722. doi: 10.1016/j.nantod.2014.10.002  doi: 10.1016/j.nantod.2014.10.002

    28. [28]

      Smith, K. H.; Tejeda-Montes, E.; Poch, M.; Mata, A. Chem. Soc. Rev. 2011, 40, 4563. doi: 10.1039/c1cs15064b  doi: 10.1039/c1cs15064b

    29. [29]

      Oh, J. K. Soft Matter 2011, 7, 5096. doi: 10.1039/c0sm01539c  doi: 10.1039/c0sm01539c

    30. [30]

      Zhou, Y.; Huang, W.; Liu, J.; Zhu, X.; Yan, D. Adv. Mater. 2010, 22, 4567. doi: 10.1002/adma.201000369  doi: 10.1002/adma.201000369

    31. [31]

      Mai, Y.; Eisenberg, A. Chem. Soc. Rev. 2012, 41, 5969. doi: 10.1039/c2cs35115c  doi: 10.1039/c2cs35115c

    32. [32]

      Philp, D.; Stoddart, J. F. Angew. Chem., Int. Ed. 1996, 35, 1154. doi: 10.1002/anie.199611541  doi: 10.1002/anie.199611541

    33. [33]

      Li, H.; Li, J.; He, X.; Zhang, B.; Liu, C.; Li, Q.; Zhu, Y.; Huang, W.; Zhang, W.; Qian, H.; et al. Chin. Chem. Lett. 2019, 30, 1083. doi: 10.1016/j.cclet.2019.01.003  doi: 10.1016/j.cclet.2019.01.003

    34. [34]

      Yang, Z.; Peng, Y.; Qiu, L. Chin. Chem. Lett. 2018, 29, 1839. doi: 10.1016/j.cclet.2018.11.009  doi: 10.1016/j.cclet.2018.11.009

    35. [35]

      Antonietti, M.; Forster, S. Adv. Mater. 2003, 15, 1323. doi: 10.1002/adma.200300010  doi: 10.1002/adma.200300010

    36. [36]

      Sun, T.; Yang, X.; Zhu, C.; Zhao, N.; Dong, H.; Xu, J. Chin. Chem. Lett. 2019, 30, 477. doi: 10.1016/j.cclet.2018.07.014  doi: 10.1016/j.cclet.2018.07.014

    37. [37]

      Zhao, X.; Pan, F.; Xu, H.; Yaseen, M.; Shan, H.; Hauser, C. A. E.; Zhang, S.; Lu, J. R. Chem. Soc. Rev. 2010, 39, 3480. doi: 10.1039/b915923c  doi: 10.1039/b915923c

    38. [38]

      Bryaskova, R.; Pencheva, D.; Kyulavska, M.; Bozukova, D.; Debuigne, A.; Detrembleur, C. J. Colloid Interface Sci. 2010, 344, 424. doi: 10.1016/j.jcis.2009.12.040  doi: 10.1016/j.jcis.2009.12.040

    39. [39]

      Yuan, W. Z.; Wei, J. R.; Lu, H.; Fan, L.; Du, J. Z. Chem. Commun. 2012, 48, 6857. doi: 10.1039/c2cc31529g  doi: 10.1039/c2cc31529g

    40. [40]

      Xi, Y. J.; Wang, Y.; Gao, J. Y.; Xiao, Y. F.; Du, J. Z. ACS Nano 2019. doi: 10.1021/acsnano.9b03237  doi: 10.1021/acsnano.9b03237

    41. [41]

      Benson, J. R.; Hare, P. E. Proc. Natl. Acad. Sci. U. S. A. 1975, 72, 619. doi: 10.1073/pnas.72.2.619  doi: 10.1073/pnas.72.2.619

    42. [42]

      Deacon, J.; Abdelghany, S. M.; Quinn, D. J.; Schmid, D.; Megaw, J.; Donnelly, R. F.; Jones, D. S.; Kissenpfennig, A.; Elborn, J. S.; Gilmore, B. F.; et al. J. Controlled Release 2015, 198, 55. doi: 10.1016/j.jconrel.2014.11.022  doi: 10.1016/j.jconrel.2014.11.022

    43. [43]

      Lilja, M.; Soerensen, J. H.; Brohede, U.; Astrand, M.; Procter, P.; Arnoldi, J.; Steckel, H.; Stromme, M. J. Mater. Sci.: Mater. Med. 2013, 24, 2265. doi: 10.1007/s10856-013-4979-1  doi: 10.1007/s10856-013-4979-1

    44. [44]

      Zhou, C. C.; Yuan, Y.; Zhou, P. Y.; Wang, F. Y. K.; Hong, Y. X.; Wang, N. S.; Xu, S. G.; Du, J. Z. Biomacromolecules 2017, 18, 4154. doi: 10.1021/acs.biomac.7b01209  doi: 10.1021/acs.biomac.7b01209

    45. [45]

      Wise, J. P.; Goodale, B. C.; Wise, S. S.; Craig, G. A.; Pongan, A. F.; Walter, R. B.; Thompson, W. D.; Ng, A. K.; Aboueissa, A. M.; Mitani, H.; et al. Aquat. Toxicol. 2010, 97, 34. doi: 10.1016/j.aquatox.2009.11.016  doi: 10.1016/j.aquatox.2009.11.016

    46. [46]

      Wei, L.; Cai, C.; Lin, J.; Chen, T. Biomaterials 2009, 30, 2606. doi: 10.1016/j.biomaterials.2009.01.006  doi: 10.1016/j.biomaterials.2009.01.006

    47. [47]

      Johnson, W. C., Jr.; Tinoco, I., Jr. J. Am. Chem. Soc. 1972, 94, 4389. doi: 10.1021/ja00767a084  doi: 10.1021/ja00767a084

    48. [48]

      Sun, J.; Deng, C.; Chen, X.; Yu, H.; Tian, H.; Sun, J.; Jing, X. Biomacromolecules 2007, 8, 1013. doi: 10.1021/bm0609792  doi: 10.1021/bm0609792

    49. [49]

      Chung, J. E.; Yokoyama, M.; Okano, T. J. Controlled Release 2000, 65, 93. doi: 10.1016/s0168-3659(99)00242-4  doi: 10.1016/s0168-3659(99)00242-4

    50. [50]

      Chan, A. S.; Chen, C. H.; Huang, C. M.; Hsieh, M. F. J. Nanosci. Nanotechnol. 2010, 10, 6283. doi: 10.1166/jnn.2010.2536  doi: 10.1166/jnn.2010.2536

    51. [51]

      Hang, Z.; Ni, R.; Zhou, J.; Mao, S. Drug Discovery Today 2015, 20, 380. doi: 10.1016/j.drudis.2014.09.020  doi: 10.1016/j.drudis.2014.09.020

  • 加载中
    1. [1]

      Yuanpeng Ye Longfei Yao Guofeng Liu . Engineering circularly polarized luminescence through symmetry manipulation in achiral tetraphenylpyrazine structures. Chinese Journal of Structural Chemistry, 2025, 44(2): 100460-100460. doi: 10.1016/j.cjsc.2024.100460

    2. [2]

      Jianhui YinWenjing HuangChangyong GuoChao LiuFei GaoHonggang Hu . Tryptophan-specific peptide modification through metal-free photoinduced N-H alkylation employing N-aryl glycines. Chinese Chemical Letters, 2024, 35(6): 109244-. doi: 10.1016/j.cclet.2023.109244

    3. [3]

      Sifan DuYuan WangFulin WangTianyu WangLi ZhangMinghua Liu . Evolution of hollow nanosphere to microtube in the self-assembly of chiral dansyl derivatives and inversed circularly polarized luminescence. Chinese Chemical Letters, 2024, 35(7): 109256-. doi: 10.1016/j.cclet.2023.109256

    4. [4]

      Yuwen ZhuXiang DengYan WuBaode ShenLingyu HangYuye XueHailong Yuan . Formation mechanism of herpetrione self-assembled nanoparticles based on pH-driven method. Chinese Chemical Letters, 2025, 36(1): 109733-. doi: 10.1016/j.cclet.2024.109733

    5. [5]

      Xiangshuai LiJian ZhaoLi LuoZhuohao JiaoYing ShiShengli HouBin Zhao . Visual and portable detection of metronidazole realized by metal-organic framework flexible sensor and smartphone scanning. Chinese Chemical Letters, 2024, 35(10): 109407-. doi: 10.1016/j.cclet.2023.109407

    6. [6]

      Jingqi XinShupeng HanMeichen ZhengChenfeng XuZhongxi HuangBin WangChangmin YuFeifei AnYu Ren . A nitroreductase-responsive nanoprobe with homogeneous composition and high loading for preoperative non-invasive tumor imaging and intraoperative guidance. Chinese Chemical Letters, 2024, 35(7): 109165-. doi: 10.1016/j.cclet.2023.109165

    7. [7]

      Keyang LiYanan WangYatao XuGuohua ShiSixian WeiXue ZhangBaomei ZhangQiang JiaHuanhua XuLiangmin YuJun WuZhiyu He . Flash nanocomplexation (FNC): A new microvolume mixing method for nanomedicine formulation. Chinese Chemical Letters, 2024, 35(10): 109511-. doi: 10.1016/j.cclet.2024.109511

    8. [8]

      Xuanyu WangZhao GaoWei Tian . Supramolecular confinement effect enabling light-harvesting system for photocatalytic α-oxyamination reaction. Chinese Chemical Letters, 2024, 35(11): 109757-. doi: 10.1016/j.cclet.2024.109757

    9. [9]

      Xian YanHuawei XieGao WuFang-Xing Xiao . Boosted solar water oxidation steered by atomically precise alloy nanocluster. Chinese Chemical Letters, 2025, 36(1): 110279-. doi: 10.1016/j.cclet.2024.110279

    10. [10]

      Feng CaoChunxiang XianTianqi YangYue ZhangHaifeng ChenXinping HeXukun QianShenghui ShenYang XiaWenkui ZhangXinhui Xia . Gelation-pyrolysis strategy for fabrication of advanced carbon/sulfur cathodes for lithium-sulfur batteries. Chinese Chemical Letters, 2025, 36(3): 110575-. doi: 10.1016/j.cclet.2024.110575

    11. [11]

      Cheng-Yan WuYi-Nan GaoZi-Han ZhangRui LiuQuan TangZhong-Lin Lu . Enhancing self-assembly efficiency of macrocyclic compound into nanotubes by introducing double peptide linkages. Chinese Chemical Letters, 2024, 35(11): 109649-. doi: 10.1016/j.cclet.2024.109649

    12. [12]

      Yue RenKang LiYi-Zi WangShao-Peng ZhaoShu-Min PanHaojie FuMengfan JingYaming WangFengyuan YangChuntai Liu . Swelling and erosion assisted sustained release of tea polyphenol from antibacterial ultrahigh molecular weight polyethylene for joint replacement. Chinese Chemical Letters, 2025, 36(2): 110468-. doi: 10.1016/j.cclet.2024.110468

    13. [13]

      Bing NiuHonggao HuangLiwei LuoLi ZhangJianbo Tan . Coating colloidal particles with a well-defined polymer layer by surface-initiated photoinduced polymerization-induced self-assembly and the subsequent seeded polymerization. Chinese Chemical Letters, 2025, 36(2): 110431-. doi: 10.1016/j.cclet.2024.110431

    14. [14]

      Zihan Lin Wanzhen Lin Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089

    15. [15]

      Zheyi LiXiaoyang LiangZitong QiuZimeng LiuSiyu WangYue ZhouNan Li . Ion-interferential cell cycle arrest for melanoma treatment based on magnetocaloric bimetallic-ion sustained release hydrogel. Chinese Chemical Letters, 2024, 35(11): 109592-. doi: 10.1016/j.cclet.2024.109592

    16. [16]

      Zhenzhu WangChenglong LiuYunpeng GeWencan LiChenyang ZhangBing YangShizhong MaoZeyuan Dong . Differentiated self-assembly through orthogonal noncovalent interactions towards the synthesis of two-dimensional woven supramolecular polymers. Chinese Chemical Letters, 2024, 35(5): 109127-. doi: 10.1016/j.cclet.2023.109127

    17. [17]

      Changlin SuWensheng CaiXueguang Shao . Water as a probe for the temperature-induced self-assembly transition of an amphiphilic copolymer. Chinese Chemical Letters, 2025, 36(4): 110095-. doi: 10.1016/j.cclet.2024.110095

    18. [18]

      Yixuan Zhu Qingtong Wang Jin Li Lin Chen Junlong Zhao . Blog of Oxytocin. University Chemistry, 2024, 39(9): 134-140. doi: 10.12461/PKU.DXHX202310090

    19. [19]

      Xiaofei NIUKe WANGFengyan SONGShuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057

    20. [20]

      Zengchao GuoWeiwei LiuTengfei LiuJinpeng WangHui JiangXiaohui LiuYossi WeizmannXuemei Wang . Engineered exosome hybrid copper nanoscale antibiotics facilitate simultaneous self-assembly imaging and elimination of intracellular multidrug-resistant superbugs. Chinese Chemical Letters, 2024, 35(7): 109060-. doi: 10.1016/j.cclet.2023.109060

Metrics
  • PDF Downloads(13)
  • Abstract views(504)
  • HTML views(91)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return