Citation: Xiao Junyan, Qi Limin. Controllable Self-Assembly of Gold Nanorods via Host–Guest Interaction between Cyclodextrins and Surfactants[J]. Acta Physico-Chimica Sinica, ;2020, 36(10): 191000. doi: 10.3866/PKU.WHXB201910001 shu

Controllable Self-Assembly of Gold Nanorods via Host–Guest Interaction between Cyclodextrins and Surfactants

  • Corresponding author: Qi Limin, liminqi@pku.edu.cn
  • Received Date: 7 October 2019
    Revised Date: 7 November 2019
    Accepted Date: 11 November 2019
    Available Online: 20 November 2019

    Fund Project: the National Natural Science Foundation of China 21673007the National Natural Science Foundation of China 21972004The project was supported by the National Natural Science Foundation of China (21673007, 21972004)

  • The self-assembly of colloidal nanocrystals has emerged as a powerful strategy for the bottom-up fabrication of functional materials and nanodevices. Recently, the self-assembly of gold nanorods (GNRs) has attracted significant attention because of their unique plasmonic properties, but the realization of their adjustable self-assembly of GNRs through facile and effective approaches remains challenging. In this work, the controllable self-assembly of GNRs in aqueous solution was realized through the host-guest interactions of cyclodextrins (CDs) and the cetyltrimethylammonium bromide (CTAB) molecules adsorbed on the surface of the GNRs. The self-assembly of GNRs was readily achieved by the addition of aqueous α-CD solutions with varied concentrations into aqueous dispersions of CTAB-stabilized GNRs. At a relatively low α-CD concentration, slow aggregation of the GNRs occurred, resulting in their side-by-side assembly. This was revealed by the blue shift of the longitudinal surface plasmon resonance (LSPR) band in the absorption spectra and confirmed by transmission electron microscopy (TEM) observations. On the other hand, when a higher concentration of α-CD was added, fast aggregation of the GNRs occurred, resulting in their end-to-end assembly. This was revealed by the red shift in the LSPR band together with the TEM observations. If β-CD was employed instead of α-CD, the self-assembly of GNRs could also be induced, although a relatively higher concentration of β-CD was required to achieve the extent of aggregation similar to that induced by α-CD, indicating that the supramolecular host–guest interaction between CDs and the surfactant CTAB was crucial to the directed self-assembly of GNRs. Furthermore, the α-CD-induced assembly was inhibited on addition of excess CTAB, confirming that the supramolecular interaction of α-CD and CTAB played a key role in directing the self-assembly of the GNRs. Based on these experimental results, a possible mechanism for the α-CD-induced self-assembly of GNRs was proposed as follows: at a lower α-CD concentration, the gradual formation of the host-guest inclusion complex α-CD/CTAB led to the partial replacement of the highly charged CTAB bilayers adsorbed on the GNRs by the less charged complex, which resulted in a slow side-by-side assembly of the GNRs; at a higher α-CD concentration, the CTAB bilayers were quickly replaced by the α-CD/CTAB complex, and the CTAB molecules adsorbed at both ends of the GNRs were almost completely replaced, resulting in a fast end-to-end assembly of the GNRs. Additionally, on the basis of the hydrolysis of α-cyclodextrin catalyzed by α-amylase, the self-assembly of GNRs directed by the host-guest interaction could be used to realize the feasible detection of α-amylase in solutions. This self-assembly strategy mediated by the host-guest interaction may be extendable to other colloidal systems involving surfactants adsorbed on the surface of nanoparticles, and may open new avenues for the controllable self-assembly of non-spherical nanoparticles.
  • 加载中
    1. [1]

      Nie, Z.; Petukhova, A.; Kumacheva, E. Nat. Nanotechnol. 2010, 5, 15. doi: 10.1038/nnano.2009.453  doi: 10.1038/nnano.2009.453

    2. [2]

      Boles, M. A.; Engel, M.; Talapin, D. V. Chem. Rev. 2016, 116, 11220. doi: 10.1021/acs.chemrev.6b00196  doi: 10.1021/acs.chemrev.6b00196

    3. [3]

      Wang, Q.; Wang, Z.; Li, Z.; Xiao, J.; Shan, H.; Fang, Z.; Qi, L. Sci. Adv. 2017, 3, e1701183. doi: 10.1126/sciadv.1701183  doi: 10.1126/sciadv.1701183

    4. [4]

      Liu, M. Acta Phys. -Chim. Sin. 2018, 34, 733.  doi: 10.3866/PKU.WHXB201711081

    5. [5]

      Chen, H.; Shao, L.; Li, Q.; Wang, J. Chem. Soc. Rev. 2013, 42, 2679. doi: 10.1039/c2cs35367a  doi: 10.1039/c2cs35367a

    6. [6]

      Motl, N. E.; Smith, A. F.; Desantis, C. J.; Skrabalak, S. E. Chem. Soc. Rev. 2014, 43, 3823. doi: 10.1039/c3cs60347d  doi: 10.1039/c3cs60347d

    7. [7]

      Wang, L.; Zhu, Y.; Xu, L.; Chen, W.; Kuang, H.; Liu, L.; Agarwal, A.; Xu, C.; Kotov, N. A. Angew. Chem. Int. Ed. 2010, 49, 5472. doi: 10.1002/anie.200907357  doi: 10.1002/anie.200907357

    8. [8]

      Chen, L.; Lu, L.; Wang, S.; Xia, Y. ACS Sens. 2017, 2, 781. doi: 10.1021/acssensors.7b00149  doi: 10.1021/acssensors.7b00149

    9. [9]

      Zhong, L.; Zhou, X.; Bao, S.; Shi, Y.; Wang, Y.; Hong, S.; Huang, Y.; Wang, X.; Xie, Z.; Zhang, Q. J. Mater. Chem. 2011, 21, 14448. doi: 10.1039/c1jm11193k  doi: 10.1039/c1jm11193k

    10. [10]

      Li, J. J.; Zhang, N.; Wang, J.; Yang, C. Y.; Zhu, J.; Zhao, J. W. J. Nanopart. Res. 2016, 18, 39. doi: 10.1007/s11051-016-3345-x  doi: 10.1007/s11051-016-3345-x

    11. [11]

      Wang, Q.; Li, D.; Xiao, J.; Guo, F.; Qi, L. Nano Res. 2019, 12, 1563. doi: 10.1007/s12274-019-2393-9  doi: 10.1007/s12274-019-2393-9

    12. [12]

      Ma, X.; Urbas, A.; Li, Q. Langmuir 2012, 28, 16263. doi: 10.1021/la303424x  doi: 10.1021/la303424x

    13. [13]

      Leung, F. C.; Leung, S. Y.; Chung, C. Y.; Yam, V. W. J. Am. Chem. Soc. 2016, 138, 2989. doi: 10.1021/jacs.6b01382  doi: 10.1021/jacs.6b01382

    14. [14]

      Li, D.; Qi, L. Curr. Opin. Colloid Interface Sci. 2018, 35, 59. doi: 10.1016/j.cocis.2018.01.004  doi: 10.1016/j.cocis.2018.01.004

    15. [15]

      Jones, S. T.; Zayed, J. M.; Scherman, O. A. Nanoscale 2013, 5, 5299. doi: 10.1039/c3nr01454a  doi: 10.1039/c3nr01454a

    16. [16]

      Wong, Y. S.; Leung, F. C.; Ng, M.; Cheng, H. K.; Yam, V. W. Angew. Chem. Int. Ed. 2018, 57, 15797. doi: 10.1002/anie.201810302  doi: 10.1002/anie.201810302

    17. [17]

      Chen, Y.; Liu, Y. Adv. Mater. 2015, 27, 5403. doi: 10.1002/adma.201501216  doi: 10.1002/adma.201501216

    18. [18]

      Liu, Z.; Jiang, M. J. Mater. Chem. 2007, 17, 4249. doi: 10.1039/B707910A  doi: 10.1039/B707910A

    19. [19]

      Chen, Z.; Li, J.; Zhang, X.; Wu, Z.; Zhang, H.; Sun, H.; Yang, B. Phys. Chem. Chem. Phys. 2012, 14, 6119. doi: 10.1039/C2CP40377C  doi: 10.1039/C2CP40377C

    20. [20]

      Wu, J.; Xu, Y.; Li, D.; Ma, X.; Tian, H. Chem. Commun. 2017, 53, 4577. doi: 10.1039/c7cc01678f  doi: 10.1039/c7cc01678f

    21. [21]

      Ming, T.; Kou, X.; Chen, H.; Wang, T.; Tam, H. L.; Cheah, K. W.; Chen, J. Y.; Wang, J. Angew. Chem. Int. Ed. 2008, 47, 9685. doi: 10.1002/anie.200803642  doi: 10.1002/anie.200803642

    22. [22]

      Orendorff, C.J.; Murphy, C.J. J. Phys. Chem. B, 2006, 110, 3990. doi: 10.1021/jp0570972  doi: 10.1021/jp0570972

    23. [23]

      Sun, Z. H.; Ni, W. H.; Yang, Z.; Kou, X. S.; Li, L.; Wang, J. F. Small 2008, 4, 1287. doi: 10.1002/smll.200800099  doi: 10.1002/smll.200800099

    24. [24]

      Yan, Y.; Huang, J.; Tang, B. Z. Chem. Commun. 2016, 52, 11870. doi: 10.1039/c6cc03620a  doi: 10.1039/c6cc03620a

    25. [25]

      Murphy, C. J.; Thompson, L. B.; Alkilany, A. M.; Sisco, P. N.; Boulos, S. P.; Sivapalan, S. T.; Yang, J. A.; Chernak, D. J.; Huang, J. Y. J. Phys. Chem. Lett. 2010, 1, 2867. doi: 10.1021/Jz100992x  doi: 10.1021/Jz100992x

    26. [26]

      Yan, Y.; Jiang, L.; Huang, J. Phys. Chem. Chem. Phys. 2011, 13, 9074. doi: 10.1039/c0cp02651d  doi: 10.1039/c0cp02651d

    27. [27]

      Li, L.; Cao, R.; Wang, Z.; Li, J.; Qi, L. J. Phys. Chem. C 2009, 113, 18075. doi: 10.1021/jp906407n  doi: 10.1021/jp906407n

    28. [28]

      Bishop, K. J.; Wilmer, C. E.; Soh, S.; Grzybowski, B. A. Small 2009, 5, 1600. doi: 10.1002/smll.200900358  doi: 10.1002/smll.200900358

    29. [29]

      Sau, T. K.; Murphy, C. J. Langmuir 2005, 21, 2923. doi: 10.1021/la047488s  doi: 10.1021/la047488s

    30. [30]

      Abtahi, S. M. H.; Burrows, N. D.; Idesis, F. A.; Murphy, C. J.; Saleh, N. B.; Vikesland, P. J. Langmuir 2017, 33, 1486. doi: 10.1021/acs.langmuir.6b04114  doi: 10.1021/acs.langmuir.6b04114

    31. [31]

      Shi, J.; Deng, Q.; Li, Y.; Chai, Z.; Wan, C.; Shangguan, H.; Li, L.; Tang, B. Chem. Asian J. 2019, 14, 847. doi: 10.1002/asia.201801601  doi: 10.1002/asia.201801601

    32. [32]

      Ma, H.; Kang, Q.; Wang, T.; Yu, L. Colloids Surf. B 2019, 173, 616. doi: 10.1016/j.colsurfb.2018.10.036  doi: 10.1016/j.colsurfb.2018.10.036

  • 加载中
    1. [1]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    2. [2]

      Lina Liu Xiaolan Wei Jianqiang Hu . Exploration of Subject-Oriented Undergraduate Comprehensive Chemistry Experimental Teaching Based on the “STS Concept”: Taking the Experiment of Gold Nanoparticles as an Example. University Chemistry, 2024, 39(10): 337-343. doi: 10.12461/PKU.DXHX202405112

    3. [3]

      Yongming Guo Jie Li Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057

    4. [4]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    5. [5]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    6. [6]

      Liwei Wang Guangran Ma Li Wang Fugang Xu . A Comprehensive Analytical Chemistry Experiment: Colorimetric Detection of Vitamin C Using Nanozyme and Smartphone. University Chemistry, 2024, 39(8): 255-262. doi: 10.3866/PKU.DXHX202312094

    7. [7]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    8. [8]

      Gaofeng Zeng Shuyu Liu Manle Jiang Yu Wang Ping Xu Lei Wang . Micro/Nanorobots for Pollution Detection and Toxic Removal. University Chemistry, 2024, 39(9): 229-234. doi: 10.12461/PKU.DXHX202311055

    9. [9]

      Lin Ding Jinpeng Zhang Junfeng Li Daying Liu . Color Catcher: A Marvelous Encounter of Starch and Iodine. University Chemistry, 2024, 39(6): 334-341. doi: 10.3866/PKU.DXHX202311064

    10. [10]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    11. [11]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    12. [12]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    13. [13]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    14. [14]

      Weihan Zhang Menglu Wang Ankang Jia Wei Deng Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043

    15. [15]

      Haiyu Nie Chenhui Zhang Fengpei Du . Ideological and Political Design for the Preparation, Characterization and Particle Size Control Experiment of Nanoemulsion. University Chemistry, 2024, 39(2): 41-46. doi: 10.3866/PKU.DXHX202306055

    16. [16]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    17. [17]

      Zhengli Hu Jia Wang Yi-Lun Ying Shaochuang Liu Hui Ma Wenwei Zhang Jianrong Zhang Yi-Tao Long . Exploration of Ideological and Political Elements in the Development History of Nanopore Electrochemistry. University Chemistry, 2024, 39(8): 344-350. doi: 10.3866/PKU.DXHX202401072

    18. [18]

      Xiaxue Chen Yuxuan Yang Ruolin Yang Yizhu Wang Hongyun Liu . Adjustable Polychromatic Fluorescence: Investigating the Photoluminescent Properties of Copper Nanoclusters. University Chemistry, 2024, 39(9): 328-337. doi: 10.3866/PKU.DXHX202308019

    19. [19]

      Quanliang Chen Zhaohui Zhou . Research on the Active Site of Nitrogenase over Fifty Years. University Chemistry, 2024, 39(7): 287-293. doi: 10.3866/PKU.DXHX202310133

    20. [20]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

Metrics
  • PDF Downloads(13)
  • Abstract views(725)
  • HTML views(172)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return