Citation: Lingshan Chen, Yuanxiu Hong, Shisheng He, Zhen Fan, Jianzhong Du. Poly(ε-caprolactone)-Polypeptide Copolymer Micelles Enhance the Antibacterial Activities of Antibiotics[J]. Acta Physico-Chimica Sinica, ;2021, 37(10): 191005. doi: 10.3866/PKU.WHXB201910059 shu

Poly(ε-caprolactone)-Polypeptide Copolymer Micelles Enhance the Antibacterial Activities of Antibiotics

  • Corresponding author: Shisheng He, tjhss7418@tongji.edu.cn Zhen Fan, fanzhen2018@tongji.edu.cn Jianzhong Du, jzdu@tongji.edu.cn
  • These authors contributed equally to this work.
  • Received Date: 28 October 2019
    Revised Date: 6 December 2019
    Accepted Date: 9 December 2019
    Available Online: 19 December 2019

    Fund Project: the National Natural Science Foundation of China 21925505the National Natural Science Foundation of China 21674081the National Natural Science Foundation of China 51803152the Fundamental Research Fund for the Central Universities, China 22120180109the Natural Science Foundation of Shanghai, China 19ZR1478800

  • Bacterial infection is a major threat to human health, and can cause several diseases including gastroenteritis, influenza, tetanus, and tuberculosis. As conventional antibiotic treatment may cause various undesirable effects such as stomach disorder and bacterial resistance, it is necessary to improve the antibacterial efficiency of antibiotics. Here, we synthesized a peptide-based copolymer, poly(ε-caprolactone)-block-poly(glutamic acid)-block-poly(lysine-stat-phenylalanine)[PCL34-b-PGA30-b-P(Lys16-stat-Phe12)] by ring-opening polymerization (ROP) of ε-caprolactone and amino acid N-carboxyanhydride (NCA). Successful synthesis of the copolymer was verified by proton nuclear magnetic resonance and size exclusion chromatography. This copolymer can self-assemble into negatively charged micelles (-26.7 mV) under alkaline conditions by solvent switch method. The micelle structure was confirmed by transmission electron microscopy and dynamic light scattering, and revealed to have a diameter of ~42 nm. Antibiotics were loaded into micelles during the self-assembly process, and cell viability assay was conducted to evaluate its cytotoxicity with and without tobramycin. No obvious cytotoxicity was observed for both micelles when the concentration was lower than 300 μg·mL-1. The antibiotic-loaded micelles demonstrated very low minimum inhibitory concentrations (MICs) against both Gram-negative Escherichia coli (E. coli) (7.8 μg·mL-1) and Gram-positive Staphylococcus aureus (S. aureus) (18.2 μg·mL-1), while the MICs of free tobramycin were 3.9 and 1.0 μg·mL-1, respectively. The drug-loading content and efficiency of the micelles were 5.2% and 24.3%, respectively. Therefore, the MICs of the loaded tobramycin against E. coli and S. aureus were 0.4 and 0.9 μg·mL-1, respectively, suggesting that the micelle could enhance the antibacterial activity of antibiotics. Tobramycin-loaded micelles demonstrated a sustained release characteristic, with 85% of the antibiotics released after 8 h. In bacteria-induced acidic microenvironment, the coil conformation of PGA blocks transforms and PGA blocks shrink toward the micelle core. Concomitantly, the carboxyl side chains are protonated in an acidic environment, increasing the hydrophobicity of this micelle. Antibiotics will be captured when reaching the outer core to slow down the releasing process. Furthermore, the poly(lysine-stat-phenylalanine) [P(Lys-stat-Phe)] coronas with broad spectrum intrinsic antibacterial activity can penetrate the bacterial cell membrane, leading to leakage of the cellular contents of the bacteria and ultimately their death. Due to the sustained release property of micelle and the intrinsic activity of the antibacterial peptide segments, this micelle can greatly enhance the antibacterial activity of antibiotics. Overall, this antibiotic-loaded micelle provides a novel approach for significantly reducing the antibiotics dosage and avoiding the associated health risks.
  • 加载中
    1. [1]

      Morris, C. A.; Conway, H. D.; Everall, P. H. Lancet 1972, 300, 1375. doi: 10.1016/S0140-6736(72)92830-9  doi: 10.1016/S0140-6736(72)92830-9

    2. [2]

      Thomas, M.; Noah, N. D.; Male, G. E.; Stringer, M. F.; Kendall, M.; Gilbert, R. J.; Jones, P. H.; Phillips, K. D. Lancet 1977, 309, 1046. doi: 10.1016/S0140-6736(77)91272-7  doi: 10.1016/S0140-6736(77)91272-7

    3. [3]

      Brundage, J. F. Lancet Infect. Dis. 2006, 6, 303. doi: 10.1016/s1473-3099(06)70466-2  doi: 10.1016/s1473-3099(06)70466-2

    4. [4]

      Khoshnood, S.; Heidary, M.; Haeili, M.; Drancourt, M.; Darban-Sarokhalil, D.; Nasiri, M. J.; Lohrasbi, V. Int. J. Biol. Macromol. 2018, 120, 180. doi: 10.1016/j.ijbiomac.2018.08.037  doi: 10.1016/j.ijbiomac.2018.08.037

    5. [5]

      Galagan, J. E. Nat. Rev. Genet. 2014, 15, 307. doi: 10.1038/nrg3664  doi: 10.1038/nrg3664

    6. [6]

      Hersh, D.; Weiss, J.; Zychlinsky, A. Curr. Opin. Microbiol. 1998, 1, 43. doi: 10.1016/s1369-5274(98)80141-0  doi: 10.1016/s1369-5274(98)80141-0

    7. [7]

      Hostetler, K. Y.; Hall, L. B. Proc. Natl. Acad. Sci. U. S. A. 1982, 79, 1663. doi: 10.1073/pnas.79.5.1663  doi: 10.1073/pnas.79.5.1663

    8. [8]

      Anne, S.; Reisman, R. E. Ann. Allergy, Asthma, Immunol. 1995, 74, 167.

    9. [9]

      Granowitz, E. V.; Brown, R. B. Crit. Care Clin. 2008, 24, 421. doi: 10.1016/j.ccc.2007.12.011  doi: 10.1016/j.ccc.2007.12.011

    10. [10]

      Tan, Y. T.; Tillett, D. J.; McKay, I. A. Mol. Med. Today 2000, 6, 309. doi: 10.1016/s1357-4310(00)01739-1  doi: 10.1016/s1357-4310(00)01739-1

    11. [11]

      Hancock, R. E. W.; Lehrer, R. Trends Biotechnol. 1998, 16, 82. doi: 10.1016/s0167-7799(97)01156-6  doi: 10.1016/s0167-7799(97)01156-6

    12. [12]

      Davies, J. Science 1994, 264, 375. doi: 10.1126/science.8153624  doi: 10.1126/science.8153624

    13. [13]

      Jennings, M. C.; Minbiole, K. P. C.; Wuest, W. M. ACS Infect. Dis. 2015, 1, 288. doi: 10.1021/acsinfecdis.5b00047  doi: 10.1021/acsinfecdis.5b00047

    14. [14]

      Marambio-Jones, C.; Hoek, E. M. V. J. Nanopart. Res. 2010, 12, 1531. doi: 10.1007/s11051-010-9900-y  doi: 10.1007/s11051-010-9900-y

    15. [15]

      Sun, L.; Liu, A. X.; Huang, H. Y.; Tao, X. J.; Zhao, Y. B.; Zhang, Z. J. Acta Phys. -Chim. Sin. 2011, 27, 722.  doi: 10.3866/PKU.WHXB20110235

    16. [16]

      Reiad, N. A.; Salam, O. E. A.; Abadir, E. F.; Harraz, F. A. Chin. J. Polym. Sci. 2013, 31, 984. doi: 10.1007/s10118-013-1263-2  doi: 10.1007/s10118-013-1263-2

    17. [17]

      Huang, A.; Xu, S.; Wei, G.; Ma, L.; Gao, C. Y. Chin. J. Polym. Sci. 2009, 27, 865. doi: 10.1142/s025676790900459x  doi: 10.1142/s025676790900459x

    18. [18]

      Ghasemzadeh, H.; Sheikhahmadi, M.; Nasrollah, F. Chin. J. Polym. Sci. 2016, 34, 949. doi: 10.1007/s10118-016-1807-3  doi: 10.1007/s10118-016-1807-3

    19. [19]

      Sun, H.; Hong, Y. X.; Xi, Y. J.; Zou, Y. J.; Gao, J. Y.; Du, J. Z. Biomacromolecules 2018, 19, 1701. doi: 10.1021/acs.biomac.8b00208  doi: 10.1021/acs.biomac.8b00208

    20. [20]

      Zhou, C. C.; Wang, M. Z.; Zou, K. D.; Chen, J.; Zhu, Y. Q.; Du, J. Z. ACS Macro Lett. 2013, 2, 1021. doi: 10.1021/mz400480z  doi: 10.1021/mz400480z

    21. [21]

      Yuan, K.; Zhou, X.; Du, J. Z. Acta Phys. -Chim. Sin. 2017, 33, 656.  doi: 10.3866/PKU.WHXb201701162

    22. [22]

      Wang, M. Z.; Wang, T.; Yuan, K.; Du, J. Z. Chin. J. Polym. Sci. 2016, 34, 44. doi: 10.1007/s10118-016-1725-4  doi: 10.1007/s10118-016-1725-4

    23. [23]

      Li, T.; Xiang, S. F.; Dong, W. F.; Ma, P. M.; Shi, D. J.; Chen, M. Q. Acta Phys. -Chim. Sin. 2016, 32, 2761.  doi: 10.3866/PKU.WHXB201608261

    24. [24]

      Zou, Y. J.; He, S. S.; Du, J. Z. Chin. J. Polym. Sci. 2018, 36, 1239. doi: 10.1007/s10118-018-2156-1  doi: 10.1007/s10118-018-2156-1

    25. [25]

      Yu, K.; Tian, C.; Li, X.; Liao, X.; Shi, B. Acta Phys. -Chim. Sin. 2018, 34, 543.  doi: 10.3866/PKU.WHXB201709291

    26. [26]

      Xu, D. F.; Cai, J.; Zhang, L. N. Chin. J. Polym. Sci. 2016, 34, 1281. doi: 10.1007/s10118-016-1840-2  doi: 10.1007/s10118-016-1840-2

    27. [27]

      Wade, R. J.; Burdick, J. A. Nano Today 2014, 9, 722. doi: 10.1016/j.nantod.2014.10.002  doi: 10.1016/j.nantod.2014.10.002

    28. [28]

      Smith, K. H.; Tejeda-Montes, E.; Poch, M.; Mata, A. Chem. Soc. Rev. 2011, 40, 4563. doi: 10.1039/c1cs15064b  doi: 10.1039/c1cs15064b

    29. [29]

      Oh, J. K. Soft Matter 2011, 7, 5096. doi: 10.1039/c0sm01539c  doi: 10.1039/c0sm01539c

    30. [30]

      Zhou, Y.; Huang, W.; Liu, J.; Zhu, X.; Yan, D. Adv. Mater. 2010, 22, 4567. doi: 10.1002/adma.201000369  doi: 10.1002/adma.201000369

    31. [31]

      Mai, Y.; Eisenberg, A. Chem. Soc. Rev. 2012, 41, 5969. doi: 10.1039/c2cs35115c  doi: 10.1039/c2cs35115c

    32. [32]

      Philp, D.; Stoddart, J. F. Angew. Chem., Int. Ed. 1996, 35, 1154. doi: 10.1002/anie.199611541  doi: 10.1002/anie.199611541

    33. [33]

      Li, H.; Li, J.; He, X.; Zhang, B.; Liu, C.; Li, Q.; Zhu, Y.; Huang, W.; Zhang, W.; Qian, H.; et al. Chin. Chem. Lett. 2019, 30, 1083. doi: 10.1016/j.cclet.2019.01.003  doi: 10.1016/j.cclet.2019.01.003

    34. [34]

      Yang, Z.; Peng, Y.; Qiu, L. Chin. Chem. Lett. 2018, 29, 1839. doi: 10.1016/j.cclet.2018.11.009  doi: 10.1016/j.cclet.2018.11.009

    35. [35]

      Antonietti, M.; Forster, S. Adv. Mater. 2003, 15, 1323. doi: 10.1002/adma.200300010  doi: 10.1002/adma.200300010

    36. [36]

      Sun, T.; Yang, X.; Zhu, C.; Zhao, N.; Dong, H.; Xu, J. Chin. Chem. Lett. 2019, 30, 477. doi: 10.1016/j.cclet.2018.07.014  doi: 10.1016/j.cclet.2018.07.014

    37. [37]

      Zhao, X.; Pan, F.; Xu, H.; Yaseen, M.; Shan, H.; Hauser, C. A. E.; Zhang, S.; Lu, J. R. Chem. Soc. Rev. 2010, 39, 3480. doi: 10.1039/b915923c  doi: 10.1039/b915923c

    38. [38]

      Bryaskova, R.; Pencheva, D.; Kyulavska, M.; Bozukova, D.; Debuigne, A.; Detrembleur, C. J. Colloid Interface Sci. 2010, 344, 424. doi: 10.1016/j.jcis.2009.12.040  doi: 10.1016/j.jcis.2009.12.040

    39. [39]

      Yuan, W. Z.; Wei, J. R.; Lu, H.; Fan, L.; Du, J. Z. Chem. Commun. 2012, 48, 6857. doi: 10.1039/c2cc31529g  doi: 10.1039/c2cc31529g

    40. [40]

      Xi, Y. J.; Wang, Y.; Gao, J. Y.; Xiao, Y. F.; Du, J. Z. ACS Nano 2019. doi: 10.1021/acsnano.9b03237  doi: 10.1021/acsnano.9b03237

    41. [41]

      Benson, J. R.; Hare, P. E. Proc. Natl. Acad. Sci. U. S. A. 1975, 72, 619. doi: 10.1073/pnas.72.2.619  doi: 10.1073/pnas.72.2.619

    42. [42]

      Deacon, J.; Abdelghany, S. M.; Quinn, D. J.; Schmid, D.; Megaw, J.; Donnelly, R. F.; Jones, D. S.; Kissenpfennig, A.; Elborn, J. S.; Gilmore, B. F.; et al. J. Controlled Release 2015, 198, 55. doi: 10.1016/j.jconrel.2014.11.022  doi: 10.1016/j.jconrel.2014.11.022

    43. [43]

      Lilja, M.; Soerensen, J. H.; Brohede, U.; Astrand, M.; Procter, P.; Arnoldi, J.; Steckel, H.; Stromme, M. J. Mater. Sci.: Mater. Med. 2013, 24, 2265. doi: 10.1007/s10856-013-4979-1  doi: 10.1007/s10856-013-4979-1

    44. [44]

      Zhou, C. C.; Yuan, Y.; Zhou, P. Y.; Wang, F. Y. K.; Hong, Y. X.; Wang, N. S.; Xu, S. G.; Du, J. Z. Biomacromolecules 2017, 18, 4154. doi: 10.1021/acs.biomac.7b01209  doi: 10.1021/acs.biomac.7b01209

    45. [45]

      Wise, J. P.; Goodale, B. C.; Wise, S. S.; Craig, G. A.; Pongan, A. F.; Walter, R. B.; Thompson, W. D.; Ng, A. K.; Aboueissa, A. M.; Mitani, H.; et al. Aquat. Toxicol. 2010, 97, 34. doi: 10.1016/j.aquatox.2009.11.016  doi: 10.1016/j.aquatox.2009.11.016

    46. [46]

      Wei, L.; Cai, C.; Lin, J.; Chen, T. Biomaterials 2009, 30, 2606. doi: 10.1016/j.biomaterials.2009.01.006  doi: 10.1016/j.biomaterials.2009.01.006

    47. [47]

      Johnson, W. C., Jr.; Tinoco, I., Jr. J. Am. Chem. Soc. 1972, 94, 4389. doi: 10.1021/ja00767a084  doi: 10.1021/ja00767a084

    48. [48]

      Sun, J.; Deng, C.; Chen, X.; Yu, H.; Tian, H.; Sun, J.; Jing, X. Biomacromolecules 2007, 8, 1013. doi: 10.1021/bm0609792  doi: 10.1021/bm0609792

    49. [49]

      Chung, J. E.; Yokoyama, M.; Okano, T. J. Controlled Release 2000, 65, 93. doi: 10.1016/s0168-3659(99)00242-4  doi: 10.1016/s0168-3659(99)00242-4

    50. [50]

      Chan, A. S.; Chen, C. H.; Huang, C. M.; Hsieh, M. F. J. Nanosci. Nanotechnol. 2010, 10, 6283. doi: 10.1166/jnn.2010.2536  doi: 10.1166/jnn.2010.2536

    51. [51]

      Hang, Z.; Ni, R.; Zhou, J.; Mao, S. Drug Discovery Today 2015, 20, 380. doi: 10.1016/j.drudis.2014.09.020  doi: 10.1016/j.drudis.2014.09.020

  • 加载中
    1. [1]

      Sifan DuYuan WangFulin WangTianyu WangLi ZhangMinghua Liu . Evolution of hollow nanosphere to microtube in the self-assembly of chiral dansyl derivatives and inversed circularly polarized luminescence. Chinese Chemical Letters, 2024, 35(7): 109256-. doi: 10.1016/j.cclet.2023.109256

    2. [2]

      Jianhui YinWenjing HuangChangyong GuoChao LiuFei GaoHonggang Hu . Tryptophan-specific peptide modification through metal-free photoinduced N-H alkylation employing N-aryl glycines. Chinese Chemical Letters, 2024, 35(6): 109244-. doi: 10.1016/j.cclet.2023.109244

    3. [3]

      Xiangshuai LiJian ZhaoLi LuoZhuohao JiaoYing ShiShengli HouBin Zhao . Visual and portable detection of metronidazole realized by metal-organic framework flexible sensor and smartphone scanning. Chinese Chemical Letters, 2024, 35(10): 109407-. doi: 10.1016/j.cclet.2023.109407

    4. [4]

      Jingqi XinShupeng HanMeichen ZhengChenfeng XuZhongxi HuangBin WangChangmin YuFeifei AnYu Ren . A nitroreductase-responsive nanoprobe with homogeneous composition and high loading for preoperative non-invasive tumor imaging and intraoperative guidance. Chinese Chemical Letters, 2024, 35(7): 109165-. doi: 10.1016/j.cclet.2023.109165

    5. [5]

      Keyang LiYanan WangYatao XuGuohua ShiSixian WeiXue ZhangBaomei ZhangQiang JiaHuanhua XuLiangmin YuJun WuZhiyu He . Flash nanocomplexation (FNC): A new microvolume mixing method for nanomedicine formulation. Chinese Chemical Letters, 2024, 35(10): 109511-. doi: 10.1016/j.cclet.2024.109511

    6. [6]

      Zhenzhu WangChenglong LiuYunpeng GeWencan LiChenyang ZhangBing YangShizhong MaoZeyuan Dong . Differentiated self-assembly through orthogonal noncovalent interactions towards the synthesis of two-dimensional woven supramolecular polymers. Chinese Chemical Letters, 2024, 35(5): 109127-. doi: 10.1016/j.cclet.2023.109127

    7. [7]

      Jinjie LuQikai LiuYuting ZhangYi ZhouYanbo Zhou . Antibacterial performance of cationic quaternary phosphonium-modified chitosan polymer in water. Chinese Chemical Letters, 2024, 35(9): 109406-. doi: 10.1016/j.cclet.2023.109406

    8. [8]

      Xiaofei NIUKe WANGFengyan SONGShuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057

    9. [9]

      Zengchao GuoWeiwei LiuTengfei LiuJinpeng WangHui JiangXiaohui LiuYossi WeizmannXuemei Wang . Engineered exosome hybrid copper nanoscale antibiotics facilitate simultaneous self-assembly imaging and elimination of intracellular multidrug-resistant superbugs. Chinese Chemical Letters, 2024, 35(7): 109060-. doi: 10.1016/j.cclet.2023.109060

    10. [10]

      Yixuan Zhu Qingtong Wang Jin Li Lin Chen Junlong Zhao . Blog of Oxytocin. University Chemistry, 2024, 39(9): 134-140. doi: 10.12461/PKU.DXHX202310090

    11. [11]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    12. [12]

      Ruoxi Sun Yiqian Xu Shaoru Rong Chunmiao Han Hui Xu . The Enchanting Collision of Light and Time Magic: Exploring the Footprints of Long Afterglow Lifetime. University Chemistry, 2024, 39(5): 90-97. doi: 10.3866/PKU.DXHX202310001

    13. [13]

      Changhui YuPeng ShangHuihui HuYuening ZhangXujin QinLinyu HanCaihe LiuXiaohan LiuMinghua LiuYuan GuoZhen Zhang . Evolution of template-assisted two-dimensional porphyrin chiral grating structure by directed self-assembly using chiral second harmonic generation microscopy. Chinese Chemical Letters, 2024, 35(10): 109805-. doi: 10.1016/j.cclet.2024.109805

    14. [14]

      Yuxin LiChengbin LiuQiuju LiShun Mao . Fluorescence analysis of antibiotics and antibiotic-resistance genes in the environment: A mini review. Chinese Chemical Letters, 2024, 35(10): 109541-. doi: 10.1016/j.cclet.2024.109541

    15. [15]

      Rui WangHe QiHaijiao ZhengQiong Jia . Light/pH dual-responsive magnetic metal-organic frameworks composites for phosphorylated peptide enrichment. Chinese Chemical Letters, 2024, 35(7): 109215-. doi: 10.1016/j.cclet.2023.109215

    16. [16]

      Tiantian ManFulin ZhuYaqi HuangYuhao PiaoYan SuShengyuan DengYing Wan . Mobile mini-fluorimeter for antibiotic aptasensing based on surface-plasmonic effect of burlike nanogolds enhanced by digitized imaging diagnosis. Chinese Chemical Letters, 2024, 35(5): 109036-. doi: 10.1016/j.cclet.2023.109036

    17. [17]

      Meijuan ChenLiyun ZhaoXianjin ShiWei WangYu HuangLijuan FuLijun Ma . Synthesis of carbon quantum dots decorating Bi2MoO6 microspherical heterostructure and its efficient photocatalytic degradation of antibiotic norfloxacin. Chinese Chemical Letters, 2024, 35(8): 109336-. doi: 10.1016/j.cclet.2023.109336

    18. [18]

      Chuanfeng FanJian GaoYingkai GaoXintong YangGaoning LiXiaochun WangFei LiJin ZhouHaifeng YuYi HuangJin ChenYingying ShanLi Chen . A non-peptide-based chymotrypsin-targeted long-wavelength emission fluorescent probe with large Stokes shift and its application in bioimaging. Chinese Chemical Letters, 2024, 35(10): 109838-. doi: 10.1016/j.cclet.2024.109838

    19. [19]

      Xingwen Cheng Haoran Ren Jiangshan Luo . Boosting the self-trapped exciton emission in vacancy-ordered double perovskites via supramolecular assembly. Chinese Journal of Structural Chemistry, 2024, 43(6): 100306-100306. doi: 10.1016/j.cjsc.2024.100306

    20. [20]

      Hao WangMeng-Qi PanYa-Fei WangChao ChenJian XuYuan-Yuan GaoChuan-Song QiWei LiXian-He Bu . Post-synthetic modifications of MOFs by different bolt ligands for controllable release of cargoes. Chinese Chemical Letters, 2024, 35(10): 109581-. doi: 10.1016/j.cclet.2024.109581

Metrics
  • PDF Downloads(13)
  • Abstract views(416)
  • HTML views(63)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return