Citation: Zou Houbing, Ettelaie Rammile, Yan Shuai, Xue Nan, Yang Hengquan. Solvent-Induced Inversion of Pickering Emulsions for In Situ Recycling of Enzyme Biocatalysts[J]. Acta Physico-Chimica Sinica, ;2020, 36(10): 191000. doi: 10.3866/PKU.WHXB201910006 shu

Solvent-Induced Inversion of Pickering Emulsions for In Situ Recycling of Enzyme Biocatalysts

  • Corresponding author: Ettelaie Rammile, R.Ettelaie@food.leeds.ac.uk Yang Hengquan, hqyang@sxu.edu.cn
  • Received Date: 7 October 2019
    Revised Date: 29 November 2019
    Available Online: 12 December 2019

    Fund Project: the National Natural Science Foundation of China U1510105the National Natural Science Foundation of China 21573136the National Natural Science Foundation of China 21703128The project was supported by the National Natural Science Foundation of China (21703128, U1510105, 21733009, 21573136)the National Natural Science Foundation of China 21733009

  • Separation and recycling of catalysts are crucial for realizing the objectives of sustainable and green chemistry but remain a great challenge, especially for enzyme biocatalysts. In this work, we report a new solvent-induced reversible inversion of Pickering emulsions stabilized by Janus mesosilica nanosheets (JMSNs), which is then utilized as a strategy for the in situ separation and recycling of enzymes. The interfacial active solid particle JMSNs is carefully characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), nitrogen sorption experiments, Fourier transform infrared (FT-IR) spectroscopy, and thermogravimetric analysis (TGA).The JMSNs are demonstrated to show order-oriented mesochannels with a large specific surface area, and the hydrophobic octylgroup is selectively modified on one side of the nanosheets. Furthermore, the inversion is found to be a fast process that is strongly dependent on the interfacial activity of the solid emulsifier JMSNs. Such a phase inversion is also a general process that can be realized in various oil/water phasic systems, including ethyl acetate-water, octane-water, and cyclohexane-water systems. By carefully analyzing the capacity of JMSNs with different surface wettabilities for phase inversion, a triphase contact angle (θ) close to 90° and a critical oil-water ratio of 1 : 2 are identified as the key factors to achieve solvent-induced phase inversion via a catastrophic phase inversion mechanism. Importantly, this reversible phase inversion is suitable for the separation and recycling of enzyme biocatalysts that are sensitive to changes in the reaction medium. Specifically, during the reaction, the organic substrates are dissolved in the oil droplets and the water-soluble catalysts are dispersed in the water phase, while a majority of the product is released into the upper oil phase and the enzyme catalyst is confined inside the water droplets in the bottom layer after phase inversion. The perpendicular mesochannels of JMSNs provide a highly accessible reaction interface, and their excellent interfacial activity allows for more than 10 rounds of consecutive phase inversions by simply adjusting the ratio of oil to water in the system. Using the enzymatic hydrolysis kinetic resolution of racemic acetate as an example, our Pickering emulsion system shows not only a 3-fold enhanced activity but also excellent recyclability. Because no sensitive chemical reagents are used in this phase inversion process, the intrinsic activities of the catalysts can be preserved even after seven cycles. The current study provides an alternative strategy for the separation and recycling of enzymes, in addition to revealing a new innovative application for Janus-type nanoparticles.
  • 加载中
    1. [1]

      Gladysz, J. A. Recoverable and Recyclable Catalysts; Wiley: Chichester, 2009; pp. 1–14.

    2. [2]

      Cole-Hamilton, D. J. Science 2003, 299, 1702. doi: 10.1126/science.1081881  doi: 10.1126/science.1081881

    3. [3]

      Dioumaev, V. K.; Bullock, R. M. Nature 2003, 424, 530. doi: 10.1038/nature01856  doi: 10.1038/nature01856

    4. [4]

      Ikegami, S.; Hamamoto, H. Chem. Rev. 2009, 109, 583. doi: 10.1021/cr800481x  doi: 10.1021/cr800481x

    5. [5]

      Molnár, A.; Papp, A. Coord. Chem. Rev. 2017, 349, 1. doi: 10.1016/j.ccr.2017.08.011  doi: 10.1016/j.ccr.2017.08.011

    6. [6]

      Rudroff, F.; Mihovilovic, M. D.; Groger, H.; Snajdrova, R.; Iding, H.; Bornscheuer, U. T. Nat. Catal. 2018, 1, 12. doi: 10.1038/s41929-017-0010-4  doi: 10.1038/s41929-017-0010-4

    7. [7]

      Zhang, M.; Ettelaie, R.; Yan, T.; Zhang, S. J.; Cheng, F. Q.; Binks, B. P.; Yang, H. Q. J. Am. Chem. Soc. 2017, 139, 17387. doi: 10.1021/jacs.7b07731  doi: 10.1021/jacs.7b07731

    8. [8]

      Gao, J.; Ou, X.; Xu, P.; Zong, M.; Lou, W. Chin. J. Catal. 2018, 39, 937. doi: 10.1016/S1872-2067(18)63033-5  doi: 10.1016/S1872-2067(18)63033-5

    9. [9]

      Desset, S. L.; Cole-Hamilton, D. J. Angew. Chem. Int. Ed. 2009, 48, 1472. doi: 10.1002/anie.200804729  doi: 10.1002/anie.200804729

    10. [10]

      Mokhadinyana, M.; Desset, S. L.; Williams, D. B. G.; Cole-Hamilton, D. J. Angew. Chem. Int. Ed. 2012, 51, 1648. doi: 10.1002/anie.201108200  doi: 10.1002/anie.201108200

    11. [11]

      Brunsch, Y.; Behr, A. Angew. Chem. Int. Ed. 2013, 52, 1586. doi: 10.1002/anie.201208667  doi: 10.1002/anie.201208667

    12. [12]

      Crossley, S.; Faria, J.; Shen, M.; Resasco, D. E. Science 2010, 327, 68. doi: 10.1126/science.1180769  doi: 10.1126/science.1180769

    13. [13]

      Pera-Titus, M.; Leclercq, L.; Clacens, J. M.; Campo, F. D.; Nardello-Rataj, V. Angew. Chem. Int. Ed. 2015, 54, 2006. doi: 10.1002/anie.201402069  doi: 10.1002/anie.201402069

    14. [14]

      Yang, H. Q.; Fu, L. M.; Wei, L. J.; Liang, J. F.; J. Am. Chem. Soc. 2015, 137, 1362. doi: 10.1021/ja512337z  doi: 10.1021/ja512337z

    15. [15]

      Zhang, M.; Wei, L. J.; Chen, H.; Du, Z. P.; Binks, B. P.; Yang, H. Q. J. Am. Chem. Soc. 2016, 138, 10173. doi: 10.1021/jacs.6b04265  doi: 10.1021/jacs.6b04265

    16. [16]

      Xue, F.; Zhang, Y.; Zhang, F.; Ren, X.; Yang, H. ACS Appl. Mater. Interfaces 2017, 9, 8403. doi: 10.1021/acsami.6b16605  doi: 10.1021/acsami.6b16605

    17. [17]

      Yang, T. Y.; Wei, L. J.; Jing, L. Y.; Liang, J. F.; Zhang, X. M.; Tang, M.; Monteiro, M.; Chen, Y.; Wang, Y.; Gu, S.; et al. Angew. Chem. Int. Ed. 2017, 56, 8459. doi: 10.1002/anie.201701640  doi: 10.1002/anie.201701640

    18. [18]

      Kim, H.; Cho, J.; Cho, J.; Park, B.; Kim, J. ACS Appl. Mater. Interfaces 2018, 10, 1408. doi: 10.1021/acsami.7b15894  doi: 10.1021/acsami.7b15894

    19. [19]

      Dai, J. Y.; Zou, H. B.; Shi, Z. Q.; Yang, H. Q.; Wang, R. W.; Zhang, Z. T.; Qiu, S. L. ACS Appl. Mater. Interfaces 2018, 10, 33474. doi: 10.1021/acsami.8b11888  doi: 10.1021/acsami.8b11888

    20. [20]

      Zhao, Y. P.; Zhang, X. M.; Sanjeevi, J.; Yang, Q. H. J. Catal. 2016, 334, 52. doi: 10.1016/j.jcat.2015.11.011  doi: 10.1016/j.jcat.2015.11.011

    21. [21]

      Yang, X.; Wang, Y.; Bai, R.; Ma, H.; Wang, W.; Sun, H.; Dong, Y.; Qu, F.; Tang, Q.; Guo, T.; et al. Green Chem. 2019, 21, 2229. doi: 10.1039/C8GC03573C  doi: 10.1039/C8GC03573C

    22. [22]

      Xue, D.; Meng, Q. B.; Song, X. -M. ACS Appl. Mater. Interfaces 2019, 11, 10967. doi: 10.1021/acsami.8b21012  doi: 10.1021/acsami.8b21012

    23. [23]

      Zhang, W. J.; Fu, L. M.; Yang, H. Q. ChemSusChem 2014, 7, 391. doi: 10.1002/cssc.201301001  doi: 10.1002/cssc.201301001

    24. [24]

      Wei, L. J.; Zhang, M.; Zhang, X. M.; Xin, H. C.; Yang, H. Q. ACS Sustainable Chem. Eng. 2016, 4, 6838. doi: 10.1021/acssuschemeng.6b01776  doi: 10.1021/acssuschemeng.6b01776

    25. [25]

      Tu, F.; Lee, D. J. Am. Chem. Soc. 2014, 136, 9999. doi: 10.1021/ja503189r  doi: 10.1021/ja503189r

    26. [26]

      Liang, F. X.; Liu, B.; Cao, Z.; Yang, Z. Z. Langmuir 2018, 34, 4123. doi: 10.1021/acs.langmuir.7b02308  doi: 10.1021/acs.langmuir.7b02308

    27. [27]

      Wei, P. R.; Luo, Q. M.; Edgehouse, K. J.; Hemmingsen, C. M.; Rodier, B. J.; Pentzer, E. B. ACS Appl. Mater. Interfaces 2018, 10, 21765. doi: 10.1021/acsami.8b07178  doi: 10.1021/acsami.8b07178

    28. [28]

      Yang, H. Q.; Zhou, T.; Zhang, W. J. Angew. Chem. Int. Ed. 2013, 52, 7455. doi: 10.1002/anie.201300534  doi: 10.1002/anie.201300534

    29. [29]

      Huang, J. P.; Yang, H. Q. Chem. Commun. 2015, 51, 7333. doi: 10.1039/C5CC01211B  doi: 10.1039/C5CC01211B

    30. [30]

      Hao, Y. J.; Liu, Y.; Yang, R.; Zhang, X. M.; Liu, J.; Yang, H. Q. Chin. Chem. Lett. 2018, 29, 778. doi: 10.1016/j.cclet.2018.01.010  doi: 10.1016/j.cclet.2018.01.010

    31. [31]

      Chen, Z. W.; Zhou, L.; Bing, W.; Zhang, Z. J.; Li, Z. H.; Ren, J. S.; Qu, X. G. J. Am. Chem. Soc. 2014, 136, 7498. doi: 10.1021/ja503123m  doi: 10.1021/ja503123m

    32. [32]

      Zhang, Q.; Bai, R. X.; Guo, T.; Meng, T. ACS Appl. Mater. Interfaces 2015, 7, 18240. doi: 10.1021/acsami.5b06808  doi: 10.1021/acsami.5b06808

    33. [33]

      Cao, Y. Y.; Wang, Z.; Zhang, S. M.; Wang, Y. P. Mater. Chem. Front. 2017, 1, 2136. doi: 10.1039/C7QM00275K  doi: 10.1039/C7QM00275K

    34. [34]

      Shi, Y. L.; Xiong, D. Z.; Li, Z. Y.; Wang, H. Y.; Pei, Y. C.; Chen, Y. K.; Wang, J. J. ACS Sustainable Chem. Eng. 2018, 6, 15383. doi: 10.1021/acssuschemeng.8b03808  doi: 10.1021/acssuschemeng.8b03808

    35. [35]

      Binks, B. P.; Olusanya, S. O. P. Langmuir 2018, 34, 5040. doi: 10.1021/acs.langmuir.8b00715  doi: 10.1021/acs.langmuir.8b00715

    36. [36]

      Binks, B. P.; Shi, H. Langmuir 2019, 35, 4046. doi:10.1021/acs.langmuir.8b04151  doi: 10.1021/acs.langmuir.8b04151

    37. [37]

      Yan, S.; Zou, H. B.; Chen, S.; Xue, N.; Yang, H. Q. Chem. Commun. 2018, 54, 10455. doi: 10.1039/C8CC05967E  doi: 10.1039/C8CC05967E

    38. [38]

      Liang, F. X.; Shen, K.; Qu, X. Z.; Zhang, C. L.; Wang, Q.; Li, J. L.; Liu, J. G.; Yang, Z. Z. Angew. Chem. Int. Ed. 2011, 50, 2379. doi: 10.1002/anie.201007519  doi: 10.1002/anie.201007519

    39. [39]

      Walther, A.; Muller, A. H. E. Chem. Rev. 2013, 113, 5194. doi: 10.1021/cr300089t  doi: 10.1021/cr300089t

    40. [40]

      Liang, F.; Zhang, C.; Yang, Z. Adv. Mater. 2014, 26, 6944. doi: 10.1002/adma.201305415  doi: 10.1002/adma.201305415

    41. [41]

      Binks, B. P.; Fletcher, P. D. I. Langmuir 2001, 17, 4708. doi: 10.1021/la0103315  doi: 10.1021/la0103315

    42. [42]

      Luo, J.; Zeng, M.; Peng, B.; Tang, Y.; Zhang, L.; Wang, P.; He, L.; Huang, D.; Wang, L.; Wang, X.; Chen, M.; Lei, S.; Lin, P.; Chen, Y.; Cheng, Z. Angew. Chem. Int. Ed. 2018, 57, 11752. doi: 10.1002/ange.201807372  doi: 10.1002/ange.201807372

    43. [43]

      Finkle, P.; Draper, H. D.; Hildebrand, J. H. J. Am. Chem. Soc. 1923, 45, 2780. doi: 10.1021/ja01665a002  doi: 10.1021/ja01665a002

    44. [44]

      Binks, B. P.; Lumsdon, S. O. Langmuir 2000, 16, 8622. doi: 10.1021/la000189s  doi: 10.1021/la000189s

    45. [45]

      Aveyard, R.; Binks, B. P.; Clint, J. H. Adv. Colloid Interface Sci. 2003, 100-102, 503. doi: 10.1016/S0001-8686(02)00069-6  doi: 10.1016/S0001-8686(02)00069-6

    46. [46]

      Kumar, A.; Li, S.; Cheng, C.; Lee, D. Eng. Chem. Res. 2015, 54, 8375. doi: 10.1021/acs.iecr.5b01122  doi: 10.1021/acs.iecr.5b01122

    47. [47]

      Perazzo, A.; Preziosi, V.; Guido, S. Adv. Colloid Interface Sci. 2015, 222, 581. doi: 10.1016/j.cis.2015.01.001  doi: 10.1016/j.cis.2015.01.001

    48. [48]

      Wu, D. L.; Binks, B. P.; Honciuc, A. Langmuir 2018, 34, 1225. doi: 10.1021/acs.langmuir.7b02331  doi: 10.1021/acs.langmuir.7b02331

    49. [49]

      Binks, B. P.; Lumsdon, S. O. Langmuir 2000, 16, 3748. doi: 10.1021/la991427q  doi: 10.1021/la991427q

    50. [50]

      Binks, B. P.; Lumsdon, S. O. Langmuir 2000, 16, 2539. doi: 10.1021/la991081j  doi: 10.1021/la991081j

    51. [51]

      Arditty, S.; Whitby, C. P.; Binks, B. P.; Schmitt, V.; Leal-Calderon, F. Eur. Phys. J. E 2003, 11, 273. doi: 10.1140/epje/i2003-10018-6  doi: 10.1140/epje/i2003-10018-6

    52. [52]

      Verho, O.; Backvall, J. E. J. Am. Chem. Soc. 2015, 137, 3996. doi: 10.1021/jacs.5b01031  doi: 10.1021/jacs.5b01031

    53. [53]

      Khan, A.; Bilal, M.; Rasheed, T.; Iqbal, H. Chin. J. Catal. 2018, 39, 1861. doi: 10.1016/S1872‐2067(18)63144‐4  doi: 10.1016/S1872‐2067(18)63144‐4

    54. [54]

      Engstrom, K.; Johnston, E.; Verho, O.; Gustafson, K.; Shakeri, M.; Tai, C.; Backvall, J. Angew. Chem. Int. Ed. 2013, 52, 14006. doi: 10.1002/anie.201306487  doi: 10.1002/anie.201306487

  • 加载中
    1. [1]

      Wantong ZhangZixing XuGuofei DaiZhijian LiChunhui Deng . Removal of Microcystin-LR in lake water sample by hydrophilic mesoporous silica composites under high-throughput MALDI-TOF MS detection platform. Chinese Chemical Letters, 2024, 35(5): 109135-. doi: 10.1016/j.cclet.2023.109135

    2. [2]

      Liliang ChuXiaoyan ZhangJianing LiXuelei DengMiao WuYa ChengWeiping ZhuXuhong QianYunpeng Bai . Continuous-flow synthesis of polysubstituted γ-butyrolactones via enzymatic cascade catalysis. Chinese Chemical Letters, 2024, 35(4): 108896-. doi: 10.1016/j.cclet.2023.108896

    3. [3]

      Yujuan Zhao Zaiwang Zhao . Monolayer mesoporous nanosheets with surface asymmetry via a dual-emulsion-directed monomicelle assembly. Chinese Journal of Structural Chemistry, 2024, 43(2): 100238-100238. doi: 10.1016/j.cjsc.2024.100238

    4. [4]

      Zhaomin TangQian HeJianren ZhouShuang YanLi JiangYudong WangChenxing YaoHuangzhao WeiKeda YangJiajia Wang . Active-transporting of charge-reversal Cu(Ⅱ)-doped mesoporous silica nanoagents for antitumor chemo/chemodynamic therapy. Chinese Chemical Letters, 2024, 35(7): 109742-. doi: 10.1016/j.cclet.2024.109742

    5. [5]

      Ruilong GengLingzi PengChang Guo . Dynamic kinetic stereodivergent transformations of propargylic ammonium salts via dual nickel and copper catalysis. Chinese Chemical Letters, 2024, 35(8): 109433-. doi: 10.1016/j.cclet.2023.109433

    6. [6]

      Mengli Xu Zhenmin Xu Zhenfeng Bian . Achieving Ullmann coupling reaction via photothermal synergy with ultrafine Pd nanoclusters supported on mesoporous TiO2. Chinese Journal of Structural Chemistry, 2024, 43(7): 100305-100305. doi: 10.1016/j.cjsc.2024.100305

    7. [7]

      Baokang GengXiang ChuLi LiuLingling ZhangShuaishuai ZhangXiao WangShuyan SongHongjie Zhang . High-efficiency PdNi single-atom alloy catalyst toward cross-coupling reaction. Chinese Chemical Letters, 2024, 35(7): 108924-. doi: 10.1016/j.cclet.2023.108924

    8. [8]

      Ling Tang Yan Wan Yangming Lin . Lowering the kinetic barrier via enhancing electrophilicity of surface oxygen to boost acidic oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100345-100345. doi: 10.1016/j.cjsc.2024.100345

    9. [9]

      Peng Wang Daijie Deng Suqin Wu Li Xu . Cobalt-based deep eutectic solvent modified nitrogen-doped carbon catalyst for boosting oxygen reduction reaction in zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(1): 100199-100199. doi: 10.1016/j.cjsc.2023.100199

    10. [10]

      Conghui WangLei XuZhenhua JiaTeck-Peng Loh . Recent applications of macrocycles in supramolecular catalysis. Chinese Chemical Letters, 2024, 35(4): 109075-. doi: 10.1016/j.cclet.2023.109075

    11. [11]

      Wei Chen Pieter Cnudde . A minireview to ketene chemistry in zeolite catalysis. Chinese Journal of Structural Chemistry, 2024, 43(11): 100412-100412. doi: 10.1016/j.cjsc.2024.100412

    12. [12]

      Yu MaoYilin LiuXiaochen WangShengyang NiYi PanYi Wang . Acylfluorination of enynes via phosphine and silver catalysis. Chinese Chemical Letters, 2024, 35(8): 109443-. doi: 10.1016/j.cclet.2023.109443

    13. [13]

      Huan YaoJian QinYan-Fang WangSong-Meng WangLiu-Huan YiShi-Yao LiFangfang DuLiu-Pan YangLi-Li Wang . Ultra-highly selective recognition of nucleosides over nucleotides by rational modification of tetralactam macrocycle and its application in enzyme assay. Chinese Chemical Letters, 2024, 35(6): 109154-. doi: 10.1016/j.cclet.2023.109154

    14. [14]

      Yan ZouYin-Shuang HuDeng-Hui TianHong WuXiaoshu LvGuangming JiangYu-Xi Huang . Tuning the membrane rejection behavior by surface wettability engineering for an effective water-in-oil emulsion separation. Chinese Chemical Letters, 2024, 35(6): 109090-. doi: 10.1016/j.cclet.2023.109090

    15. [15]

      Yunan YuanZhimin LuoJie ChenChaoliang HeKai HaoHuayu Tian . Constructing thermoresponsive PNIPAM-based microcarriers for cell culture and enzyme-free cell harvesting. Chinese Chemical Letters, 2024, 35(7): 109549-. doi: 10.1016/j.cclet.2024.109549

    16. [16]

      Xinyu Huai Jingxuan Liu Xiang Wu . Cobalt-Doped NiMoO4 Nanosheet for High-performance Flexible Supercapacitor. Chinese Journal of Structural Chemistry, 2023, 42(10): 100158-100158. doi: 10.1016/j.cjsc.2023.100158

    17. [17]

      Yue ZhangXiaoya FanXun HeTingyu YanYongchao YaoDongdong ZhengJingxiang ZhaoQinghai CaiQian LiuLuming LiWei ChuShengjun SunXuping Sun . Ambient electrosynthesis of urea from carbon dioxide and nitrate over Mo2C nanosheet. Chinese Chemical Letters, 2024, 35(8): 109806-. doi: 10.1016/j.cclet.2024.109806

    18. [18]

      Feng CuiFangman ChenXiaochun XieChenyang GuoKai XiaoZiping WuYinglu ChenJunna LuFeixia RuanChuanxu ChengChao YangDan Shao . Scalable production of mesoporous titanium nanoparticles through sequential flash nanocomplexation. Chinese Chemical Letters, 2024, 35(4): 108681-. doi: 10.1016/j.cclet.2023.108681

    19. [19]

      Ning LISiyu DUXueyi WANGHui YANGTao ZHOUZhimin GUANPeng FEIHongfang MAShang JIANG . Preparation and efficient catalysis for olefins epoxidation of a polyoxovanadate-based hybrid. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 799-808. doi: 10.11862/CJIC.20230372

    20. [20]

      Uttam Pandurang Patil . Porous carbon catalysis in sustainable synthesis of functional heterocycles: An overview. Chinese Chemical Letters, 2024, 35(8): 109472-. doi: 10.1016/j.cclet.2023.109472

Metrics
  • PDF Downloads(12)
  • Abstract views(584)
  • HTML views(74)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return