Citation: Wang Hanxiao, Xu Lifei, Liu Minghua. Supramolecular Gel Based on Amphiphilic Quinoxaline: Chirality Inversion and Chiroptical Switch with Multiple Stimuli-Responsiveness[J]. Acta Physico-Chimica Sinica, ;2020, 36(10): 191003. doi: 10.3866/PKU.WHXB201910036 shu

Supramolecular Gel Based on Amphiphilic Quinoxaline: Chirality Inversion and Chiroptical Switch with Multiple Stimuli-Responsiveness

  • Corresponding author: Liu Minghua, liumh@iccas.ac.cn
  • Received Date: 17 October 2019
    Revised Date: 18 November 2019
    Accepted Date: 20 November 2019
    Available Online: 27 November 2019

    Fund Project: China Postdoctoral Science Foundation 2017M620915the National Natural Science Foundation of China 21890734The project was supported by the National Natural Science Foundation of China (21890734) and China Postdoctoral Science Foundation (2017M620915)

  • The regulation of supramolecular chirality has applications in various aspects including asymmetric catalysis, chiral sensing, optical materials and smart devices. Additionally, it provides opportunities for the simulation of important activities in living organisms and the clarification of their mechanisms. Herein, we synthesized a chiral gelator SQLG (styrylquinoxalinyl L-amino glutamic diamide) containing a π-conjugated headgroup by introducing the quinoxaline-derived moiety into L-glutamic diamide-based amphiphile via two simple condensation steps. SQLG self-assembled into nanofibers through multiple intermolecular interactions, including ππ stacking, hydrogen bonding and van der Waals interaction, leading to gelation of various organic solvents ranging from nonpolar to polar ones. Chirality transfer from the chiral center to the supramolecular level was observed when organogels formed, which manifested itself in circular dichroism (CD) spectra. The organogels formed in polar solvents such as N, N-dimethylformamide (DMF) and nonpolar solvents such as toluene exhibited opposite signals of supramolecular chirality, attributed to different hydrogen bonding strengths and thus two different types of gelator stacking modes of the gelators which was confirmed by infrared spectroscopy (IR) and X-ray diffraction (XRD). Circular polarized luminescence (CPL) denotes left-handed or right-handed circularly polarized light with different intensities emitted by the chiral luminescent system, and it characterizes the chirality of the excited state, which finds potential application in fields such as 3D optical displays, optical data storage, polarization-based information encryption and bioencoding. Owing to the strong fluorescence and supramolecular chirality, the toluene gel emitted right-handed circular polarized luminescence upon excitation, while the gel formed in DMF did not exhibit CPL emission because of its relatively weak fluorescence. Furthermore, the organogels responded rapidly and distinctly to the stimulus of acid due to the proton-accepting sites in the quinoxaline skeleton. Utilizing NMR spectroscopy, we found that the two nitrogen atoms in the quinoxaline moiety could be protonated upon acidification. During the process, intramolecular charge transfer (ICT) was significantly strengthened and the driving forces of self-assembly underwent remarkable changes, resulting in the collapse of the yellow transparent organogel into a red dispersion. Meanwhile, transformation from nanofibers to nanospheres was observed using a scanning electron microscope (SEM). With change in stacking modes in the supramolecular assembly, a complete inversion of the CD signal was detected. The CPL signal was found to be switched off, which along with the other changes of the system could subsequently be recovered by neutralization of the entire system. Therefore, we constructed a chiroptical switch with multiple stimuli-responsiveness through the introduction of an acid-sensitive π-conjugated moiety into the L-glutamic diamide-based chiral amphiphile.
  • 加载中
    1. [1]

      Feringa, B. L.; van Delden, R. A. Angew. Chem. Int. Ed. 1999, 38, 3418. doi: 10.1002/(SICI)1521-3773(19991203)38:23 < 3418::AID-ANIE 3418 > 3.0.CO; 2-V  doi: 10.1002/(SICI)1521-3773(19991203)38:23<3418::AID-ANIE3418>3.0.CO;2-V

    2. [2]

      Pályi, G.; Zucchi, C.; Caglioti, L. Progress in Biological Chirality; Elsevier: Amsterdam, 2004.

    3. [3]

      Reddy, I. K.; Mehvar, R. Chirality in Drug Design and Development; CRC Press: Florida, 2004.

    4. [4]

      Feringa, B. L.; van Delden, R. A.; Koumura, N.; Geertsema, E. M. Chem. Rev. 2000, 100, 1789. doi: 10.1021/cr9900228  doi: 10.1021/cr9900228

    5. [5]

      van Delden, R. A.; ter Wiel, M. K.; Feringa, B. L. Chem. Commun. 2004, 200. doi: 10.1039/b312170d  doi: 10.1039/b312170d

    6. [6]

      Wang, Z. Y.; Todd, E. K.; Meng, X. S.; Gao, J. P. J. Am. Chem. Soc. 2005, 127, 11552. doi: 10.1021/ja0526721  doi: 10.1021/ja0526721

    7. [7]

      Hembury, G. A.; Borovkov, V. V.; Inoue, Y. Chem. Rev. 2008, 108, 1. doi: 10.1021/cr050005k  doi: 10.1021/cr050005k

    8. [8]

      Canary, J. W. Chem. Soc. Rev. 2009, 38, 747. doi: 10.1039/b800412a  doi: 10.1039/b800412a

    9. [9]

      Maeda, K.; Miyagawa, T.; Furuko, A.; Onouchi, H.; Yashima, E. Macromolecules 2015, 48, 4281. doi: 10.1021/acs.macromol.5b01269  doi: 10.1021/acs.macromol.5b01269

    10. [10]

      Bravin, C.; Mason, G.; Licini, G.; Zonta, C. J. Am. Chem. Soc. 2019, 141, 11963. doi: 10.1021/jacs.9b04151  doi: 10.1021/jacs.9b04151

    11. [11]

      Liu, M.; Zhang, L.; Wang, T. Chem. Rev. 2015, 115, 7304. doi: 10.1021/cr500671p  doi: 10.1021/cr500671p

    12. [12]

      Xing, P.; Zhao, Y. Acc. Chem. Res. 2018, 51, 2324. doi: 10.1021/acs.accounts.8b00312  doi: 10.1021/acs.accounts.8b00312

    13. [13]

      Xing, P.; Li, Y.; Xue, S.; Phua, S. Z. F.; Ding, C.; Chen, H.; Zhao, Y. J. Am. Chem. Soc. 2019. doi: 10.1021/jacs.9b03502  doi: 10.1021/jacs.9b03502

    14. [14]

      Duan, P.; Li, Y.; Li, L.; Deng, J.; Liu, M. J. Phys. Chem. B 2011, 115, 3322. doi: 10.1021/jp110636b  doi: 10.1021/jp110636b

    15. [15]

      Hu, J.; Kuang, W.; Deng, K.; Zou, W.; Huang, Y.; Wei, Z.; Faul, C. F. J. Adv. Funct. Mater. 2012, 22, 4149. doi: 10.1002/adfm.201200973  doi: 10.1002/adfm.201200973

    16. [16]

      Manchineella, S.; Prathyusha, V.; Priyakumar, U. D.; Govindaraju, T. Chem. -Eur. J. 2013, 19, 16615. doi: 10.1002/chem.201303123  doi: 10.1002/chem.201303123

    17. [17]

      Duan, Q.; Cao, Y.; Li, Y.; Hu, X.; Xiao, T.; Lin, C.; Pan, Y.; Wang, L. J. Am. Chem. Soc. 2013, 135, 10542. doi: 10.1021/ja405014r  doi: 10.1021/ja405014r

    18. [18]

      Li, C.; Luo, G. F.; Wang, H. Y.; Zhang, J.; Gong, Y. H.; Cheng, S. X.; Zhuo, R. X.; Zhang, X. Z. J. Phys. Chem. C 2011, 115, 17651. doi: 10.1021/jp203940s  doi: 10.1021/jp203940s

    19. [19]

      Haldar, U.; Bauri, K.; Li, R.; Faust, R.; De, P. ACS Appl. Mater. Interfaces 2015, 7, 8779. doi: 10.1021/acsami.5b01272  doi: 10.1021/acsami.5b01272

    20. [20]

      Tang, L.; Chen, X.; Wang, L.; Qu, J. Polym. Chem. 2017, 8, 4680. doi: 10.1039/c7py00739f  doi: 10.1039/c7py00739f

    21. [21]

      Yuan, T.; Fei, J.; Xu, Y.; Yang, X.; Li, J. Macromol. Rapid Commun. 2017, 38, 1700408. doi: 10.1002/marc.201700408  doi: 10.1002/marc.201700408

    22. [22]

      Kurouski, D.; Lu, X.; Popova, L.; Wan, W.; Shanmugasundaram, M.; Stubbs, G.; Dukor, R. K.; Lednev, I. K.; Nafie, L. A. J. Am. Chem. Soc. 2014, 136, 2302. doi: 10.1021/ja407583r  doi: 10.1021/ja407583r

    23. [23]

      Seitz, L. E.; Suling, W. J.; Reynolds, R. C. J. Med. Chem. 2002, 45, 5604. doi: 10.1021/jm020310n  doi: 10.1021/jm020310n

    24. [24]

      Pereira, J. A.; Pessoa, A. M.; Cordeiro, M. N.; Fernandes, R.; Prudencio, C.; Noronha, J. P.; Vieira, M. Eur. J. Med. Chem. 2015, 97, 664. doi: 10.1016/j.ejmech.2014.06.058  doi: 10.1016/j.ejmech.2014.06.058

    25. [25]

      Yin, M.; Gong, H.; Zhang, B.; Liu, M. Langmuir 2004, 20, 8042. doi: 10.1021/la0490745  doi: 10.1021/la0490745

    26. [26]

      Liu, M.; Ouyang, G.; Niu, D.; Sang, Y. Org. Chem. Front. 2018, 5, 2885. doi: 10.1039/C8QO00620B  doi: 10.1039/C8QO00620B

    27. [27]

      Zhu, X.; Li, Y.; Duan, P.; Liu, M. Chem. -Eur. J. 2010, 16, 8034. doi: 10.1002/chem.201000595  doi: 10.1002/chem.201000595

    28. [28]

      Benzeid, H.; Mothes, E.; Essassi, E. M.; Faller, P.; Pratviel, G. C. R. Chimie 2012, 15, 79. doi: 10.1016/j.crci.2011. 10.009  doi: 10.1016/j.crci.2011.10.009

    29. [29]

      Jung, C. Y.; Song, C. J.; Yao, W.; Park, J. M.; Hyun, I. H.; Seong, D. H.; Jaung, J. Y. Dyes and Pigments 2015, 121, 204. doi: 10.1016/j.dyepig.2015.05.019  doi: 10.1016/j.dyepig.2015.05.019

    30. [30]

      Duan, P.; Cao, H.; Zhang, L.; Liu, M. Soft Matter 2014, 10, 5428. doi: 10.1039/c4sm00507d  doi: 10.1039/c4sm00507d

    31. [31]

      Schadt, M. Annu. Rev. Mater. Sci. 1997, 27, 305. doi: 10.1146/annurev.matsci.27.1.305  doi: 10.1146/annurev.matsci.27.1.305

    32. [32]

      Sato, I.; Sugie, R.; Matsueda, Y.; Furumura, Y.; Soai, K. Angew. Chem. Int. Ed. 2004, 116, 4590. doi: 10.1002/ange.200454162  doi: 10.1002/ange.200454162

    33. [33]

      Gussakovsky, E. Circularly polarized luminescence (CPL) of proteins and protein complexes. In Reviews in Fluorescence 2008; Springer: Berlin, 2010; pp 425.

    34. [34]

      Kim, J.; Lee, J.; Kim, W. Y.; Kim, H.; Lee, S.; Lee, H. C.; Lee, Y. S.; Seo, M.; Kim, S. Y. Nat. Commun. 2015, 6, 6959. doi: 10.1038/ncomms7959  doi: 10.1038/ncomms7959

    35. [35]

      Wang, L.; Yin, L.; Zhang, W.; Zhu, X.; Fujiki, M. J. Am. Chem. Soc. 2017, 139, 13218.doi: 10.1021/jacs.7b07626  doi: 10.1021/jacs.7b07626

    36. [36]

      Riehl, J. P.; Richardson, F. S. Chem. Rev. 1986, 86, 1. doi: 10.1021/cr00071a001  doi: 10.1021/cr00071a001

    37. [37]

      Sheng, Y.; Shen, D.; Zhang, W.; Zhang, H.; Zhu, C.; Cheng, Y. Chem. -Eur. J. 2015, 21, 13196. doi: 10.1002/chem.201502193  doi: 10.1002/chem.201502193

    38. [38]

      Wang, Y.; Li, Y.; Liu, S.; Li, F.; Zhu, C.; Li, S.; Cheng, Y. Macromolecules 2016, 49, 5444. doi: 10.1021/acs.macromol.6b00883  doi: 10.1021/acs.macromol.6b00883

    39. [39]

      Jiang, H.; Jiang, Y.; Han, J.; Zhang, L.; Liu, M. Angew. Chem. Int. Ed. 2019, 58, 785. doi: 10.1002/anie.201811060  doi: 10.1002/anie.201811060

    40. [40]

      Niu, D.; Jiang, Y.; Ji, L.; Ouyang, G.; Liu, M. Angew. Chem. Int. Ed. 2019, 58, 5946. doi: 10.1002/anie.201900607  doi: 10.1002/anie.201900607

  • 加载中
    1. [1]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    2. [2]

      Lijuan Liu Xionglei Wang . Preparation of Hydrogels from Waste Thermosetting Unsaturated Polyester Resin by Controllable Catalytic Degradation: A Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 313-318. doi: 10.12461/PKU.DXHX202403060

    3. [3]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    4. [4]

      Haiying Wang Andrew C.-H. Sue . How to Visually Identify Homochiral Crystals. University Chemistry, 2024, 39(3): 78-85. doi: 10.3866/PKU.DXHX202309004

    5. [5]

      Keying Qu Jie Li Ziqiu Lai Kai Chen . Unveiling the Mystery of Chirality from Tartaric Acid. University Chemistry, 2024, 39(9): 369-378. doi: 10.12461/PKU.DXHX202310091

    6. [6]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    7. [7]

      Tingyu Zhu Hui Zhang Wenwei Zhang . Exploration and Practice of Ideological and Political Education in the Course of Experiments on Chemical Functional Molecules: Synthesis and Catalytic Performance Study of Chiral Mn(III)Cl-Salen Complex. University Chemistry, 2024, 39(4): 75-80. doi: 10.3866/PKU.DXHX202311011

    8. [8]

      Conghao Shi Ranran Wang Juli Jiang Leyong Wang . The Illustration on Stereoisomers of Macrocycles Containing Multiple Chiral Centers via Tröger Base-based Macrocycles. University Chemistry, 2024, 39(7): 394-397. doi: 10.3866/PKU.DXHX202311034

    9. [9]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . Kinetic Resolution Enabled by Photoexcited Chiral Copper Complex-Mediated Alkene EZ Isomerization: A Comprehensive Chemistry Experiment for Undergraduate Students. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    10. [10]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    11. [11]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    12. [12]

      Kai Yang Gehua Bi Yong Zhang Delin Jin Ziwei Xu Qian Wang Lingbao Xing . Comprehensive Polymer Chemistry Experiment Design: Preparation and Characterization of Rigid Polyurethane Foam Materials. University Chemistry, 2024, 39(4): 206-212. doi: 10.3866/PKU.DXHX202308045

    13. [13]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    14. [14]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    15. [15]

      Yuena Yang Xufang Hu Yushan Liu Yaya Kuang Jian Ling Qiue Cao Chuanhua Zhou . The Realm of Smart Hydrogels. University Chemistry, 2024, 39(5): 172-183. doi: 10.3866/PKU.DXHX202310125

    16. [16]

      Jianfeng Yan Yating Xiao Xin Zuo Caixia Lin Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005

    17. [17]

      Hongyun Liu Jiarun Li Xinyi Li Zhe Liu Jiaxuan Li Cong Xiao . Course Ideological and Political Design of a Comprehensive Chemistry Experiment: Constructing a Visual Molecular Logic System Based on Intelligent Hydrogel Film Electrodes. University Chemistry, 2024, 39(2): 227-233. doi: 10.3866/PKU.DXHX202309070

    18. [18]

      Feng Zheng Ruxun Yuan Xiaogang Wang . “Research-Oriented” Comprehensive Experimental Design in Polymer Chemistry: the Case of Polyimide Aerogels. University Chemistry, 2024, 39(10): 210-218. doi: 10.12461/PKU.DXHX202404027

    19. [19]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    20. [20]

      Yonghui Wang Weilin Chen Yangguang Li . Knowledge Construction of “Solubility of Inorganic Substances” in Elemental Chemistry Teaching. University Chemistry, 2024, 39(4): 261-267. doi: 10.3866/PKU.DXHX202312102

Metrics
  • PDF Downloads(20)
  • Abstract views(902)
  • HTML views(219)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return