Citation: Luo Xinjie, Zhang Xi, Feng Yujun. Liquid Marbles: Fabrication, Physical Properties, and Applications[J]. Acta Physico-Chimica Sinica, ;2020, 36(10): 191000. doi: 10.3866/PKU.WHXB201910007 shu

Liquid Marbles: Fabrication, Physical Properties, and Applications

  • Corresponding author: Feng Yujun, yjfeng@scu.edu.cn
  • Received Date: 7 October 2019
    Revised Date: 2 December 2019
    Accepted Date: 3 December 2019
    Available Online: 16 December 2019

    Fund Project: the National Natural Science Foundation of China U1762218The project was supported by the National Natural Science Foundation of China (21773161, U1762218)the National Natural Science Foundation of China 21773161

  • Liquid marbles (LMs) are liquid droplets coated with a layer of lyophobic particles at the air-liquid interface. Since the pioneering work by Aussillous et al. in 2001, LMs have attracted significant attention owing to their facile fabrication, flexibility in the choice of the constituent particles and liquids, intriguing properties such as non-wetting and non-adhesive nature, satisfactory elasticity and stability, as well as promising applications in microfluidics, sensors, controlled release, and microreactors. The classical strategy for the preparation of LMs involves rolling a small volume of a droplet on a lyophobic powder bed for complete encapsulation of the liquid by the particles. In addition, various innovative methods, including electrostatic and coalescent approaches, have been developed for preparing special LMs with a complicated structure or morphology. Diverse materials such as water, surfactant solutions, liquid metals, reagents, blood, and even viscous adhesives have been employed as the internal liquid for the fabrication of LMs. Theoretically, any particulates such as lycopodium, polytetrafluoroethylene, Fe3O4, SiO2, and graphite grains can be employed as the outer coating, but they are usually required to be lyophobic with sizes of less than hundreds of microns. The unique structure of the particle-covered droplet and the dual solid-liquid characteristics endow LMs with some unique and interesting properties, especially the non-wetting and non-adhesive nature. As the lyophobic coating particles restrain the internal liquid from contacting the substrate, LMs can move easily across either solid or liquid surfaces, neither wetting the substrate nor contaminating the internal liquid. An equally fascinating property of LMs is their satisfactory stability, which is necessary for most of their applications. The high stability of LMs stems from the protection of the coating powders and is embodied in both good mechanical stability (remaining intact after being released from a certain height or under a certain compression) and long lifetime (greatly suppressing the evaporation of the internal liquid). These extraordinary properties make LMs promising candidates for use in multitudinous fields, especially droplet microfluidics and microreactors. The potential application of LMs in microfluidics is ascribed to their non-wetting, non-adhesive nature and other features such as an ability to float on a liquid surface, coalescence, split, a small force of rolling friction, and response to external forces. Notably, LMs hold great promise for applications in microreactions, because they can create a confined reaction microenvironment, minimize reagent usage, facilitate unhindered gas exchange between the internal liquid medium and the surrounding environment, and allow the entry/exit of the reactants/products. We herein review the recent advances in LMs, such as manufacturing techniques, formation mechanisms, physical properties, and emerging applications. In particular, much attention is paid to the factors affecting the stability of LMs and the potential strategies to increase their stability. Moreover, this review discusses the challenges in the future development of LMs, suggests several possible ways of addressing these challenges, and forecasts the future development directions. We believe that this review can help researchers gain a better understanding of LMs and promote their further advances.
  • 加载中
    1. [1]

      Aussillous, P.; Quéré, D. Nature 2001, 411, 924. doi: 10.1038/35082026  doi: 10.1038/35082026

    2. [2]

      Pike, N.; Richard, D.; Foster, W.; Mahadevan, L. Proc. R. Soc. London, Ser. B 2002, 269, 1211. doi: 10.1098/rspb.2002.1999  doi: 10.1098/rspb.2002.1999

    3. [3]

      McHale, G.; Shirtcliffe, N. J.; Newton, M. I.; Pyatt, F. B. Hydrol. Processes 2007, 21, 2229. doi: 10.1002/hyp.6765  doi: 10.1002/hyp.6765

    4. [4]

      Mahadevan, L. Nature 2001, 411, 895. doi: 10.1038/35082164  doi: 10.1038/35082164

    5. [5]

      McHale, G.; Newton, M. I. Soft Matter 2011, 7, 5473. doi: 10.1039/C1SM05066D  doi: 10.1039/C1SM05066D

    6. [6]

      Bormashenko, E. Curr. Opin. Colloid Interface Sci. 2011, 16, 266. doi: 10.1016/j.cocis.2010.12.002  doi: 10.1016/j.cocis.2010.12.002

    7. [7]

      McHale, G.; Newton, M. I. Soft Matter 2015, 11, 2530. doi: 10.1039/c5sm00084j  doi: 10.1039/c5sm00084j

    8. [8]

      Fujii, S.; Yusa, S. -I.; Nakamura, Y. Adv. Funct. Mater. 2016, 26, 7206. doi: 10.1002/adfm.201603223  doi: 10.1002/adfm.201603223

    9. [9]

      Oliveira, N. M.; Reis, R. L.; Mano, J. F. Adv. Healthcare Mater. 2017, 6, 1700192. doi: 10.1002/adhm.201700192  doi: 10.1002/adhm.201700192

    10. [10]

      Bormashenko, E. Langmuir 2017, 33, 663. doi: 10.1021/acs.langmuir.6b03231  doi: 10.1021/acs.langmuir.6b03231

    11. [11]

      Jin, J.; Nguyen, N. -T. Microelectron. Eng. 2018, 197, 87. doi: 10.1016/j.mee.2018.06.003  doi: 10.1016/j.mee.2018.06.003

    12. [12]

      Avrămescu, R. -E.; Ghica, M. -V.; Dinu-Pîrvu, C.; Udeanu, D. I.; Popa, L. Molecules 2018, 23, 1120. doi: 10.3390/molecules23051120  doi: 10.3390/molecules23051120

    13. [13]

      Xin, Z.; Skrydstrup, T. Angew. Chem. Int. Ed. 2019, 58, 2. doi: 10.1002/anie.201905204  doi: 10.1002/anie.201905204

    14. [14]

      Li, X. G. Adv. Colloid Interface Sci. 2019, 271, 101988. doi: 10.1016/j.cis.2019.101988  doi: 10.1016/j.cis.2019.101988

    15. [15]

      Yan, C.; Li, M.; Lu, Q. H. Prog. Chem. 2011, 23, 649.

    16. [16]

      Aussillous, P.; Quéré, D. Proc. R. Soc. A 2006, 462, 973. doi: 10.1098/rspa.2005.1581  doi: 10.1098/rspa.2005.1581

    17. [17]

      Bormashenko, E.; Bormashenko, Y.; Musin, A.; Barkay, Z. ChemPhysChem 2009, 10, 654. doi: 10.1002/cphc.200800746  doi: 10.1002/cphc.200800746

    18. [18]

      Zhao, Y.; Fang, J.; Wang, H. X.; Wang, X. G.; Lin, T. Adv. Mater. 2010, 22, 707. doi: 10.1002/adma.200902512  doi: 10.1002/adma.200902512

    19. [19]

      Paven, M.; Mayama, H.; Sekido, T.; Butt, H. -J.; Nakamura, Y.; Fujii, S. Adv. Funct. Mater. 2016, 26, 3199. doi: 10.1002/adfm.201600034  doi: 10.1002/adfm.201600034

    20. [20]

      Zhao, Y.; Xu, Z. G.; Niu, H. T.; Wang, X. G.; Lin, T. Adv. Funct. Mater. 2015, 25, 437. doi: 10.1002/adfm.201403051  doi: 10.1002/adfm.201403051

    21. [21]

      Khaw, M. K.; Ooi, C. H.; Mohd-Yasin, F.; Vadivelu, R.; John, J. S.; Nguyen, N. T. Lab Chip 2016, 16, 2211. doi: 10.1039/c6lc00378h  doi: 10.1039/c6lc00378h

    22. [22]

      Zhang, Y.; Nguyen, N. -T. Lab Chip 2017, 17, 994. doi: 10.1039/C7LC00025A  doi: 10.1039/C7LC00025A

    23. [23]

      Huang, G. Y.; Li, M. X.; Yang, Q. Z.; Li, Y. H.; Liu, H.; Yang, H.; Xu, F. ACS Appl. Mater. Interfaces 2017, 9, 1155. doi: 10.1021/acsami.6b09017  doi: 10.1021/acsami.6b09017

    24. [24]

      Asare-Asher, S.; Connor, J. N.; Sedev, R. J. Colloid Interface Sci. 2015, 449, 341. doi: 10.1016/j.jcis.2015.01.067  doi: 10.1016/j.jcis.2015.01.067

    25. [25]

      Sun, J. H.; Wei, W.; Zhao, D. H.; Hu, Q.; Liu, X. Y. Soft Matter 2015, 11, 1954. doi: 10.1039/c4sm02832e  doi: 10.1039/c4sm02832e

    26. [26]

      Liu, Z.; Zhang, Y. Y.; Chen, C. L.; Yang, T. Y.; Wang, J. D.; Guo, L.; Liu, P.; Kong, T. T. Small 2019, 15, 1804549. doi: 10.1002/smll.201804549  doi: 10.1002/smll.201804549

    27. [27]

      Fullarton, C.; Draper, T. C.; Phillips, N.; Mayne, R.; de Lacy Costello, B. P. J.; Adamatzky, A. Langmuir 2018, 34, 2573. doi: 10.1021/acs.langmuir.7b04196  doi: 10.1021/acs.langmuir.7b04196

    28. [28]

      Dandan, M.; Erbil, H. Y. Langmuir 2009, 25, 8362. doi: 10.1021/la900729d  doi: 10.1021/la900729d

    29. [29]

      Gao, L. C.; McCarthy, T. J. Langmuir 2007, 23, 10445. doi: 10.1021/la701901b  doi: 10.1021/la701901b

    30. [30]

      Dorvee, J. R.; Derfus, A. M.; Bhatia, S. N.; Sailor, M. J. Nat. Mater. 2004, 3, 896. doi: 10.1038/nmat1253  doi: 10.1038/nmat1253

    31. [31]

      Xue, Y. H.; Wang, H. X.; Zhao, Y.; Dai, L. M.; Feng, L. F.; Wang, X. G.; Lin, T. Adv. Mater. 2010, 22, 4814. doi: 10.1002/adma.201001898  doi: 10.1002/adma.201001898

    32. [32]

      Luo, X. J.; Yin, H. Y.; Li, X. E.; Su, X.; Feng, Y. J. Chem. Commun. 2018, 54, 9119. doi: 10.1039/C8CC01786G  doi: 10.1039/C8CC01786G

    33. [33]

      Arbatan, T.; Al-Abboodi, A.; Sarvi, F.; Chan, P. P.; Shen, W. Adv. Healthcare Mater. 2012, 1, 467. doi: 10.1002/adhm.201200050  doi: 10.1002/adhm.201200050

    34. [34]

      Sarvi, F.; Jain, K.; Arbatan, T.; Verma, P. J.; Hourigan, K.; Thompson, M. C.; Shen, W.; Chan, P. P. Adv. Healthcare Mater. 2015, 4, 77. doi: 10.1002/adhm.201400138  doi: 10.1002/adhm.201400138

    35. [35]

      Gao, W.; Lee, H. K.; Hobley, J.; Liu, T. X.; Phang, I. Y.; Ling, X. Y. Angew. Chem. Int. Ed. 2015, 54, 3993. doi: 10.1002/anie.201412103  doi: 10.1002/anie.201412103

    36. [36]

      Jähnisch, K.; Hessel, V.; Löwe, H.; Baerns, M. Angew. Chem. Int. Ed. 2004, 43, 406. doi: 10.1002/anie.200300577  doi: 10.1002/anie.200300577

    37. [37]

      Tian, J. F.; Arbatan, T.; Li, X.; Shen, W. Chem. Commun. 2010, 46, 4734. doi: 10.1039/c001317j  doi: 10.1039/c001317j

    38. [38]

      Tian, J. F.; Arbatan, T.; Li, X.; Shen, W. Chem. Eng. J. 2010, 165, 347. doi: 10.1016/j.cej.2010.06.036  doi: 10.1016/j.cej.2010.06.036

    39. [39]

      Oliveira, N. M.; Correia, C. R.; Reis, R. L.; Mano, J. F. Adv. Healthcare Mater. 2015, 4, 264. doi: 10.1002/adhm.201400310  doi: 10.1002/adhm.201400310

    40. [40]

      Sheng, Y. F.; Sun, G. Q.; Ngai, T. Langmuir 2016, 32, 3122. doi: 10.1021/acs.langmuir.6b00525  doi: 10.1021/acs.langmuir.6b00525

    41. [41]

      Chen, Y. Z.; Liu, Z.; Zhu, D. Y.; Handschuh-Wang, S.; Liang, S. Q.; Yang, J. B.; Kong, T. T.; Zhou, X. H.; Liu, Y. Z.; Zhou, X. C. Mater. Horiz. 2017, 4, 591. doi: 10.1039/C7MH00065K  doi: 10.1039/C7MH00065K

    42. [42]

      Bormashenko, E.; Bormashenko, Y.; Oleg, G. Langmuir 2010, 26, 12479. doi: 10.1021/la1002836  doi: 10.1021/la1002836

    43. [43]

      Geyer, F.; Asaumi, Y.; Vollmer, D.; Butt, H. -J.; Nakamura, Y.; Fujii, S. Adv. Funct. Mater. 2019, 29, 1808826. doi: 10.1002/adfm.201808826  doi: 10.1002/adfm.201808826

    44. [44]

      Mahmoudi Salehabad, S.; Azizian, S.; Fujii, S. Langmuir 2019, 35, 8950. doi: 10.1021/acs.langmuir.9b01473  doi: 10.1021/acs.langmuir.9b01473

    45. [45]

      Ooi, C. H.; Vadivelu, R. K.; St John, J.; Dao, D. V.; Nguyen, N. T. Soft Matter 2015, 11, 4576. doi: 10.1039/c4sm02882a  doi: 10.1039/c4sm02882a

    46. [46]

      Nguyen, N. T. Langmuir 2013, 29, 13982. doi: 10.1021/la4032859  doi: 10.1021/la4032859

    47. [47]

      Li, X. G.; Xue, Y. H.; Lv, P. Y.; Lin, H.; Du, F.; Hu, Y. Y.; Shen, J.; Duan, H. L. Soft Matter 2016, 12, 1655. doi: 10.1039/c5sm02765a  doi: 10.1039/c5sm02765a

    48. [48]

      Hu, Y. J.; Jiang, H.; Liu, J.; Li, Y. F.; Hou, X. Y.; Li, C. Z. RSC Adv. 2014, 4, 3162. doi: 10.1039/c3ra40998h  doi: 10.1039/c3ra40998h

    49. [49]

      Bormashenko, E.; Pogreb, R.; Balter, R.; Aharoni, H.; Bormashenko, Y.; Grynyov, R.; Mashkevych, L.; Aurbach, D.; Gendelman, O. Colloid Polym. Sci. 2015, 293, 2157. doi: 10.1007/s00396-015-3627-3  doi: 10.1007/s00396-015-3627-3

    50. [50]

      Dupin, D.; Armes, S. P.; Fujii, S. J. Am. Chem. Soc. 2009, 131, 5386. doi: 10.1021/ja901641v  doi: 10.1021/ja901641v

    51. [51]

      Zhang, L. B.; Cha, D.; Wang, P. Adv. Mater. 2012, 24, 4756. doi: 10.1002/adma.201201885  doi: 10.1002/adma.201201885

    52. [52]

      Tsompanas, M. -A.; Fullarton, C.; Adamatzky, A. Sensors Actuators B: Chem. 2019, 295, 194. doi: 10.1016/j.snb.2019.04.152  doi: 10.1016/j.snb.2019.04.152

    53. [53]

      Lai, Y.; Tang, Y.; Huang, J.; Wang, H.; Li, H.; Gong, D.; Ji, X.; Gong, J.; Lin, C.; Sun, L.; et al. Soft Matter 2011, 7, 6313. doi: 10.1039/C1SM05412K  doi: 10.1039/C1SM05412K

    54. [54]

      Lee, H. K.; Lee, Y. H.; Phang, I. Y.; Wei, J.; Miao, Y. E.; Liu, T.; Ling, X. Y. Angew. Chem. Int. Ed. 2014, 53, 5054. doi: 10.1002/anie.201401026  doi: 10.1002/anie.201401026

    55. [55]

      Han, X.; Lee, H. K.; Lee, Y. H.; Hao, W.; Liu, Y.; Phang, I. Y.; Li, S.; Ling, X. Y. J. Phys. Chem. Lett. 2016, 7, 1501. doi: 10.1021/acs.jpclett.6b00501  doi: 10.1021/acs.jpclett.6b00501

    56. [56]

      Han, X.; Lee, H. K.; Lim, W. C.; Lee, Y. H.; Phan-Quang, G. C.; Phang, I. Y.; Ling, X. Y. ACS Appl. Mater. Interfaces 2016, 8, 23941. doi: 10.1021/acsami.6b07766  doi: 10.1021/acsami.6b07766

    57. [57]

      Koh, C. S. L.; Lee, H. K.; Phan-Quang, G. C.; Han, X.; Lee, M. R.; Yang, Z.; Ling, X. Y. Angew. Chem. Int. Ed. 2017, 56, 8813. doi: 10.1002/anie.201704433  doi: 10.1002/anie.201704433

    58. [58]

      Sivan, V.; Tang, S. -Y.; O'Mullane, A. P.; Petersen, P.; Eshtiaghi, N.; Kalantar-zadeh, K.; Mitchell, A. Adv. Funct. Mater. 2013, 23, 144. doi: 10.1002/adfm.201200837  doi: 10.1002/adfm.201200837

    59. [59]

      Eshtiaghi, N.; Liu, J. S.; Shen, W.; Hapgood, K. P. Powder Technol. 2009, 196, 126. doi: 10.1016/j.powtec.2009.07.002  doi: 10.1016/j.powtec.2009.07.002

    60. [60]

      Marston, J. O.; Zhu, Y.; Vakarelski, I. U.; Thoroddsen, S. T. Powder Technol. 2012, 228, 424. doi: 10.1016/j.powtec.2012.06.003  doi: 10.1016/j.powtec.2012.06.003

    61. [61]

      Supakar, T.; Moradiafrapoli, M.; Christopher, G. F.; Marston, J. O. J. Colloid Interface Sci. 2016, 468, 10. doi: 10.1016/j.jcis.2016.01.028  doi: 10.1016/j.jcis.2016.01.028

    62. [62]

      McHale, G.; Shirtcliffe, N. J.; Newton, M. I.; Pyatt, F. B.; Doerr, S. H. Appl. Phys. Lett. 2007, 90, 054110. doi: 10.1063/1.2435594  doi: 10.1063/1.2435594

    63. [63]

      Ireland, P. M.; Noda, M.; Jarrett, E. D.; Fujii, S.; Nakamura, Y.; Wanless, E. J.; Webber, G. B. Powder Technol. 2016, 303, 55. doi: 10.1016/j.powtec.2016.08.036  doi: 10.1016/j.powtec.2016.08.036

    64. [64]

      Liyanaarachchi, K. R.; Ireland, P. M.; Webber, G. B.; Galvin, K. P. Appl. Phys. Lett. 2013, 103, 054105. doi: 10.1063/1.4817586  doi: 10.1063/1.4817586

    65. [65]

      Thomas, C. A.; Kido, K.; Kawashima, H.; Fujii, S.; Ireland, P. M.; Webber, G. B.; Wanless, E. J. J. Colloid Interface Sci. 2018, 529, 486. doi: 10.1016/j.jcis.2018.04.044  doi: 10.1016/j.jcis.2018.04.044

    66. [66]

      Kido, K.; Ireland, P. M.; Sekido, T.; Wanless, E. J.; Webber, G. B.; Nakamura, Y.; Fujii, S. Langmuir 2018, 34, 4970. doi: 10.1021/acs.langmuir.7b04204  doi: 10.1021/acs.langmuir.7b04204

    67. [67]

      Jarrett, E.; Ireland, P. M.; Webber, G. B.; Wanless, E. J. Powder Technol. 2016, 297, 1. doi: 10.1016/j.powtec.2016.04.021  doi: 10.1016/j.powtec.2016.04.021

    68. [68]

      Ireland, P. M.; Kido, K.; Webber, G. B.; Fujii, S.; Wanless, E. J. Front. Chem. 2018, 6. doi: 10.3389/fchem.2018.00215  doi: 10.3389/fchem.2018.00215

    69. [69]

      Ireland, P. M.; Thomas, C. A.; Lobel, B. T.; Webber, G. B.; Fujii, S.; Wanless, E. J. Front. Chem. 2018, 6, 280. doi: 10.3389/fchem.2018.00280  doi: 10.3389/fchem.2018.00280

    70. [70]

      Castro, J. O.; Neves, B. M.; Rezk, A. R.; Eshtiaghi, N.; Yeo, L. Y. ACS Appl. Mater. Interfaces 2016, 8, 17751. doi: 10.1021/acsami.6b05321  doi: 10.1021/acsami.6b05321

    71. [71]

      Fujii, S.; Kameyama, S.; Armes, S. P.; Dupin, D.; Suzaki, M.; Nakamura, Y. Soft Matter 2010, 6, 635. doi: 10.1039/b914997j  doi: 10.1039/b914997j

    72. [72]

      Wang, B.; Chan, K. F.; Ji, F. T.; Wang, Q. Q.; Chiu, P. W. Y.; Guo, Z. G.; Zhang, L. Adv. Sci. 2019, 6, 1802033. doi: 10.1002/advs.201802033  doi: 10.1002/advs.201802033

    73. [73]

      Li, X. G.; Shi, H. X.; Wang, Y. Q.; Wang, R. X.; Huang, S.; Huang, J. C.; Geng, X. G.; Zang, D. Y. Adv. Mater. Interfaces 2018, 5, 1701139. doi: 10.1002/admi.201701139  doi: 10.1002/admi.201701139

    74. [74]

      Liu, J. L.; Zuo, P. C. Eur. Phys. J. E 2016, 39, 17. doi: 10.1140/epje/i2016-16017-6  doi: 10.1140/epje/i2016-16017-6

    75. [75]

      Doganci, M. D.; Sesli, B. U.; Erbil, H. Y.; Binks, B. P.; Salama, I. E. Colloids Surf. A 2011, 384, 417. doi: 10.1016/j.colsurfa.2011.04.027  doi: 10.1016/j.colsurfa.2011.04.027

    76. [76]

      Chen, Y. Z.; Zhou, T. J.; Li, Y. Y.; Zhu, L. F.; Handschuh-Wang, S.; Zhu, D. Y.; Zhou, X. H.; Liu, Z.; Gan, T. S.; Zhou, X. C. Adv. Funct. Mater. 2018, 28, 1706277. doi: 10.1002/adfm.201706277  doi: 10.1002/adfm.201706277

    77. [77]

      Sato, E.; Yuri, M.; Fujii, S.; Nishiyama, T.; Nakamura, Y.; Horibe, H. Chem. Commun. 2015, 51, 17241. doi: 10.1039/c5cc07421e  doi: 10.1039/c5cc07421e

    78. [78]

      Sheng, Y. F.; Sun, G. Q.; Wu, J.; Ma, G. H.; Ngai, T. Angew. Chem. Int. Ed. 2015, 54, 7012. doi: 10.1002/anie.201500010  doi: 10.1002/anie.201500010

    79. [79]

      Arbatan, T.; Li, L.; Tian, J.; Shen, W. Adv. Healthcare Mater. 2012, 1, 80. doi: 10.1002/adhm.201100016  doi: 10.1002/adhm.201100016

    80. [80]

      Fujii, S.; Sawada, S.; Nakayama, S.; Kappl, M.; Ueno, K.; Shitajima, K.; Butt, H. J.; Nakamura, Y. Mater. Horiz. 2016, 3, 47. doi: 10.1039/c5mh00203f  doi: 10.1039/c5mh00203f

    81. [81]

      Bormashenko, E.; Balter, R.; Aharoni, H.; Aurbach, D. J. Colloid Interface Sci. 2014, 417, 206. doi: 10.1016/j.jcis.2013.11.036  doi: 10.1016/j.jcis.2013.11.036

    82. [82]

      McEleney, P.; Walker, G. M.; Larmour, I. A.; Bell, S. E. J. Chem. Eng. J. 2009, 147, 373. doi: 10.1016/j.cej.2008.11.026  doi: 10.1016/j.cej.2008.11.026

    83. [83]

      Bormashenko, E.; Bormashenko, Y.; Pogreb, R.; Gendelman, O. Langmuir 2011, 27, 7. doi: 10.1021/la103653p  doi: 10.1021/la103653p

    84. [84]

      Tang, S. Y.; Sivan, V.; Khoshmanesh, K.; O'Mullane, A. P.; Tang, X.; Gol, B.; Eshtiaghi, N.; Lieder, F.; Petersen, P.; Mitchell, A.; et al. Nanoscale 2013, 5, 5949. doi: 10.1039/c3nr00185g  doi: 10.1039/c3nr00185g

    85. [85]

      Forny, L.; Saleh, K.; Denoyel, R.; Pezron, I. Langmuir 2010, 26, 2333. doi: 10.1021/la902759s  doi: 10.1021/la902759s

    86. [86]

      Saleh, K.; Forny, L.; Guigon, P.; Pezron, I. Chem. Eng. Res. Des. 2011, 89, 537. doi: 10.1016/j.cherd.2010.06.005  doi: 10.1016/j.cherd.2010.06.005

    87. [87]

      Mchale, G. Langmuir 2009, 25, 7185. doi: 10.1021/la900597a  doi: 10.1021/la900597a

    88. [88]

      Lin, X. X.; Ma, W.; Wu, H.; Cao, S. L.; Huang, L. L.; Chen, L. H.; Takahara, A. Chem. Commun. 2016, 52, 1895. doi: 10.1039/c5cc08842a  doi: 10.1039/c5cc08842a

    89. [89]

      Bormashenko, E.; Pogreb, R.; Bormashenko, Y.; Musin, A.; Stein, T. Langmuir 2008, 24, 12119. doi: 10.1021/la802355y  doi: 10.1021/la802355y

    90. [90]

      Bormashenko, E.; Bormashenko, Y.; Musin, A. J. Colloid Interface Sci. 2009, 333, 419. doi: 10.1016/j.jcis.2008.09.079  doi: 10.1016/j.jcis.2008.09.079

    91. [91]

      Bormashenko, E.; Pogreb, R.; Musin, A.; Balter, R.; Whyman, G.; Aurbach, D. Powder Technol. 2010, 203, 529. doi: 10.1016/j.powtec.2010.06.019  doi: 10.1016/j.powtec.2010.06.019

    92. [92]

      Cassie, A. B. D. Discuss. Faraday Soc. 1948, 3, 11. doi: 10.1039/DF9480300011  doi: 10.1039/DF9480300011

    93. [93]

      Cassie, A. B. D.; Baxter, S. Trans. Faraday Soc. 1944, 40, 546. doi: 10.1039/TF9444000546  doi: 10.1039/TF9444000546

    94. [94]

      Chu, Z. L.; Seeger, S. Chem. Soc. Rev. 2014, 43, 2784. doi: 10.1039/c3cs60415b  doi: 10.1039/c3cs60415b

    95. [95]

      Jiang, X. F.; Zhu, C. Y.; Ma, Y. G.; Li, H. Z. Adv. Mater. Interfaces 2017, 4, 1700193. doi: 10.1002/admi.201700193  doi: 10.1002/admi.201700193

    96. [96]

      Tosun, A.; Erbil, H. Y. Appl. Surf. Sci. 2009, 256, 1278. doi: 10.1016/j.apsusc.2009.10.035  doi: 10.1016/j.apsusc.2009.10.035

    97. [97]

      Fernandes, A. M.; Mantione, D.; Gracia, R.; Leiza, J. R.; Paulis, M.; Mecerreyes, D. ACS Appl. Mater. Interfaces 2015, 7, 4433. doi: 10.1021/am509040x  doi: 10.1021/am509040x

    98. [98]

      Liu, Z. A.; Zhang, Z. H.; Zhang, F.; Wang, X. Y. J. Adhes. Sci. Technol. 2019, 33, 273. doi: 10.1080/01694243.2018.1537054  doi: 10.1080/01694243.2018.1537054

    99. [99]

      Liu, Z.; Fu, X. Y.; Binks, B. P.; Shum, H. C. Langmuir 2015, 31, 11236. doi: 10.1021/acs.langmuir.5b02792  doi: 10.1021/acs.langmuir.5b02792

    100. [100]

      Chen, G.; Tan, P.; Chen, S. Y.; Huang, J. P.; Wen, W. J.; Xu, L. Phys. Rev. Lett. 2013, 110, 064502. doi: 10.1103/PhysRevLett.110.064502  doi: 10.1103/PhysRevLett.110.064502

    101. [101]

      Laborie, B.; Lachaussée, F.; Lorenceau, E.; Rouyer, F. Soft Matter 2013, 9, 4822. doi: 10.1039/c3sm50164g  doi: 10.1039/c3sm50164g

    102. [102]

      Ueno, K.; Hamasaki, S.; Wanless, E. J.; Nakamura, Y.; Fujii, S. Langmuir 2014, 30, 3051. doi: 10.1021/la5003435  doi: 10.1021/la5003435

    103. [103]

      Matsukuma, D.; Watanabe, H.; Minn, M.; Fujimoto, A.; Shinohara, T.; Jinnai, H.; Takahara, A. RSC Adv. 2013, 3, 7862. doi: 10.1039/c3ra40693h  doi: 10.1039/c3ra40693h

    104. [104]

      Schmücker, C.; Stevens, G. W.; Mumford, K. A. J. Colloid Interface Sci. 2018, 514, 349. doi: 10.1016/j.jcis.2017.12.033  doi: 10.1016/j.jcis.2017.12.033

    105. [105]

      Lin, X. X.; Ma, W.; Chen, L. H.; Huang, L. L.; Wu, H.; Takahara, A. RSC Adv. 2019, 9, 34465. doi: 10.1039/C9RA05728E  doi: 10.1039/C9RA05728E

    106. [106]

      Rane, Y.; Foster, E.; Moradiafrapoli, M.; Marston, J. O. Powder Technol. 2018, 338, 7. doi: 10.1016/j.powtec.2018.05.058  doi: 10.1016/j.powtec.2018.05.058

    107. [107]

      Bhosale, P. S.; Panchagnula, M. V.; Stretz, H. A. Appl. Phys. Lett. 2008, 93, 034109. doi: 10.1063/1.2959853  doi: 10.1063/1.2959853

    108. [108]

      Mueggenburg, K. E.; Lin, X. M.; Goldsmith, R. H.; Jaeger, H. M. Nat. Mater. 2007, 6, 656. doi: 10.1038/nmat1965  doi: 10.1038/nmat1965

    109. [109]

      Zang, D. Y.; Chen, Z.; Zhang, Y. J.; Lin, K. J.; Geng, X. G.; Binks, B. P. Soft Matter 2013, 9, 5067. doi: 10.1039/c3sm50421b  doi: 10.1039/c3sm50421b

    110. [110]

      Kostakis, T.; Ettelaie, R.; Murray, B. S. Langmuir 2006, 22, 1273. doi: 10.1021/la052193f  doi: 10.1021/la052193f

    111. [111]

      Singha, P.; Swaminathan, S.; Yadav, A. S.; Varanakkottu, S. N. Langmuir 2019, 35, 4566. doi: 10.1021/acs.langmuir.8b03821  doi: 10.1021/acs.langmuir.8b03821

    112. [112]

      Draper, T. C.; Fullarton, C.; Mayne, R.; Phillips, N.; Canciani, G. E.; de Lacy Costello, B. P. J.; Adamatzky, A. Soft Matter 2019, 15, 3541. doi: 10.1039/C9SM00328B  doi: 10.1039/C9SM00328B

    113. [113]

      Bormashenko, E.; Pogreb, R.; Musin, A. J. Colloid Interface Sci. 2012, 366, 196. doi: 10.1016/j.jcis.2011.09.048  doi: 10.1016/j.jcis.2011.09.048

    114. [114]

      Planchette, C.; Biance, A. L.; Lorenceau, E. EPL 2012, 97, 14003. doi: 10.1209/0295-5075/97/14003  doi: 10.1209/0295-5075/97/14003

    115. [115]

      Braun, H. G.; Cardoso, A. Z. Colloids Surf. B 2012, 97, 43. doi: 10.1016/j.colsurfb.2012.03.028  doi: 10.1016/j.colsurfb.2012.03.028

    116. [116]

      Chin, J. M.; Reithofer, M. R.; Tan, T. T. Y.; Menon, A. G.; Chen, E. Y.; Chow, C. A.; Hor, A. T. S.; Xu, J. Chem. Commun. 2013, 49, 493. doi: 10.1039/c2cc37081f  doi: 10.1039/c2cc37081f

    117. [117]

      Newton, M. I.; Herbertson, D. L.; Elliott, S. J.; Shirtcliffe, N. J.; McHale, G. J. Phys. D: Appl. Phys. 2007, 40, 20. doi: 10.1088/0022-3727/40/1/s04  doi: 10.1088/0022-3727/40/1/s04

    118. [118]

      Planchette, C.; Biance, A. L.; Pitois, O.; Lorenceau, E. Phys. Fluids 2013, 25, 042104. doi: 10.1063/1.4801320  doi: 10.1063/1.4801320

    119. [119]

      Jin, J.; Ooi, C. H.; Dao, D. V.; Nguyen, N. -T. Soft Matter 2018, 14, 4160. doi: 10.1039/C8SM00121A  doi: 10.1039/C8SM00121A

    120. [120]

      Jin, J.; Ooi, C.; Dao, D.; Nguyen, N. -T. Micromachines 2017, 8, 336. doi: 10.3390/mi8110336  doi: 10.3390/mi8110336

    121. [121]

      Quéré, D.; Aussillous, P. Chem. Eng. Technol. 2002, 25, 925. doi: 10.1002/1521-4125[20020910]25:9 < 925::Aid-ceat925 > 3.0.Co; 2-0  doi: 10.1002/1521-4125[20020910]25:9<925::Aid-ceat925>3.0.Co;2-0

    122. [122]

      Zhao, Y. J.; Gu, H. C.; Xie, Z. Y.; Shum, H. C.; Wang, B. P.; Gu, Z. Z. J. Am. Chem. Soc. 2013, 135, 54. doi: 10.1021/ja310389w  doi: 10.1021/ja310389w

    123. [123]

      Ooi, C. H.; Nguyen, N. -T. Microfluid. Nanofluid. 2015, 19, 483. doi: 10.1007/s10404-015-1595-z  doi: 10.1007/s10404-015-1595-z

    124. [124]

      Zhao, Y.; Xu, Z. G.; Parhizkar, M.; Fang, J.; Wang, X. G.; Lin, T. Microfluid. Nanofluid. 2012, 13, 555. doi: 10.1007/s10404-012-0976-9  doi: 10.1007/s10404-012-0976-9

    125. [125]

      Vialetto, J.; Hayakawa, M.; Kavokine, N.; Takinoue, M.; Varanakkottu, S. N.; Rudiuk, S.; Anyfantakis, M.; Morel, M.; Baigl, D. Angew. Chem. Int. Ed. 2017, 56, 16565. doi: 10.1002/anie.201710668  doi: 10.1002/anie.201710668

    126. [126]

      Liu, Y.; Zhang, X. Y.; Poyraz, S.; Zhang, C.; Xin, J. H. ChemNanoMat 2018, 4, 546. doi: 10.1002/cnma.201800075  doi: 10.1002/cnma.201800075

    127. [127]

      Zhang, S. G.; Zhang, Y.; Wang, Y.; Liu, S. M.; Deng, Y. Q. Phys. Chem. Chem. Phys. 2012, 14, 5132. doi: 10.1039/c2cp23675c  doi: 10.1039/c2cp23675c

    128. [128]

      Wang, B.; Liu, Y.; Zhang, Y. B.; Guo, Z. G.; Zhang, H.; Xin, J. H.; Zhang, L. Adv. Mater. Interfaces 2015, 2, 1500234. doi: 10.1002/admi.201500234  doi: 10.1002/admi.201500234

    129. [129]

      Wang, D.; Zhu, L.; Chen, J. F.; Dai, L. M. Angew. Chem. Int. Ed. 2016, 128, 10953. doi: 10.1002/anie.201604781  doi: 10.1002/anie.201604781

    130. [130]

      Chu, Y.; Liu, F. T.; Qin, L. M.; Pan, Q. M. ACS Appl. Mater. Interfaces 2016, 8, 1273. doi: 10.1021/acsami.5b09952  doi: 10.1021/acsami.5b09952

    131. [131]

      Tang, X. K.; Tang, S. -Y.; Sivan, V.; Zhang, W.; Mitchell, A.; Kalantar-zadeh, K.; Khoshmanesh, K. Appl. Phys. Lett. 2013, 103, 174104. doi: 10.1063/1.4826923  doi: 10.1063/1.4826923

    132. [132]

      Fu, X. Y.; Zhang, Y. G.; Yuan, H.; Binks, B. P.; Shum, H. C. ACS Appl. Mater. Interfaces 2018, 10, 34822. doi: 10.1021/acsami.8b13111  doi: 10.1021/acsami.8b13111

    133. [133]

      Jin, J.; Ooi, C. H.; Sreejith, K. R.; Dao, D. V.; Nguyen, N. -T. Phys. Rev. Appl. 2019, 11, 044059. doi: 10.1103/PhysRevApplied.11.044059  doi: 10.1103/PhysRevApplied.11.044059

    134. [134]

      Jin, J.; Ooi, C. H.; Sreejith, K. R.; Zhang, J.; Nguyen, A. V.; Evans, G. M.; Dao, D. V.; Nguyen, N. -T. Microfluid. Nanofluid. 2019, 23, 85. doi: 10.1007/s10404-019-2255-5  doi: 10.1007/s10404-019-2255-5

    135. [135]

      Ooi, C. H.; Jin, J.; Nguyen, A. V.; Evans, G. M.; Nguyen, N. -T. Microfluid. Nanofluid. 2018, 22, 142. doi: 10.1007/s10404-018-2163-0  doi: 10.1007/s10404-018-2163-0

    136. [136]

      Ooi, C. H.; van Nguyen, A.; Evans, G. M.; Gendelman, O.; Bormashenko, E.; Nguyen, N. -T. RSC Adv. 2015, 5, 101006. doi: 10.1039/c5ra23946j  doi: 10.1039/c5ra23946j

    137. [137]

      Bormashenko, E.; Bormashenko, Y.; Grynyov, R.; Aharoni, H.; Whyman, G.; Binks, B. P. J. Phys. Chem. C 2015, 119, 9910. doi: 10.1021/acs.jpcc.5b01307  doi: 10.1021/acs.jpcc.5b01307

    138. [138]

      Bormashenko, E.; Frenkel, M.; Bormashenko, Y.; Chaniel, G.; Valtsifer, V.; Binks, B. P. Langmuir 2017, 33, 13234. doi: 10.1021/acs.langmuir.7b03356  doi: 10.1021/acs.langmuir.7b03356

    139. [139]

      Tiginyanu, I.; Braniste, T.; Smazna, D.; Deng, M.; Schütt, F.; Schuchardt, A.; Stevens-Kalceff, M. A.; Raevschi, S.; Schürmann, U.; Kienle, L.; et al. Nano Energy 2019, 56, 759. doi: 10.1016/j.nanoen.2018.11.049  doi: 10.1016/j.nanoen.2018.11.049

    140. [140]

      Kavokine, N.; Anyfantakis, M.; Morel, M.; Rudiuk, S.; Bickel, T.; Baigl, D. Angew. Chem. Int. Ed. 2016, 55, 11183. doi: 10.1002/anie.201603639  doi: 10.1002/anie.201603639

    141. [141]

      Ihara, T.; Iriyama, Y. J. Photopolym. Sci. Technol. 2011, 24, 435. doi: 10.2494/photopolymer.24.435  doi: 10.2494/photopolymer.24.435

    142. [142]

      Matsubara, K.; Danno, M.; Inoue, M.; Nishizawa, H.; Honda, Y.; Abe, T. Surf. Coat. Technol. 2013, 236, 269. doi: 10.1016/j.surfcoat.2013.09.058  doi: 10.1016/j.surfcoat.2013.09.058

    143. [143]

      Li, X.; Shi, H.; Hu, Y. Soft Matter 2019, 15, 3085. doi: 10.1039/C9SM00362B  doi: 10.1039/C9SM00362B

    144. [144]

      Fujii, S.; Suzaki, M.; Armes, S. P.; Dupin, D.; Hamasaki, S.; Aono, K.; Nakamura, Y. Langmuir 2011, 27, 8067. doi: 10.1021/la201317b  doi: 10.1021/la201317b

    145. [145]

      Fujii, S.; Aono, K.; Suzaki, M.; Hamasaki, S.; Yusa, S. -I.; Nakamura, Y. Macromolecules 2012, 45, 2863. doi: 10.1021/ma300048m  doi: 10.1021/ma300048m

    146. [146]

      Dupin, D.; Thompson, K. L.; Armes, S. P. Soft Matter 2011, 7, 6797. doi: 10.1039/c1sm05889d  doi: 10.1039/c1sm05889d

    147. [147]

      Chandan, S.; Ramakrishna, S.; Sunitha, K.; Chandran, M. S.; Kumar, K. S. S.; Mathew, D. J. Mater. Chem. A 2017, 5, 22813. doi: 10.1039/C7TA07562F  doi: 10.1039/C7TA07562F

    148. [148]

      Tan, T. T. Y.; Ahsan, A.; Reithofer, M. R.; Tay, S. W.; Tan, S. Y.; Hor, T. S. A.; Chin, J. M.; Chew, B. K. J.; Wang, X. Langmuir 2014, 30, 3448. doi: 10.1021/la500646r  doi: 10.1021/la500646r

    149. [149]

      Xu, Z. G.; Zhao, Y.; Dai, L. M.; Lin, T. Part. Part. Syst. Charact. 2014, 31, 839. doi: 10.1002/ppsc.201400009  doi: 10.1002/ppsc.201400009

    150. [150]

      Ohshio, M.; Yukioka, S.; Nguyen, T. L.; Iimura, K.; Fujii, S.; Nakamura, Y.; Yusa, S. -I. Chem. Lett. 2019, 48, 644. doi: 10.1246/cl.190148  doi: 10.1246/cl.190148

    151. [151]

      Nakai, K.; Nakagawa, H.; Kuroda, K.; Fujii, S.; Nakamura, Y.; Yusa, S. -I. Chem. Lett. 2013, 42, 719. doi: 10.1246/cl.130240  doi: 10.1246/cl.130240

    152. [152]

      Zhao, Z. H.; Zhang, Y.; Ren, L. W.; Xiang, B.; Li, J. J. Adhes. Sci. Technol. 2017, 31, 1125. doi: 10.1080/01694243.2016.1246021  doi: 10.1080/01694243.2016.1246021

    153. [153]

      Bormashenko, E.; Musin, A. Appl. Surf. Sci. 2009, 255, 6429. doi: 10.1016/j.apsusc.2009.02.027  doi: 10.1016/j.apsusc.2009.02.027

    154. [154]

      Wang, C. X.; He, Y. J. Colloids Surf. A 2018, 558, 367. doi: 10.1016/j.colsurfa.2018.09.005  doi: 10.1016/j.colsurfa.2018.09.005

    155. [155]

      Tenjimbayashi, M.; Samitsu, S.; Naito, M. Adv. Funct. Mater. 2019, 29, 1900688. doi: 10.1002/adfm.201900688  doi: 10.1002/adfm.201900688

    156. [156]

      Bormashenko, E.; Balter, R.; Aurbach, D. Appl. Phys. Lett. 2010, 97, 091908. doi: 10.1063/1.3487936  doi: 10.1063/1.3487936

    157. [157]

      Han, X. M.; Lee, H. K.; Lee, Y. H.; Ling, X. Y. J. Phys. Chem. Lett. 2017, 8, 243. doi: 10.1021/acs.jpclett.6b02743  doi: 10.1021/acs.jpclett.6b02743

    158. [158]

      Shin, D.; Huang, T.; Neibloom, D.; Bevan, M. A.; Frechette, J. ACS Appl. Mater. Interfaces 2019, 11, 34478. doi: 10.1021/acsami.9b12738  doi: 10.1021/acsami.9b12738

    159. [159]

      Rong, X.; Ettelaie, R.; Lishchuk, S. V.; Cheng, H. G.; Zhao, N.; Xiao, F. K.; Cheng, F. Q.; Yang, H. Q. Nat. Commun. 2019, 10, 1854. doi: 10.1038/s41467-019-09805-7  doi: 10.1038/s41467-019-09805-7

    160. [160]

      Lin, X. X.; Ma, W.; Chen, L. H.; Huang, L. L.; Wu, H.; Takahara, A. Soft Matter 2018, 14, 9308. doi: 10.1039/C8SM01852A  doi: 10.1039/C8SM01852A

    161. [161]

      Chen, R.; Xiong, Q.; Song, R. -Z.; Li, K. -L.; Zhang, Y. -X.; Fang, C.; Guo, J. -L. Adv. Mater. Interfaces 2019, 6, 1901057. doi: 10.1002/admi.201901057  doi: 10.1002/admi.201901057

    162. [162]

      Liang, S. T.; Rao, W.; Song, K.; Liu, J. ACS Appl. Mater. Interfaces 2018, 10, 1589. doi: 10.1021/acsami.7b17233  doi: 10.1021/acsami.7b17233

    163. [163]

      Watts, P.; Haswell, S. J. Chem. Soc. Rev. 2005, 34, 235. doi: 10.1039/b313866f  doi: 10.1039/b313866f

    164. [164]

      Mason, B. P.; Price, K. E.; Steinbacher, J. L.; Bogdan, A. R.; McQuade, D. T. Chem. Rev. 2007, 107, 2300. doi: 10.1021/cr050944c  doi: 10.1021/cr050944c

    165. [165]

      Thompson, J. C.; Hamori, E. J. Phys. Chem. 1971, 75, 272. doi: 10.1021/j100672a015  doi: 10.1021/j100672a015

    166. [166]

      Zang, D. Y.; Li, J.; Chen, Z.; Zhai, Z. C.; Geng, X. G.; Binks, B. P. Langmuir 2015, 31, 11502. doi: 10.1021/acs.langmuir.5b02917  doi: 10.1021/acs.langmuir.5b02917

    167. [167]

      Bajwa, A.; Xu, Y.; Hashmi, A.; Leong, M.; Ho, L.; Xu, J. Soft Matter 2012, 8, 11604. doi: 10.1039/c2sm26748a  doi: 10.1039/c2sm26748a

    168. [168]

      Chen, Z.; Zang, D. Y.; Zhao, L.; Qu, M. F.; Li, X.; Li, X. G.; Li, L. X.; Geng, X. G. Langmuir 2017, 33, 6232. doi: 10.1021/acs.langmuir.7b00347  doi: 10.1021/acs.langmuir.7b00347

    169. [169]

      Liu, Z.; Yang, T. Y.; Huang, Y. X.; Liu, Y.; Chen, L. C.; Deng, L. B.; Shum, H. C.; Kong, T. T. Adv. Funct. Mater. 2019, 29, 1901101. doi: 10.1002/adfm.201901101  doi: 10.1002/adfm.201901101

    170. [170]

      Sun, G. Q.; Sheng, Y. F.; Wu, J.; Ma, G. H.; Ngai, T. Langmuir 2014, 30, 12503. doi: 10.1021/la503105c  doi: 10.1021/la503105c

    171. [171]

      Tyowua, A. T.; Mooney, J. M.; Binks, B. P. Colloids Surf. A 2019, 560, 288. doi: 10.1016/j.colsurfa.2018.09.084  doi: 10.1016/j.colsurfa.2018.09.084

    172. [172]

      Rozynek, Z.; Mikkelsen, A.; Dommersnes, P.; Fossum, J. O. Nat. Commun. 2014, 5, 3945. doi: 10.1038/ncomms4945  doi: 10.1038/ncomms4945

    173. [173]

      Liu, Z.; Fu, X. Y.; Binks, B. P.; Shum, H. C. Soft Matter 2017, 13, 119. doi: 10.1039/c6sm00883f  doi: 10.1039/c6sm00883f

    174. [174]

      Chu, Y.; Wang, Z. K.; Pan, Q. M. ACS Appl. Mater. Interfaces 2014, 6, 8378. doi: 10.1021/am501268g  doi: 10.1021/am501268g

    175. [175]

      Takei, T.; Yamasaki, Y.; Yuji, Y.; Sakoguchi, S.; Ohzuno, Y.; Hayase, G.; Yoshida, M. J. Colloid Interface Sci. 2019, 536, 414. doi: 10.1016/j.jcis.2018.10.058  doi: 10.1016/j.jcis.2018.10.058

    176. [176]

      Vadivelu, R. K.; Ooi, C. H.; Yao, R. Q.; Tello Velasquez, J.; Pastrana, E.; Diaz-Nido, J.; Lim, F.; Ekberg, J. A.; Nguyen, N. T.; St John, J. A. Sci. Rep. 2015, 5, 15083. doi: 10.1038/srep15083  doi: 10.1038/srep15083

    177. [177]

      Ledda, S.; Idda, A.; Kelly, J.; Ariu, F.; Bogliolo, L.; Bebbere, D. J. Assist. Reprod. Genet. 2016, 33, 513. doi: 10.1007/s10815-016-0666-8  doi: 10.1007/s10815-016-0666-8

    178. [178]

      Sarvi, F.; Arbatan, T.; Chan, P. P. Y.; Shen, W. RSC Adv. 2013, 3, 14501. doi: 10.1039/c3ra40364e  doi: 10.1039/c3ra40364e

    179. [179]

      Tian, J. F.; Fu, N.; Chen, X. D.; Shen, W. Colloids Surf. B 2013, 106, 187. doi: 10.1016/j.colsurfb.2013.01.016  doi: 10.1016/j.colsurfb.2013.01.016

    180. [180]

      Rychecký, O.; Majerská, M.; Král, V.; Štěpánek, F.; Čejková, J. Chem. Pap. 2017, 71, 1055. doi: 10.1007/s11696-016-0026-2  doi: 10.1007/s11696-016-0026-2

    181. [181]

      Serrano, M. C.; Nardecchia, S.; Gutierrez, M. C.; Ferrer, M. L.; del Monte, F. ACS Appl. Mater. Interfaces 2015, 7, 3854. doi: 10.1021/acsami.5b00072  doi: 10.1021/acsami.5b00072

    182. [182]

      Vadivelu, R.; Kashaninejad, N.; Sreejith, K. R.; Bhattacharjee, R.; Cock, I.; Nguyen, N. -T. ACS Appl. Mater. Interfaces 2018, 10, 43439. doi: 10.1021/acsami.8b16236  doi: 10.1021/acsami.8b16236

    183. [183]

      Miao, Y. E.; Lee, H. K.; Chew, W. S.; Phang, I. Y.; Liu, T. X.; Ling, X. Y. Chem. Commun. 2014, 50, 5923. doi: 10.1039/c4cc01949k  doi: 10.1039/c4cc01949k

    184. [184]

      Wei, W.; Lu, R. J.; Ye, W. T.; Sun, J. H.; Zhu, Y.; Luo, J.; Liu, X. Y. Langmuir 2016, 32, 1707. doi: 10.1021/acs.langmuir.5b04697  doi: 10.1021/acs.langmuir.5b04697

    185. [185]

      Du, G. Q.; Peng, J. X.; Zhang, Y. Y.; Zhang, H. X.; Lü, J. L.; Fang, Y. Langmuir 2017, 33, 5223. doi: 10.1021/acs.langmuir.7b00346  doi: 10.1021/acs.langmuir.7b00346

    186. [186]

      Li, M. S.; Tian, J. F.; Li, L. Z.; Liu, A. H.; Shen, W. Chem. Eng. Sci. 2013, 97, 337. doi: 10.1016/j.ces.2013.04.003  doi: 10.1016/j.ces.2013.04.003

  • 加载中
    1. [1]

      Yixuan WangJiexin LiZhihao ShangChengcheng FengJianmin GuMaosheng YeRan ZhaoDanna LiuJingxin MengShutao Wang . Wettability-driven synergistic resistance of scale and oil on robust superamphiphobic coating. Chinese Chemical Letters, 2024, 35(7): 109623-. doi: 10.1016/j.cclet.2024.109623

    2. [2]

      Peiwen LiuFang ZhaoJing ZhangYunpeng BaiJinxing YeBo BaoXinggui ZhouLi ZhangChanglu ZhouXinhai YuPeng ZuoJianye XiaLian CenYangyang YangGuoyue ShiLin XuWeiping ZhuYufang XuXuhong Qian . Micro/nano flow chemistry by Beyond Limits Manufacturing. Chinese Chemical Letters, 2024, 35(5): 109020-. doi: 10.1016/j.cclet.2023.109020

    3. [3]

      Zixu XiePengfei ZhangZiyao ZhangChen ChenXing Wang . The choice of antimicrobial polymers: Hydrophilic or hydrophobic?. Chinese Chemical Letters, 2024, 35(9): 109768-. doi: 10.1016/j.cclet.2024.109768

    4. [4]

      Wangyan HuKe LiXiangnan DouNing LiXiayan Wang . Nano-sized stationary phase packings retained by single-particle frit for microchip liquid chromatography. Chinese Chemical Letters, 2024, 35(4): 108806-. doi: 10.1016/j.cclet.2023.108806

    5. [5]

      Dong LvXuelei LiuWei LiQiang ZhangXinhong YuYanchun Han . Single droplet formation by controlling the viscoelasticity of polymer solutions during inkjet printing. Chinese Chemical Letters, 2024, 35(6): 109401-. doi: 10.1016/j.cclet.2023.109401

    6. [6]

      Bei Li Zhaoke Zheng . In situ monitoring of the spatial distribution of oxygen vacancies at the single-particle level. Chinese Journal of Structural Chemistry, 2024, 43(10): 100331-100331. doi: 10.1016/j.cjsc.2024.100331

    7. [7]

      Shiyu HouMaolin SunLiming CaoChaoming LiangJiaxin YangXinggui ZhouJinxing YeRuihua Cheng . Computational fluid dynamics simulation and experimental study on mixing performance of a three-dimensional circular cyclone-type microreactor. Chinese Chemical Letters, 2024, 35(4): 108761-. doi: 10.1016/j.cclet.2023.108761

    8. [8]

      Yan ZouYin-Shuang HuDeng-Hui TianHong WuXiaoshu LvGuangming JiangYu-Xi Huang . Tuning the membrane rejection behavior by surface wettability engineering for an effective water-in-oil emulsion separation. Chinese Chemical Letters, 2024, 35(6): 109090-. doi: 10.1016/j.cclet.2023.109090

    9. [9]

      Fengkai ZouBorui SuHan LengNini XinShichao JiangDan WeiMei YangYouhua WangHongsong Fan . Red-emissive carbon quantum dots minimize phototoxicity for rapid and long-term lipid droplet monitoring. Chinese Chemical Letters, 2024, 35(10): 109523-. doi: 10.1016/j.cclet.2024.109523

    10. [10]

      Hongxia LiXiyang WangDu QiaoJiahao LiWeiping ZhuHonglin Li . Mechanism of nanoparticle aggregation in gas-liquid microfluidic mixing. Chinese Chemical Letters, 2024, 35(4): 108747-. doi: 10.1016/j.cclet.2023.108747

    11. [11]

      Tian FengYun-Ling GaoDi HuKe-Yu YuanShu-Yi GuYao-Hua GuSi-Yu YuJun XiongYu-Qi FengJie WangBi-Feng Yuan . Chronic sleep deprivation induces alterations in DNA and RNA modifications by liquid chromatography-mass spectrometry analysis. Chinese Chemical Letters, 2024, 35(8): 109259-. doi: 10.1016/j.cclet.2023.109259

    12. [12]

      Haoyang WangRonghao ZhangYanlun RenLi Zhang . A convenient method for measuring gas-liquid volumetric mass transfer coefficient in micro reactors. Chinese Chemical Letters, 2024, 35(4): 108833-. doi: 10.1016/j.cclet.2023.108833

    13. [13]

      Cheng GuoXiaoxiao ZhangXiujuan HongYiqiu HuLingna MaoKezhi Jiang . Graphene as adsorbent for highly efficient extraction of modified nucleosides in urine prior to liquid chromatography-tandem mass spectrometry analysis. Chinese Chemical Letters, 2024, 35(4): 108867-. doi: 10.1016/j.cclet.2023.108867

    14. [14]

      Luyu ZhangZirong DongShuai YuGuangyue LiWeiwen KongWenjuan LiuHaisheng HeYi LuWei WuJianping Qi . Ionic liquid-based in situ dynamically self-assembled cationic lipid nanocomplexes (CLNs) for enhanced intranasal siRNA delivery. Chinese Chemical Letters, 2024, 35(7): 109101-. doi: 10.1016/j.cclet.2023.109101

    15. [15]

      Haodong WangXiaoxu LaiChi ChenPei ShiHouzhao WanHao WangXingguang ChenDan Sun . Novel 2D bifunctional layered rare-earth hydroxides@GO catalyst as a functional interlayer for improved liquid-solid conversion of polysulfides in lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(5): 108473-. doi: 10.1016/j.cclet.2023.108473

    16. [16]

      Wenhao YanShuaiya XueXuerui ZhaoWei ZhangJian Li . Hexagonal boron nitride based slippery liquid infused porous surface with anti-corrosion, anti-contaminant and anti-icing properties for protecting magnesium alloy. Chinese Chemical Letters, 2024, 35(4): 109224-. doi: 10.1016/j.cclet.2023.109224

    17. [17]

      Yufeng WuMingjun JingJuan LiWenhui DengMingguang YiZhanpeng ChenMeixia YangJinyang WuXinkai XuYanson BaiXiaoqing ZouTianjing WuXianyou Wang . Collaborative integration of Fe-Nx active center into defective sulfur/selenium-doped carbon for efficient oxygen electrocatalysts in liquid and flexible Zn-air batteries. Chinese Chemical Letters, 2024, 35(9): 109269-. doi: 10.1016/j.cclet.2023.109269

Metrics
  • PDF Downloads(27)
  • Abstract views(1441)
  • HTML views(491)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return