Citation: Zhang Chengcheng, Crisci Ralph, Chen Zhan. Probing Molecular Structures of Antifouling Polymer/Liquid Interfaces In Situ[J]. Acta Physico-Chimica Sinica, ;2020, 36(10): 191000. doi: 10.3866/PKU.WHXB201910003 shu

Probing Molecular Structures of Antifouling Polymer/Liquid Interfaces In Situ


  • Author Bio:

    Professor Zhan Chen was born on June 4, 1966. He received his BS degree in Chemistry from Peking University in 1988, MS degree in Physics from Chinese Academy of Sciences in 1991, PhD degree in Chemistry from the University of California at Berkeley in 1998 and did his postdoctoral research in Lawrence Berkeley National Laboratory between 1998 and 2000. He then worked at the University of Michigan as an assistant professor (2000–2005), an associate professor with tenure (2005–2009), and was promoted to a full professor with tenure in 2009. Currently he is a professor of chemistry, macromolecular science and engineering, biophysics, and applied physics at the University of Michigan. Professor Chen's research is focused on the molecular level understanding of structures of polymers and biological molecules at interfaces. His fundamental research has been extensively supported by a variety of Federal funding agencies such as National Science Foundation, National Institutes of Health, Office of Naval Research, Army Research Office, Defense Threat Reduction Agency, etc. He has also widely collaborated with companies such as Dow Chemical, BASF, P & G, Intel, IBM, BMS, Sanofi, Texas Instruments, etc. on applied research. Professor Chen received the Beckman Young Investigator Award, Dow Corning Professorship, National Science Foundation CAREER Award, and Japan Society for the Promotion of Science Invitation Fellowship. He is a senior editor of Langmuir and an associate editor-in-chief of Chinese Chemical Letters. Professor Chen is a Fellow of American Association for the Advancement of Science (AAAS) and a Fellow of Royal Society of Chemistry (RSC). He published 280 peer reviewed research articles and gave more than 330 invited talks at various institutions and conferences
  • Corresponding author: Chen Zhan, zhanc@umich.edu
  • These authors contributed equally to this work.
  • Received Date: 7 October 2019
    Revised Date: 23 November 2019
    Accepted Date: 25 November 2019
    Available Online: 6 December 2019

    Fund Project: the Office of Naval Research, USA N00014-16-1-3115The project was supported by the Office of Naval Research, USA (N00014-16-1-3115 and N00014-19-1-2171)the Office of Naval Research, USA N00014-19-1-2171

  • Marine organisms such as plants, algae or small animals can adhere to surfaces of materials that are submerged in ocean. The accumulation of these organisms on surfaces is a marine biofouling process that has considerable adverse effects. Marine biofouling on ship hulls can cause severe fuel consumption increase. Investigations on antifouling polymers are therefore becoming important research topics for marine vessel operations. Antifouling polymers can be applied as coating layers on the ship hull, protecting it against the settlement and growth of sea organisms. Polyethylene glycol (PEG) is a hydrophilic polymer that can effectively resist the accumulation of marine organisms. PEG-based antifouling coatings have therefore been extensively researched and developed. However, the inferior stability of PEG makes it subject to degradation, rendering it ineffective for long-term services. Zwitterionic polymers have also emerged as promising antifouling materials in recent years. These polymers consist of both positively charged and negatively charged functional groups. Various zwitterionic polymers have been demonstrated to exhibit exceptional antifouling properties. Previously, surface characterizations of zwitterionic polymers have revealed that strong surface hydration is critical for their antifouling properties. In addition to these hydrophilic polymers, amphiphilic materials have also been developed as potential antifouling coatings. Both hydrophobic and hydrophilic functional groups are incorporated into the backbones or sidechains of these polymers. It has been demonstrated that the antifouling performance can be enhanced by precisely controlling the sequence of the hydrophobic-hydrophilic functionalities. Since biofouling generally occurs at the outer surface of the coatings, the antifouling properties of these coatings are closely related to their surface characteristics in water. Therefore, understanding of the surface molecular structures of antifouling materials is imperative for their future developments. In this review, we will summarize our recent advancements of antifouling material surface analysis using sum frequency generation (SFG) vibrational spectroscopy. SFG is a surface-sensitive technique which can provide molecular information of water and polymer structures at interfaces in situ in real time. The antifouling polymers we will review include zwitterionic polymer brushes, mixed charged polymers, and amphiphilic polypeptoids. Interfacial hydration studies of these polymers by SFG will be presented. The salt effect on antifouling polymer surface hydration will also be discussed. In addition, the interactions between antifouling materials and protein molecules as well as algae will be reviewed. The above research clearly established strong correlations between strong surface hydration and good antifouling properties. It also demonstrated that SFG is a powerful technique to provide molecular level understanding of polymer antifouling mechanisms.
  • 加载中
    1. [1]

      Banerjee, I.; Pangule, R. C.; Kane, R. S. Adv. Mater. 2011, 23, 690. doi: 10.1002/adma.201001215  doi: 10.1002/adma.201001215

    2. [2]

      Rosenhahn, A.; Schilp, S.; Kreuzer, H. J.; Grunze, M. Phys. Chem. Chem. Phys. 2010, 12 (17), 4275. doi: 10.1039/c001968m  doi: 10.1039/c001968m

    3. [3]

      Yang, W. J.; Neoh, K. G.; Kang, E. T.; Teo, S. L. M.; Rittschof, D. Prog. Polym. Sci. 2014, 39 (5), 1017. doi: 10.1016/j.progpolymsci.2014.02.002  doi: 10.1016/j.progpolymsci.2014.02.002

    4. [4]

      Grozea, C. M.; Walker, G. C. Soft Matter 2009, 5 (21), 4088. doi: 10.1039/b910899h  doi: 10.1039/b910899h

    5. [5]

      Zheng, J.; Li, L.; Tsao, H. K.; Sheng, Y. J.; Chen, S.; Jiang, S. Biophys. J. 2005, 89 (1), 158. doi: 10.1529/biophysj.105.059428  doi: 10.1529/biophysj.105.059428

    6. [6]

      Herrwerth, S.; Eck, W.; Reinhardt, S.; Grunze, M. J. Am. Chem. Soc. 2003, 125 (31), 9359. doi: 10.1021/ja034820y  doi: 10.1021/ja034820y

    7. [7]

      Chen, S.; Li, L.; Boozer, C. L.; Jiang, S. Langmuir 2000, 16 (24), 9287. doi: 10.1021/la000417i  doi: 10.1021/la000417i

    8. [8]

      Yu, Q.; Zhang, Y.; Wang, H.; Brash, J.; Chen, H. Acta Biomater. 2011, 7 (4), 1550. doi: 10.1016/j.actbio.2010.12.021  doi: 10.1016/j.actbio.2010.12.021

    9. [9]

      Han, S.; Kim, C.; Kwon, D. Polymer 1997, 38 (2), 317. doi: 10.1016/S0032-3861(97)88175-X  doi: 10.1016/S0032-3861(97)88175-X

    10. [10]

      Schlenoff, J. B. Langmuir 2014, 30 (32), 9625. doi: 10.1021/la500057j  doi: 10.1021/la500057j

    11. [11]

      Jiang, S.; Cao, Z. Adv. Mater. 2010, 22 (9), 920. doi: 10.1002/adma.200901407  doi: 10.1002/adma.200901407

    12. [12]

      Zhang, Z.; Finlay, J. A.; Wang, L.; Gao, Y.; Callow, J. A.; Callow, M. E.; Jiang, S. Langmuir 2009, 25 (23), 13516. doi: 10.1021/la901957k  doi: 10.1021/la901957k

    13. [13]

      Li, G.; Xue, H.; Cheng, G.; Chen, S.; Zhang, F.; Jiang, S. J. Phys. Chem. B 2008, 112 (48), 15269. doi: 10.1021/jp8058728  doi: 10.1021/jp8058728

    14. [14]

      Leng, C.; Hung, H. C.; Sun, S.; Wang, D.; Li, Y.; Jiang, S.; Chen, Z. ACS Appl. Mater. Interfaces 2015, 7 (30), 16881. doi: 10.1021/acsami.5b05627  doi: 10.1021/acsami.5b05627

    15. [15]

      Leng, C.; Han, X.; Shao, Q.; Zhu, Y.; Li, Y.; Jiang, S.; Chen, Z. J. Phys. Chem. C 2014, 118 (29), 15840. doi: 10.1021/jp504293r  doi: 10.1021/jp504293r

    16. [16]

      Leng, C.; Sun, S.; Zhang, K.; Jiang, S.; Chen, Z. Acta Biomater. 2016, 40, 6. doi: 10.1016/j.actbio.2016.02.030  doi: 10.1016/j.actbio.2016.02.030

    17. [17]

      Kondo, T.; Gemmei-Ide, M.; Kitano, H.; Ohno, K.; Noguchi, H.; Uosaki, K. Colloids. Surf. 2012, 91, 215. doi: 10.1016/j.colsurfb.2011.11.012  doi: 10.1016/j.colsurfb.2011.11.012

    18. [18]

      Nagasawa, D.; Azuma, T.; Noguchi, H.; Uosaki, K.; Takai, M. J. Phys. Chem. C 2015, 119 (30), 17193. doi: 10.1021/acs.jpcc.5b04186  doi: 10.1021/acs.jpcc.5b04186

    19. [19]

      Hibino, H.; Takai, M.; Noguchi, H.; Sawamura, S.; Takahashi, Y.; Sakai, H.; Shiku, H. J. Physiol. Sci. 2017, 67 (4), 439. doi: 10.1007/s12576-017-0530-3  doi: 10.1007/s12576-017-0530-3

    20. [20]

      Leng, C.; Huang, H.; Zhang, K.; Hung, H. C.; Xu, Y.; Li, Y.; Jiang, S.; Chen, Z. Langmuir 2018, 34 (22), 6538. doi: 10.1021/acs.langmuir.8b00768  doi: 10.1021/acs.langmuir.8b00768

    21. [21]

      Han, X.; Leng, C.; Shao, Q.; Jiang, S.; Chen, Z. Langmuir 2019, 35 (5), 1327. doi: 10.1021/acs.langmuir.8b01515  doi: 10.1021/acs.langmuir.8b01515

    22. [22]

      Chen, S.; Li, L.; Zhao, C.; Zheng, J. Polymer 2010, 51 (23), 5283. doi: 10.1016/j.polymer.2010.08.022  doi: 10.1016/j.polymer.2010.08.022

    23. [23]

      Liu, L.; Li, W.; Liu, Q. WIREs. Nanomed. Nanobiotechnol. 2014, 6 (6), 599. doi: 10.1002/wnan.1278  doi: 10.1002/wnan.1278

    24. [24]

      Statz, A. R.; Meagher, R. J.; Barron, A. E.; Messersmith, P. B. J. Am. Chem. Soc. 2005, 127 (22), 7972. doi: 10.1021/ja0522534  doi: 10.1021/ja0522534

    25. [25]

      Buskens, P.; Wouters, M.; Rentrop, C.; Vroon, Z. J. Coat. Technol. Res. 2013, 10 (1), 29. doi: 10.1007/s11998-012-9456-0  doi: 10.1007/s11998-012-9456-0

    26. [26]

      Badi, N.; Lutz, J. F. Chem. Soc. Rev. 2009, 38 (12), 3383. doi: 10.1039/B806413J  doi: 10.1039/B806413J

    27. [27]

      Seo, Y.; Brown, J. R.; Hall, L. M. Macromolecules 2015, 48 (14), 4974. doi: 10.1021/ma502309h  doi: 10.1021/ma502309h

    28. [28]

      Ganesan, V.; Kumar, N. A.; Pryamitsyn, V. Macromolecules 2012, 45 (15), 6281. doi: 10.1021/ma301136y  doi: 10.1021/ma301136y

    29. [29]

      Chang, L. W.; Lytle, T. K.; Radhakrishna, M.; Madinya, J. J.; Vélez, J.; Sing, C. E.; Perry, S. L. Nat. Commun. 2017, 8 (1), 1273. doi: 10.1038/s41467-017-01249-1  doi: 10.1038/s41467-017-01249-1

    30. [30]

      van Zoelen, W.; Buss, H. G.; Ellebracht, N. C.; Lynd, N. A.; Fischer, D. A.; Finlay, J.; Hill, S.; Callow, M. E.; Callow, J. A.; Kramer, E. J.; et al. ACS Macro Lett. 2014, 3 (4), 364. doi: 10.1021/mz500090n

    31. [31]

      Callow, J. A.; Callow, M. E. Nat. Commun. 2011, 2 (1), 244. doi: 10.1038/ncomms1251  doi: 10.1038/ncomms1251

    32. [32]

      Ekblad, T.; Bergström, G.; Ederth, T.; Conlan, S. L.; Mutton, R.; Clare, A. S.; Wang, S.; Liu, Y.; Zhao, Q.; D'Souza, F.; et al. Biomacromolecules 2008, 9 (10), 2775. doi: 10.1021/bm800547m

    33. [33]

      Rosales, A. M.; Murnen, H. K.; Zuckermann, R. N.; Segalman, R. A. Macromolecules 2010, 43 (13), 5627. doi: 10.1021/ma1002563  doi: 10.1021/ma1002563

    34. [34]

      Murnen, H. K.; Rosales, A. M.; Jaworski, J. N.; Segalman, R. A.; Zuckermann, R. N. J. Am. Chem. Soc. 2010, 132 (45), 16112. doi: 10.1021/ja106340f  doi: 10.1021/ja106340f

    35. [35]

      Rosales, A. M.; McCulloch, B. L.; Zuckermann, R. N.; Segalman, R. A. Macromolecules 2012, 45 (15), 6027. doi: 10.1021/ma300625b  doi: 10.1021/ma300625b

    36. [36]

      Rosales, A. M.; Segalman, R. A.; Zuckermann, R. N. Soft Matter 2013, 9 (35), 8400. doi: 10.1039/C3SM51421H  doi: 10.1039/C3SM51421H

    37. [37]

      Davidson, E. C.; Rosales, A. M.; Patterson, A. L.; Russ, B.; Yu, B.; Zuckermann, R. N.; Segalman, R. A. Macromolecules 2018, 51 (5), 2089. doi: 10.1021/acs.macromol.8b00055  doi: 10.1021/acs.macromol.8b00055

    38. [38]

      Patterson, A. L.; Wenning, B.; Rizis, G.; Calabrese, D. R.; Finlay, J. A.; Franco, S. C.; Zuckermann, R. N.; Clare, A. S.; Kramer, E. J.; Ober, C. K.; et al. Macromolecules 2017, 50 (7), 2656. doi: 10.1021/acs.macromol.6b02505

    39. [39]

      Calabrese, D. R.; Wenning, B. M.; Hilda, B.; Finlay, J. A.; Fischer, D.; Clare, A. S.; Segalman, R. A.; Ober, C. K. Green Mater. 2017, 5 (1), 31. doi: 10.1680/jgrma.17.00006  doi: 10.1680/jgrma.17.00006

    40. [40]

      Gudipati, C. S.; Greenlief, C. M.; Johnson, J. A.; Prayongpan, P.; Wooley, K. L. J. Polym. Sci. A: Polym. Chem. 2004, 42 (24), 6193. doi: 10.1002/pola.20466  doi: 10.1002/pola.20466

    41. [41]

      Weinman, C. J.; Finlay, J. A.; Park, D.; Paik, M. Y.; Krishnan, S.; Sundaram, H. S.; Dimitriou, M.; Sohn, K. E.; Callow, M. E.; Callow, J. A.; et al. Langmuir 2009, 25 (20), 12266. doi: 10.1021/la901654q

    42. [42]

      Barry, M. E.; Davidson, E. C.; Zhang, C.; Patterson, A. L.; Yu, B.; Leonardi, A. K.; Duzen, N.; Malaviya, K.; Clarke, J. L.; Finlay, J. A.; et al. Macromolecules 2019, 52 (3), 1287. doi: 10.1021/acs.macromol.8b02390

    43. [43]

      Shen, Y. R. Nature. 1989, 337 (6207), 519. doi: 10.1038/337519a0  doi: 10.1038/337519a0

    44. [44]

      Wang, J.; Woodcock, S. E.; Buck, S. M.; Chen, C.; Chen, Z. J. Am. Chem. Soc. 2001, 123 (38), 9470. doi: 10.1021/ja0164071  doi: 10.1021/ja0164071

    45. [45]

      Wang, J.; Paszti, Z.; Even, M. A.; Chen, Z. J. Am. Chem. Soc. 2002, 124 (24), 7016. doi: 10.1021/ja012387r  doi: 10.1021/ja012387r

    46. [46]

      Lu, X.; Zhang, C.; Ulrich, N.; Xiao, M.; Ma, Y. H.; Chen, Z. Anal. Chem. 2017, 89 (1), 466. doi: 10.1021/acs.analchem.6b04320  doi: 10.1021/acs.analchem.6b04320

    47. [47]

      Chen, Z. Acta Phys. -Chim. Sin. 2012, 28 (3), 504.  doi: 10.3866/PKU.WHXB201201091

    48. [48]

      Clarke, M. L.; Chen, C.; Wang, J.; Chen, Z. Langmuir 2006, 22 (21), 8800. doi: 10.1021/la061386f  doi: 10.1021/la061386f

    49. [49]

      Wang, J.; Buck, S. M.; Even, M. A.; Chen, Z. J. Am. Chem. Soc. 2002, 124 (44), 13302. doi: 10.1021/ja026881m  doi: 10.1021/ja026881m

    50. [50]

      Wang, J.; Buck, S. M.; Chen, Z. J. Phys. Chem. B 2002, 106 (44), 11666. doi: 10.1021/jp021363j  doi: 10.1021/jp021363j

    51. [51]

      Ding, B.; Jasensky, J.; Li, Y.; Chen, Z. Acc. Chem. Res. 2016, 49 (6), 1149. doi: 10.1021/acs.accounts.6b00091  doi: 10.1021/acs.accounts.6b00091

    52. [52]

      Lee, H.; Scherer, N. F.; Messersmith, P. B. Proc. Natl. Acad. Sci. U.S.A. 2006, 103 (35), 12999. doi: 10.1073/pnas.0605552103  doi: 10.1073/pnas.0605552103

    53. [53]

      Yu, J.; Wei, W.; Danner, E.; Ashley, R. K.; Israelachvili, J. N.; Waite, J. H. Nat. Chem. Biol. 2011, 7, 588. doi: 10.1038/nchembio.630  doi: 10.1038/nchembio.630

    54. [54]

      Naldrett, M. J.; Kaplan, D. L. Mar. Biol. 1997, 127 (4), 629. doi: 10.1007/s002270050053  doi: 10.1007/s002270050053

    55. [55]

      Kamino, K. Biochem. J. 2001, 356 (2), 503. doi: 10.1042/bj3560503  doi: 10.1042/bj3560503

    56. [56]

      Kamino, K. Biofouling 2013, 29 (6), 735. doi: 10.1080/08927014.2013.800863  doi: 10.1080/08927014.2013.800863

    57. [57]

      Leng, C.; Buss, H. G.; Segalman, R. A.; Chen, Z. Langmuir 2015, 31 (34), 9306. doi: 10.1021/acs.langmuir.5b01440  doi: 10.1021/acs.langmuir.5b01440

  • 加载中
    1. [1]

      Min ChenBoyu PengXuyun GuoYe ZhuHanying Li . Polyethylene interfacial dielectric layer for organic semiconductor single crystal based field-effect transistors. Chinese Chemical Letters, 2024, 35(4): 109051-. doi: 10.1016/j.cclet.2023.109051

    2. [2]

      Zihao WangJing XueZhicui SongJianxiong XingAijun ZhouJianmin MaJingze Li . Li-Zn alloy patch for defect-free polymer interface film enables excellent protection effect towards stable Li metal anode. Chinese Chemical Letters, 2024, 35(10): 109489-. doi: 10.1016/j.cclet.2024.109489

    3. [3]

      Wenbi WuYinchu DongHaofan LiuXuebing JiangLi LiYi ZhangMaling Gou . Modification of plasma protein for bioprinting via photopolymerization. Chinese Chemical Letters, 2024, 35(8): 109260-. doi: 10.1016/j.cclet.2023.109260

    4. [4]

      Yixin ZhangTing WangJixiang ZhangPengyu LuNeng ShiLiqiang ZhangWeiran ZhuNongyue He . Formation mechanism for stable system of nanoparticle/protein corona and phospholipid membrane. Chinese Chemical Letters, 2024, 35(4): 108619-. doi: 10.1016/j.cclet.2023.108619

    5. [5]

      Jinli Chen Shouquan Feng Tianqi Yu Yongjin Zou Huan Wen Shibin Yin . Modulating Metal-Support Interaction Between Pt3Ni and Unsaturated WOx to Selectively Regulate the ORR Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100168-100168. doi: 10.1016/j.cjsc.2023.100168

    6. [6]

      Zhiwei ChenHeyun ShengXue LiMenghan ChenXin LiQiuling Song . Efficient capture of difluorocarbene by pyridinium 1,4-zwitterionic thiolates: A concise synthesis of difluoromethylene-containing 1,4-thiazine derivatives. Chinese Chemical Letters, 2024, 35(4): 108937-. doi: 10.1016/j.cclet.2023.108937

    7. [7]

      Qiangwei WangHuijiao LiuMengjie WangHaojie ZhangJianda XieXuanwei HuShiming ZhouWeitai Wu . Observation of high ionic conductivity of polyelectrolyte microgels in salt-free solutions. Chinese Chemical Letters, 2024, 35(4): 108743-. doi: 10.1016/j.cclet.2023.108743

    8. [8]

      Kailong ZhangChao ZhangLuanhui WuQidong YangJiadong ZhangGuang HuLiang SongGaoran LiWenlong Cai . Chloride molten salt derived attapulgite with ground-breaking electrochemical performance. Chinese Chemical Letters, 2024, 35(10): 109618-. doi: 10.1016/j.cclet.2024.109618

    9. [9]

      Yan-Bo LiYi LiLiang Yin . Copper(Ⅰ)-catalyzed diastereodivergent construction of vicinal P-chiral and C-chiral centers facilitated by dual "soft-soft" interaction. Chinese Chemical Letters, 2024, 35(7): 109294-. doi: 10.1016/j.cclet.2023.109294

    10. [10]

      Ying LiLong-Jie WangYong-Kang ZhouJun LiangBin XiaoJi-Shen Zheng . An improved installation of 2-hydroxy-4-methoxybenzyl (iHmb) method for chemical protein synthesis. Chinese Chemical Letters, 2024, 35(5): 109033-. doi: 10.1016/j.cclet.2023.109033

    11. [11]

      Si HaJiacheng ZhuHua XiangGuoshun Luo . Hydrophobic tag tethering degrader as a promising paradigm of protein degradation: Past, present and future perspectives. Chinese Chemical Letters, 2024, 35(8): 109192-. doi: 10.1016/j.cclet.2023.109192

    12. [12]

      Junhan LuoQi QingLiqin HuangZhe WangShuang LiuJing ChenYuexiang Lu . Non-contact gaseous microplasma electrode as anode for electrodeposition of metal and metal alloy in molten salt. Chinese Chemical Letters, 2024, 35(4): 108483-. doi: 10.1016/j.cclet.2023.108483

    13. [13]

      Kuan DengFei YangZhi-Qi ChengBi-Wen RenHua LiuJiao ChenMeng-Yao SheLe YuXiao-Gang LiuHai-Tao FengJian-Li Li . Construction of wavelength-tunable DSE quinoline salt derivatives by regulating the hybridization form of the nitrogen atom and intramolecular torsion angle. Chinese Chemical Letters, 2024, 35(10): 109464-. doi: 10.1016/j.cclet.2023.109464

    14. [14]

      Shaohua ZhangLiyao LiuYingqiao MaChong-an Di . Advances in theoretical calculations of organic thermoelectric materials. Chinese Chemical Letters, 2024, 35(8): 109749-. doi: 10.1016/j.cclet.2024.109749

    15. [15]

      Junjie WangYan WangZhengdong LiChangqiang XieMusammir KhanXingzhou PengFabiao Yu . Triphenylamine-AIEgens photoactive materials for cancer theranostics. Chinese Chemical Letters, 2024, 35(6): 108934-. doi: 10.1016/j.cclet.2023.108934

    16. [16]

      Jiale ZhengMei ChenHuadong YuanJianmin LuoYao WangJianwei NaiXinyong TaoYujing Liu . Electron-microscopical visualization on the interfacial and crystallographic structures of lithium metal anode. Chinese Chemical Letters, 2024, 35(6): 108812-. doi: 10.1016/j.cclet.2023.108812

    17. [17]

      Tianyi Hou Yunhui Huang Henghui Xu . Interfacial engineering for advanced solid-state Li-metal batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100313-100313. doi: 10.1016/j.cjsc.2024.100313

    18. [18]

      Haiying Lu Weijie Li . The electrolyte solvation and interfacial chemistry for anode-free sodium metal batteries. Chinese Journal of Structural Chemistry, 2024, 43(11): 100334-100334. doi: 10.1016/j.cjsc.2024.100334

    19. [19]

      Tiankai SunHui MinZongsu HanLiang WangPeng ChengWei Shi . Rapid detection of nanoplastic particles by a luminescent Tb-based coordination polymer. Chinese Chemical Letters, 2024, 35(5): 108718-. doi: 10.1016/j.cclet.2023.108718

    20. [20]

      Mengjun SunZhi WangJvhui JiangXiaobing WangChuang Yu . Gelation mechanisms of gel polymer electrolytes for zinc-based batteries. Chinese Chemical Letters, 2024, 35(5): 109393-. doi: 10.1016/j.cclet.2023.109393

Metrics
  • PDF Downloads(14)
  • Abstract views(737)
  • HTML views(157)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return