Citation: Sun Guanqing, Yi Zonglin, Ngai To. Particle-Stabilized Interfaces and Their Interactions at Interfaces[J]. Acta Physico-Chimica Sinica, ;2020, 36(10): 191000. doi: 10.3866/PKU.WHXB201910005 shu

Particle-Stabilized Interfaces and Their Interactions at Interfaces


  • Author Bio:

    To NGAI now is Professor in the Department of Chemistry, Assistant Dean (Research) of Science at the Chinese University of Hong Kong (CUHK), and Fellow of the Royal Society of Chemistry (FRSC). He received his B.Sc. in chemistry at CUHK in 1999. In 2003, he obtained the Ph.D at the same university, where he worked on light scattering and polymer interaction in solution. He moved to BASF (Ludwigshafen, Germany) in 2003 as the postdoctoral fellow for two years, working on colloids and surface chemistry. After a short postdoctoral training in the Chemistry Department at the University of Minnesota in 2005, he joined the Chemistry Department at CUHK in 2006 as a research assistant professor. He has been appointed as an assistant professor in 2008, and early promoted to associate professor in 2012. In 2017, he was promoted to Professor. His current research interests center around the colloids, surface chemistry, polymers and soft matter
  • Corresponding author: Ngai To, tongai@cuhk.edu.hk
  • Received Date: 7 October 2019
    Revised Date: 28 December 2019
    Accepted Date: 31 December 2019
    Available Online: 3 February 2020

    Fund Project: The project was supported by the National Natural Science Foundation of China (21703085, 21972057) and the Fundamental Research Funds for the Central Universities of China (JUS 1042050205182110)the National Natural Science Foundation of China 21703085the National Natural Science Foundation of China 21972057the Fundamental Research Funds for the Central Universities of China JUS 1042050205182110

  • Particle-stabilized dispersions such as emulsions, foams and bubbles are catching increasing attentions across a number of research areas. The adsorption mechanism and role of these colloidal particles in stabilizing the oil-water or gas-water interfaces and how these particles interact at interfaces are vital to the practical use of these dispersion systems. Although there have been intensive investigations, problems associated with the stabilization mechanisms and particle-particle interactions at interfaces still remain to explore. In this paper, we first systematically review the historical understanding of particle-stabilized emulsions or bubbles and then give an overview of the most important and well-established progress in the understanding of particle-stabilized systems, including emulsions, foams and liquid marbles. The particle-adsorption phenomena have long been realized and been discussed in academic paper for more than one century and a quantitative model was proposed in the early 1980s. The theory can successfully explain the adsorption of solid particles onto interface from energy reduction approaches. The stability of emulsions and foams can be readily correlated to the wettability of the particles towards the two phases. And extensive researches on emulsion stability and various strategies have been developed to prepared dispersion systems with a certain trigger such as pH and temperature. After that, we discuss recent development of the interactions between particles when they are trapped at the interface and highlight open questions in this field. There exists a huge gap between theoretical approaches and experimental results on the interactions of particles adsorbed at interfaces due to demanding experimental devices and skills. In practice, it is customary to use flat surfaces/interfaces as model surfaces to investigate the particle-particle at interfaces although most of the time interfaces are produced with a certain curvature. It is shown that the introduction of particles onto interfaces can generate charges at the interfaces which could possibly account for the long range electrostatic interactions. Finally, we illustrate that particle-stabilized dispersions have been found wide applications in many fields and applications such as microcapsules, food, biomedical carriers, and dry water. One of the most investigated areas is the microencapsulation of actives based on Pickering emulsion templates. The particles adsorbed at the interface can serve as interfacial stabilizers as well as constituting components of shells of colloidal microcapsules. Emulsions stabilized by solid particles derived from natural and bio-related sources are promising platforms to be applied in food related industries. Emulsion systems stabilized by solid particles of the w/w (water-in-water) feature are discussed. This special type of emulsion is attracting increasing attentions due to their all water features. Besides of oil-water interface, particle stabilized air-water interface share similar stabilization mechanism and several applications reported in the literature are subsequently discussed. We hope that this paper can encourage more scientists to engage in the studies of particle-stabilized interfaces and more novel applications can be proposed based on this mechanism
  • 加载中
    1. [1]

      Ngai, T.; Bon, S. Particle-Stabilized Emulsions and Colloids: Formation and Applications; RSC Publishing: London, 2014.

    2. [2]

      Aveyard, R.; Binks, B. P.; Clint, J. H. Adv. Colloid Interface Sci. 2003, 100, 503. doi: 10.1016/S0001-8686(02)00069-6  doi: 10.1016/S0001-8686(02)00069-6

    3. [3]

      Leal-Calderon, F.; Schmitt, V. Curr. Opin. Colloid Interface Sci. 2008, 13 (4), 217. doi: 10.1016/j.cocis.2007.09.005  doi: 10.1016/j.cocis.2007.09.005

    4. [4]

      Ramsden, W. Proc. R. Soc. London 1903, 72 (479), 156. doi: 10.1098/rspl.1903.0034  doi: 10.1098/rspl.1903.0034

    5. [5]

      Pickering, S. U. J. Chem. Soc. 1907, 91, 2001. doi: 10.1039/CT9079102001  doi: 10.1039/CT9079102001

    6. [6]

      Finkle, P.; Draper, H. D.; Hildebrand, J. H. J. Am. Chem. Soc. 1923, 45 (12), 2780. doi: 10.1021/ja01665a002  doi: 10.1021/ja01665a002

    7. [7]

      Shuttleworth, R. Proc. Phys. Soc. London, Sect. A 1950, 63 (5), 444. doi: 10.1088/0370-1298/63/5/302  doi: 10.1088/0370-1298/63/5/302

    8. [8]

      Matalon, R. Nature 1953, 172 (4366), 19. doi: 10.1038/172019a0  doi: 10.1038/172019a0

    9. [9]

      Pieranski, P. Phys. Rev. Lett. 1980, 45 (7), 569. doi: 10.1103/PhysRevLett.45.569  doi: 10.1103/PhysRevLett.45.569

    10. [10]

      Levine, S.; Bowen, B. D.; Partridge, S. J. Colloids Surf. 1989, 38 (2), 345. doi: 10.1016/0166-6622(89)80272-0  doi: 10.1016/0166-6622(89)80272-0

    11. [11]

      Levine, S.; Bowen, B. D.; Partridge, S. J. Colloids Surf. 1989, 38 (2), 325. doi: 10.1016/0166-6622(89)80271-9  doi: 10.1016/0166-6622(89)80271-9

    12. [12]

      Levine, S.; Bowen, B. D. Colloids Surf. 1991, 59, 377. doi: 10.1016/0166-6622(91)80260-U  doi: 10.1016/0166-6622(91)80260-U

    13. [13]

      Shi, S.; Russell, T. P. Adv. Mater. 2018, 30 (44), e1800714. doi: 10.1002/adma.201800714  doi: 10.1002/adma.201800714

    14. [14]

      French, D. J.; Brown, A. T.; Schofield, A. B.; Fowler, J.; Taylor, P.; Clegg, P. S. Sci. Rep. 2016, 6, 31401. doi: 10.1038/srep31401  doi: 10.1038/srep31401

    15. [15]

      Binks, B. P. Curr. Opin. Colloid Interface Sci. 2002, 7 (1–2), 21. doi: 10.1016/S1359-0294(02)00008-0  doi: 10.1016/S1359-0294(02)00008-0

    16. [16]

      Zanini, M.; Isa, L. J. Phys. Condens. Matter 2016, 28 (31), 313002. doi: 10.1088/0953-8984/28/31/313002  doi: 10.1088/0953-8984/28/31/313002

    17. [17]

      Kralova, I.; Sjoblom, J.; Oye, G.; Simon, S.; Grimes, B. A.; Paso, K. Adv. Colloid Interface Sci. 2011, 169 (2), 106. doi: 10.1016/j.cis.2011.09.001  doi: 10.1016/j.cis.2011.09.001

    18. [18]

      Ngai, T.; Auweter, H.; Behrens, S. H. Macromolecules 2006, 39 (23), 8171. doi: 10.1021/ma061366k  doi: 10.1021/ma061366k

    19. [19]

      Sun, G.; Li, Z.; Ngai, T. Angew. Chem. Int. Ed. Engl. 2010, 49 (12), 2163. doi: 10.1002/anie.200907175  doi: 10.1002/anie.200907175

    20. [20]

      Binks, B. P.; Whitby, C. P. Colloids Surf. A 2003, 224 (1–3), 241. doi: 10.1016/S0927-7757(03)00329-7  doi: 10.1016/S0927-7757(03)00329-7

    21. [21]

      Jiang, J.; Zhu, Y.; Cui, Z.; Binks, B. P. Angew. Chem. Int. Ed. Engl. 2013, 52 (47), 12373. doi: 10.1002/anie.201305947  doi: 10.1002/anie.201305947

    22. [22]

      Shi, Y. L.; Xiong, D. Z.; Li, Z. Y.; Wang, H. Y.; Pei, Y. C.; Chen, Y. K.; Wang, J. J. ACS Sustainable Chem. Eng. 2018, 6 (11), 15383. doi: 10.1021/acssuschemeng.8b03808  doi: 10.1021/acssuschemeng.8b03808

    23. [23]

      Zhu, Y.; Jiang, J.; Liu, K.; Cui, Z.; Binks, B. P. Langmuir 2015, 31 (11), 3301. doi: 10.1021/acs.langmuir.5b00295  doi: 10.1021/acs.langmuir.5b00295

    24. [24]

      Chen, K.; Yu, G.; He, F.; Zhou, Q.; Xiao, D.; Li, J.; Feng, Y. Carbohydr. Polym. 2017, 176, 203. doi: 10.1016/j.carbpol.2017.07.046  doi: 10.1016/j.carbpol.2017.07.046

    25. [25]

      Aveyard, R.; Binks, B. P.; Esquena, J.; Fletcher, P. D. I.; Buscall, R.; Davies, S. Langmuir 1999, 15 (4), 970. doi: 10.1021/La981099e  doi: 10.1021/La981099e

    26. [26]

      Binks, B. P.; Lumsdon, S. O. Phys. Chem. Chem. Phys. 1999, 1 (12), 3007. doi: 10.1039/A902209k  doi: 10.1039/A902209k

    27. [27]

      Binks, B. P.; Cho, W. G.; Fletcher, P. D. I.; Petsev, D. N. Langmuir 2000, 16 (3), 1025. doi: 10.1021/La990952m  doi: 10.1021/La990952m

    28. [28]

      28. Rand, B.; Pekenć, E.; Goodwin, J. W.; Smith, R. W. J. Chem. Soc. Faraday Trans. 1 1980, 76, 225. doi: 10.1039/f19807600225  doi: 10.1039/f19807600225

    29. [29]

      Horozov, T. S.; Binks, B. P. Angew. Chem. Int. Ed. Engl. 2006, 45 (5), 773. doi: 10.1002/anie.200503131  doi: 10.1002/anie.200503131

    30. [30]

      Dickinson, E. Curr. Opin. Colloid Interface Sci. 2010, 15 (1–2), 40. doi: 10.1016/j.cocis.2009.11.001  doi: 10.1016/j.cocis.2009.11.001

    31. [31]

      Ashby, N. P.; Binks, B. P. Phys. Chem. Chem. Phys. 2000, 2 (24), 5640. doi: 10.1039/B007098j  doi: 10.1039/B007098j

    32. [32]

      Lin, Y.; Skaff, H.; Emrick, T.; Dinsmore, A. D.; Russell, T. P. Science 2003, 299 (5604), 226. doi: 10.1126/science.1078616  doi: 10.1126/science.1078616

    33. [33]

      Lin, Y.; Boker, A.; Skaff, H.; Cookson, D.; Dinsmore, A. D.; Emrick, T.; Russell, T. P. Langmuir 2005, 21 (1), 191. doi: 10.1021/la048000q  doi: 10.1021/la048000q

    34. [34]

      Wu, J.; Ma, G. H. Small 2016, 12 (34), 4633. doi: 10.1002/smll.201600877  doi: 10.1002/smll.201600877

    35. [35]

      Binks, B. P.; Murakami, R. Nat. Mater. 2006, 5 (11), 865. doi: 10.1038/nmat1757  doi: 10.1038/nmat1757

    36. [36]

      Fujii, S.; Iddon, P. D.; Ryan, A. J.; Armes, S. P. Langmuir 2006, 22 (18), 7512. doi: 10.1021/la060812u  doi: 10.1021/la060812u

    37. [37]

      Fujii, S.; Ryan, A. J.; Armes, S. P. J. Am. Chem. Soc. 2006, 128 (24), 7882. doi: 10.1021/ja060640n  doi: 10.1021/ja060640n

    38. [38]

      Zahn, K.; Lenke, R.; Maret, G. Phys. Rev. Lett. 1999, 82 (13), 2721. doi: 10.1103/PhysRevLett.82.2721  doi: 10.1103/PhysRevLett.82.2721

    39. [39]

      Aveyard, R.; Clint, J. H.; Nees, D.; Paunov, V. N. Langmuir 2000, 16 (4), 1969. doi: 10.1021/La990887g  doi: 10.1021/La990887g

    40. [40]

      Aveyard, R.; Binks, B. P.; Clint, J. H.; Fletcher, P. D.; Horozov, T. S.; Neumann, B.; Paunov, V. N.; Annesley, J.; Botchway, S. W.; Nees, D.; et al. Phys. Rev. Lett. 2002, 88 (24), 246102. doi: 10.1103/PhysRevLett.88.246102

    41. [41]

      Gao, P.; Xing, X.; Li, Y.; Ngai, T.; Jin, F. Sci. Rep. 2014, 4, 4778. doi: 10.1038/srep04778  doi: 10.1038/srep04778

    42. [42]

      Gao, P.; Yi, Z.; Xing, X.; Ngai, T.; Jin, F. Langmuir 2016, 32 (19), 4909. doi: 10.1021/acs.langmuir.6b01362  doi: 10.1021/acs.langmuir.6b01362

    43. [43]

      Dinsmore, A. D.; Hsu, M. F.; Nikolaides, M. G.; Marquez, M.; Bausch, A. R.; Weitz, D. A. Science 2002, 298 (5595), 1006. doi: 10.1126/science.1074868  doi: 10.1126/science.1074868

    44. [44]

      Bollhorst, T.; Rezwan, K.; Maas, M. Chem. Soc. Rev. 2017, 46 (8), 2091. doi: 10.1039/c6cs00632a  doi: 10.1039/c6cs00632a

    45. [45]

      Velev, O. D.; Furusawa, K.; Nagayama, K. Langmuir 1996, 12 (10), 2374. doi: 10.1021/La9506786  doi: 10.1021/La9506786

    46. [46]

      Velev, O. D.; Furusawa, K.; Nagayama, K. Langmuir 1996, 12 (10), 2385. doi: 10.1021/La950679y  doi: 10.1021/La950679y

    47. [47]

      Ao, Z.; Yang, Z.; Wang, J. F.; Zhang, G. Z.; Ngai, T. Langmuir 2009, 25 (5), 2572. doi: 10.1021/la804036m  doi: 10.1021/la804036m

    48. [48]

      Cayre, O. J.; Hitchcock, J.; Manga, M. S.; Fincham, S.; Simoes, A.; Williams, R. A.; Biggs, S. Soft Matter 2012, 8 (17), 4717. doi: 10.1039/c2sm00002d  doi: 10.1039/c2sm00002d

    49. [49]

      Biggs, S.; Cayre, O. Particle-Stabilized Emulsions as Templates for Hollow Spheres and Microcapsules. In Particle-Stabilized Emulsions and Colloids: Formation and Applications; The Royal Society of Chemistry: London, 2015; Chapter 9, pp. 228–246.

    50. [50]

      Liu, D.; Xue, N.; Wei, L.; Zhang, Y.; Qin, Z.; Li, X.; Binks, B. P.; Yang, H. Angew. Chem. Int. Ed. Engl. 2018, 57 (34), 10899. doi: 10.1002/anie.201805022  doi: 10.1002/anie.201805022

    51. [51]

      He, Y. J.; Yu, X. Y. Mater. Lett. 2007, 61 (10), 2071. doi: 10.1016/j.matlet.2006.08.018  doi: 10.1016/j.matlet.2006.08.018

    52. [52]

      Yang, J.; Li, Y.; Wang, J.; Sun, X.; Cao, R.; Sun, H.; Huang, C.; Chen, J. Anal. Chim. Acta. 2015, 872, 35. doi: 10.1016/j.aca.2015.02.058  doi: 10.1016/j.aca.2015.02.058

    53. [53]

      Harman, C. L. G.; Patel, M. A.; Guldin, S.; Davies, G. L. Curr. Opin. Colloid Interface Sci. 2019, 39, 173. doi: 10.1016/j.cocis.2019.01.017  doi: 10.1016/j.cocis.2019.01.017

    54. [54]

      Dickinson, E.; Rolfe, S. E.; Dalgleish, D. G. Food Hydrocolloids 1988, 2 (5), 397. doi: 10.1016/S0268-005X(88)80004-3  doi: 10.1016/S0268-005X(88)80004-3

    55. [55]

      Dickinson, E. Colloids Surf. 1989, 42 (1), 191. doi: 10.1016/0166-6622(89)80086-1  doi: 10.1016/0166-6622(89)80086-1

    56. [56]

      Dickinson, E.; Evison, J.; Owusu, R. K. Food Hydrocolloids 1991, 5 (5), 481. doi: 10.1016/S0268-005x(09)80106-9  doi: 10.1016/S0268-005x(09)80106-9

    57. [57]

      Kwok, M. H.; Sun, G.; Ngai, T. Langmuir 2019, 35 (12), 4205. doi: 10.1021/acs.langmuir.8b04009  doi: 10.1021/acs.langmuir.8b04009

    58. [58]

      Plamper, F. A.; Richtering, W. Acc. Chem. Res. 2017, 50 (2), 131. doi: 10.1021/acs.accounts.6b00544  doi: 10.1021/acs.accounts.6b00544

    59. [59]

      Brandy, M. L.; Cayre, O. J.; Fakhrullin, R. F.; Velev, O. D.; Paunov, V. N. Soft Matter 2010, 6 (15), 3494. doi: 10.1039/c0sm00003e  doi: 10.1039/c0sm00003e

    60. [60]

      Skelhon, T. S.; Grossiord, N.; Morgan, A. R.; Bon, S. A. F. J. Mater. Chem. 2012, 22 (36), 19289. doi: 10.1039/c2jm34233b  doi: 10.1039/c2jm34233b

    61. [61]

      de Folter, J. W. J.; van Ruijven, M. W. M.; Velikov, K. P. Soft Matter 2012, 8 (25), 2807. doi: 10.1039/C2SM07417F  doi: 10.1039/C2SM07417F

    62. [62]

      Zhou, F. Z.; Huang, X. N.; Wu, Z. L.; Yin, S. W.; Zhu, J. H.; Tang, C. H.; Yang, X. Q. J. Agric. Food Chem. 2018, 66 (42), 11113. doi: 10.1021/acs.jafc.8b03714  doi: 10.1021/acs.jafc.8b03714

    63. [63]

      Wang, L. J.; Yin, S. W.; Wu, L. Y.; Qi, J. R.; Guo, J.; Yang, X. Q. Food Chem. 2016, 213, 462. doi: 10.1016/j.foodchem.2016.06.119  doi: 10.1016/j.foodchem.2016.06.119

    64. [64]

      Zhu, Q. M.; Lu, H. Q.; Zhu, J. Y.; Zhang, M.; Yin, L. J. Food Hydrocolloids 2019, 91, 204. doi: 10.1016/j.foodhyd.2019.01.029  doi: 10.1016/j.foodhyd.2019.01.029

    65. [65]

      Nan, F. F.; Wu, J.; Qi, F.; Fan, Q. Z.; Ma, G. H.; Ngai, T. J. Mater. Chem. B 2014, 2 (42), 7403. doi: 10.1039/c4tb01259c  doi: 10.1039/c4tb01259c

    66. [66]

      Tang, C.; Spinney, S.; Shi, Z.; Tang, J.; Peng, B.; Luo, J.; Tam, K. C. Langmuir 2018, 34 (43), 12897. doi: 10.1021/acs.langmuir.8b02437  doi: 10.1021/acs.langmuir.8b02437

    67. [67]

      Dickinson, E. Trends Food Sci. Technol. 2019, 83, 31. doi: 10.1016/j.tifs.2018.11.004  doi: 10.1016/j.tifs.2018.11.004

    68. [68]

      Madadlou, A.; Saint-Jalmes, A.; Guyomarc'h, F.; Floury, J.; Dupont, D. Food Hydrocolloids 2019, 93, 351. doi: 10.1016/j.foodhyd.2019.02.031  doi: 10.1016/j.foodhyd.2019.02.031

    69. [69]

      Albertsson, P. Å. Partition of Cell Particles and Macromolecules in Polymer Two-Phase Systems. In Adv. Protein Chem. Anfinsen, C. B.; Edsall, J. T.; Richards, F. M. Eds.; Academic Press: New York, 1970; Vol. 24; pp. 309–341.

    70. [70]

      Firoozmand, H.; Murray, B. S.; Dickinson, E. Langmuir 2009, 25 (3), 1300. doi: 10.1021/la8037389  doi: 10.1021/la8037389

    71. [71]

      Yaman, K.; Jeppesen, C.; Marques, C. M. Europhys. Lett. 1998, 42 (2), 221. doi: 10.1209/epl/i1998-00227-1  doi: 10.1209/epl/i1998-00227-1

    72. [72]

      Balakrishnan, G.; Nicolai, T.; Benyahia, L.; Durand, D. Langmuir 2012, 28 (14), 5921. doi: 10.1021/la204825f  doi: 10.1021/la204825f

    73. [73]

      Nguyen, B. T.; Nicolai, T.; Benyahia, L. Langmuir 2013, 29 (34), 10658. doi: 10.1021/la402131e  doi: 10.1021/la402131e

    74. [74]

      Cacace, D. N.; Rowland, A. T.; Stapleton, J. J.; Dewey, D. C.; Keating, C. D. Langmuir 2015, 31 (41), 11329. doi: 10.1021/acs.langmuir.5b02754  doi: 10.1021/acs.langmuir.5b02754

    75. [75]

      Nguyen, B. T.; Wang, W.; Saunders, B. R.; Benyahia, L.; Nicolai, T. Langmuir 2015, 31 (12), 3605. doi: 10.1021/la5049024  doi: 10.1021/la5049024

    76. [76]

      Dickinson, E. Food Hydrocolloids 2016, 52, 497. doi: 10.1016/j.foodhyd.2015.07.029  doi: 10.1016/j.foodhyd.2015.07.029

    77. [77]

      Esquena, J. Curr. Opin. Colloid Interface Sci. 2016, 25, 109. doi: 10.1016/j.cocis.2016.09.010  doi: 10.1016/j.cocis.2016.09.010

    78. [78]

      Gonzalez-Jordan, A.; Nicolai, T.; Benyahia, L. Langmuir 2016, 32 (28), 7189. doi: 10.1021/acs.langmuir.6b01993  doi: 10.1021/acs.langmuir.6b01993

    79. [79]

      de Freitas, R. A.; Nicolai, T.; Chassenieux, C.; Benyahia, L. Langmuir 2016, 32 (5), 1227. doi: 10.1021/acs.langmuir.5b03761  doi: 10.1021/acs.langmuir.5b03761

    80. [80]

      Chatsisvili, N.; Philipse, A. P.; Loppinet, B.; Tromp, R. H. Food Hydrocolloids 2017, 65, 17. doi: 10.1016/j.foodhyd.2016.10.036  doi: 10.1016/j.foodhyd.2016.10.036

    81. [81]

      Nicolai, T.; Murray, B. Food Hydrocolloids 2017, 68, 157. doi: 10.1016/j.foodhyd.2016.08.036  doi: 10.1016/j.foodhyd.2016.08.036

    82. [82]

      Ben Ayed, E.; Cochereau, R.; Dechance, C.; Capron, I.; Nicolai, T.; Benyahia, L. Langmuir 2018, 34 (23), 6887. doi: 10.1021/acs.langmuir.8b01239  doi: 10.1021/acs.langmuir.8b01239

    83. [83]

      Binks, B. P.; Shi, H. Langmuir 2019, 35 (11), 4046. doi: 10.1021/acs.langmuir.8b04151  doi: 10.1021/acs.langmuir.8b04151

    84. [84]

      Binks, B. P.; Tyowua, A. T. Soft Matter 2016, 12 (3), 876. doi: 10.1039/c5sm02438b  doi: 10.1039/c5sm02438b

    85. [85]

      Binks, B. P.; Lumsdon, S. O. Langmuir 2000, 16 (8), 3748. doi: 10.1021/La991427q  doi: 10.1021/La991427q

    86. [86]

      Aussillous, P.; Quere, D. Nature 2001, 411 (6840), 924. doi: 10.1038/35082026  doi: 10.1038/35082026

    87. [87]

      Bormashenko, E. Langmuir 2017, 33 (3), 663. doi: 10.1021/acs.langmuir.6b03231  doi: 10.1021/acs.langmuir.6b03231

    88. [88]

      Aussillous, P.; Quere, D. Proc. R. Soc. A 2006, 462 (2067), 973. doi: 10.1098/rspa.2005.1581  doi: 10.1098/rspa.2005.1581

    89. [89]

      Gao, L.; McCarthy, T. J. Langmuir 2007, 23 (21), 10445-7. doi: 10.1021/la701901b  doi: 10.1021/la701901b

    90. [90]

      Dandan, M.; Erbil, H. Y. Langmuir 2009, 25 (14), 8362. doi: 10.1021/la900729d  doi: 10.1021/la900729d

    91. [91]

      Tosun, A.; Erbil, H. Y. Appl. Surf. Sci. 2009, 256 (5), 1278. doi: 10.1016/j.apsusc.2009.10.035  doi: 10.1016/j.apsusc.2009.10.035

    92. [92]

      Bormashenko, E.; Bormashenko, Y.; Musin, A.; Barkay, Z. Chemphyschem 2009, 10 (4), 654-6. doi: 10.1002/cphc.200800746  doi: 10.1002/cphc.200800746

    93. [93]

      Bormashenko, E.; Musin, A. Appl. Surf. Sci. 2009, 255 (12), 6429. doi: 10.1016/j.apsusc.2009.02.027  doi: 10.1016/j.apsusc.2009.02.027

    94. [94]

      Bormashenko, E.; Pogreb, R.; Whyman, G.; Musin, A. Colloids Surf. A 2009, 351 (1–3), 78. doi: 10.1016/j.colsurfa.2009.09.027  doi: 10.1016/j.colsurfa.2009.09.027

    95. [95]

      94. Bormashenko, E.; Balter, R.; Aurbach, D. Appl. Phys. Lett. 2010, 97 (9), 091908. doi: 10.1063/1.3487936  doi: 10.1063/1.3487936

    96. [96]

      Tian, J.; Arbatan, T.; Li, X.; Shen, W. Chem. Commun. 2010, 46 (26), 4734. doi: 10.1039/c001317j  doi: 10.1039/c001317j

    97. [97]

      Zhang, L.; Cha, D.; Wang, P. Adv. Mater. 2012, 24 (35), 4756. doi: 10.1002/adma.201201885  doi: 10.1002/adma.201201885

    98. [98]

      Sheng, Y.; Sun, G.; Wu, J.; Ma, G.; Ngai, T. Angew. Chem. Int. Ed. Engl. 2015, 54 (24), 7012. doi: 10.1002/anie.201500010  doi: 10.1002/anie.201500010

    99. [99]

      Serrano, M. C.; Nardecchia, S.; Gutierrez, M. C.; Ferrer, M. L.; del Monte, F. ACS Appl. Mater. Interfaces 2015, 7 (6), 3854. doi: 10.1021/acsami.5b00072  doi: 10.1021/acsami.5b00072

    100. [100]

      Arbatan, T.; Li, L.; Tian, J.; Shen, W. Adv. Healthc. Mater. 2012, 1 (1), 80. doi: 10.1002/adhm.201100016  doi: 10.1002/adhm.201100016

    101. [101]

      Oliveira, N. M.; Reis, R. L.; Mano, J. F. Adv. Healthc. Mater. 2017, 6 (19), 1700192. doi: 10.1002/adhm.201700192  doi: 10.1002/adhm.201700192

  • 加载中
    1. [1]

      Bei Li Zhaoke Zheng . In situ monitoring of the spatial distribution of oxygen vacancies at the single-particle level. Chinese Journal of Structural Chemistry, 2024, 43(10): 100331-100331. doi: 10.1016/j.cjsc.2024.100331

    2. [2]

      Wangyan HuKe LiXiangnan DouNing LiXiayan Wang . Nano-sized stationary phase packings retained by single-particle frit for microchip liquid chromatography. Chinese Chemical Letters, 2024, 35(4): 108806-. doi: 10.1016/j.cclet.2023.108806

    3. [3]

      Caixia LiYi QiuYufeng ZhaoWuliang Feng . Self assembled electron blocking and lithiophilic interface towards dendrite-free solid-state lithium battery. Chinese Chemical Letters, 2024, 35(4): 108846-. doi: 10.1016/j.cclet.2023.108846

    4. [4]

      Lili WangYa YanRulin LiXujie HanJiahui LiTing RanJialu LiBaichuan XiongXiaorong SongZhaohui YinHong WangQingjun ZhuBowen ChengZhen Yin . Interface engineering of 2D NiFe LDH/NiFeS heterostructure for highly efficient 5-hydroxymethylfurfural electrooxidation. Chinese Chemical Letters, 2024, 35(9): 110011-. doi: 10.1016/j.cclet.2024.110011

    5. [5]

      Zhen Shi Wei Jin Yuhang Sun Xu Li Liang Mao Xiaoyan Cai Zaizhu Lou . Interface charge separation in Cu2CoSnS4/ZnIn2S4 heterojunction for boosting photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100201-100201. doi: 10.1016/j.cjsc.2023.100201

    6. [6]

      Zihao WangJing XueZhicui SongJianxiong XingAijun ZhouJianmin MaJingze Li . Li-Zn alloy patch for defect-free polymer interface film enables excellent protection effect towards stable Li metal anode. Chinese Chemical Letters, 2024, 35(10): 109489-. doi: 10.1016/j.cclet.2024.109489

    7. [7]

      Junchuan Sun Lu Wang . Carbon exchange enabled supra-photothermal methane dry reforming. Chinese Journal of Structural Chemistry, 2024, 43(10): 100330-100330. doi: 10.1016/j.cjsc.2024.100330

    8. [8]

      Yaping WangPengcheng YuanZeyuan XuXiong-Xiong LiuShengfa FengMufan CaoChen CaoXiaoqiang WangLong PanZheng-Ming Sun . Ti3C2Tx MXene in-situ transformed Li2TiO3 interface layer enabling 4.5 V-LiCoO2/sulfide all-solid-state lithium batteries with superior rate capability and cyclability. Chinese Chemical Letters, 2024, 35(6): 108776-. doi: 10.1016/j.cclet.2023.108776

    9. [9]

      Cunjun LiWencong LiuXianlei ChenLiang LiShenyu LanMingshan Zhu . Adsorption and activation of peroxymonosulfate on BiOCl for carbamazepine degradation: The role of piezoelectric effect. Chinese Chemical Letters, 2024, 35(10): 109652-. doi: 10.1016/j.cclet.2024.109652

    10. [10]

      Shuqi YuYu YangKeisuke KurodaJian PuRui GuoLi-An Hou . Selective removal of Cr(Ⅵ) using polyvinylpyrrolidone and polyacrylamide co-modified MoS2 composites by adsorption combined with reduction. Chinese Chemical Letters, 2024, 35(6): 109130-. doi: 10.1016/j.cclet.2023.109130

    11. [11]

      Zixuan ZhuXianjin ShiYongfang RaoYu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954

    12. [12]

      Shuanglin TIANTinghong GAOYutao LIUQian CHENQuan XIEQingquan XIAOYongchao LIANG . First-principles study of adsorption of Cl2 and CO gas molecules by transition metal-doped g-GaN. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1189-1200. doi: 10.11862/CJIC.20230482

    13. [13]

      Xiao LiWanqiang YuYujie WangRuiying LiuQingquan YuRiming HuXuchuan JiangQingsheng GaoHong LiuJiayuan YuWeijia Zhou . Metal-encapsulated nitrogen-doped carbon nanotube arrays electrode for enhancing sulfion oxidation reaction and hydrogen evolution reaction by regulating of intermediate adsorption. Chinese Chemical Letters, 2024, 35(8): 109166-. doi: 10.1016/j.cclet.2023.109166

    14. [14]

      Xue ZhaoMengshan ChenDan WangHaoran ZhangGuangzhi HuYingtang Zhou . Ultrafine nano-copper derived from dopamine polymerization & synchronous adsorption achieve electrochemical purification of nitrate to ammonia in complex water environments. Chinese Chemical Letters, 2024, 35(8): 109327-. doi: 10.1016/j.cclet.2023.109327

    15. [15]

      Yu-Hang LiShuai GaoLu ZhangHanchun ChenChong-Chen WangHaodong Ji . Insights on selective Pb adsorption via O 2p orbit in UiO-66 containing rich-zirconium vacancies. Chinese Chemical Letters, 2024, 35(8): 109894-. doi: 10.1016/j.cclet.2024.109894

    16. [16]

      Yan WangHuixin ChenFuda YuShanyue WeiJinhui SongQianfeng HeYiming XieMiaoliang HuangCanzhong Lu . Oxygen self-doping pyrolyzed polyacrylic acid as sulfur host with physical/chemical adsorption dual function for lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(7): 109001-. doi: 10.1016/j.cclet.2023.109001

    17. [17]

      Linhui LiuWuwan XiongMingli FuJunliang WuZhenguo LiDaiqi YePeirong Chen . Efficient NOx abatement by passive adsorption over a Pd-SAPO-34 catalyst prepared by solid-state ion exchange. Chinese Chemical Letters, 2024, 35(4): 108870-. doi: 10.1016/j.cclet.2023.108870

    18. [18]

      Jinli Chen Shouquan Feng Tianqi Yu Yongjin Zou Huan Wen Shibin Yin . Modulating Metal-Support Interaction Between Pt3Ni and Unsaturated WOx to Selectively Regulate the ORR Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100168-100168. doi: 10.1016/j.cjsc.2023.100168

    19. [19]

      Yue LiMinghao FanConghui WangYanxun LiXiang YuJun DingLei YanLele QiuYongcai ZhangLonglu Wang . 3D layer-by-layer amorphous MoSx assembled from [Mo3S13]2- clusters for efficient removal of tetracycline: Synergy of adsorption and photo-assisted PMS activation. Chinese Chemical Letters, 2024, 35(9): 109764-. doi: 10.1016/j.cclet.2024.109764

    20. [20]

      Ruiying Liu Li Zhao Baishan Liu Jiayuan Yu Yujie Wang Wanqiang Yu Di Xin Chaoqiong Fang Xuchuan Jiang Riming Hu Hong Liu Weijia Zhou . Modulating pollutant adsorption and peroxymonosulfate activation sites on Co3O4@N,O doped-carbon shell for boosting catalytic degradation activity. Chinese Journal of Structural Chemistry, 2024, 43(8): 100332-100332. doi: 10.1016/j.cjsc.2023.100332

Metrics
  • PDF Downloads(18)
  • Abstract views(530)
  • HTML views(89)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return