Citation: Xing Ruirui, Zou Qianli, Yan Xuehai. Peptide-based Supramolecular Colloids[J]. Acta Physico-Chimica Sinica, ;2020, 36(10): 190904. doi: 10.3866/PKU.WHXB201909048 shu

Peptide-based Supramolecular Colloids

  • Corresponding author: Yan Xuehai, yanxh@ipe.ac.cn
  • Received Date: 26 September 2019
    Revised Date: 15 October 2019
    Accepted Date: 16 October 2019
    Available Online: 22 October 2019

    Fund Project: the National Natural Science Fund BRICS STI Framework Program, China 51861145304the National Natural Science Foundation of China 21522307The project was supported by the National Natural Science Foundation of China (21802144, 21522307, 21977095) and the National Natural Science Fund BRICS STI Framework Program, China (51861145304)the National Natural Science Foundation of China 21977095the National Natural Science Foundation of China 21802144

  • Peptide-based supramolecular colloids are assembled systems based on weak interactions between peptides (such as hydrogen bonding, electrostatic forces, hydrophobic effects, ππ interactions, and van der Waals forces), spontaneously formed in a bottom-up manner. Peptide-based supramolecular colloids have ordered molecular arrangements and regular structures, with characteristics of both traditional colloids and supramolecular systems. Constructing functional supramolecular colloids via weak intermolecular interactions assists in understanding the process of biomolecular self-assembly in vivo and provides an effective strategy for designing supramolecular materials with excellent performance. Peptides, consisting of several amino acids, are elegant building blocks in supramolecular chemistry as well as colloid and interface chemistry because of their biological origin, clear composition, low immunogenicity, structural programmability, excellent biosafety, and high biodegradability. Based on the approach of supramolecular self-assembly, peptides can be manipulated to form multiscale and multifunctional colloidal systems, which have widespread applications in medicine, catalysis, energy, nanotechnology, and other fields. However, the realization of precise control of the structures and functions of these supramolecular colloids through peptide design and intermolecular interactions regulation remains an important issue to be addressed. To study the assembly process and physicochemical mechanism of supramolecular colloids at the molecular scale, and to explore the relationship between colloidal structure and function, the construction and functionalization of supramolecular colloids must be achieved. This work is a systematic summary of the assembly mechanism, structures, and functions as well as the state of the art of peptide-based supramolecular colloids with emphasis on the regulation of intermolecular interactions and structure-function relationships. The research progress of peptide-based supramolecular colloids in the following fields is summarized herein: i) biomimetic photosynthesis, including light capture and charge separation; and ii) tumor phototherapies, including photothermal therapy (PTT) and photodynamic therapy (PDT). Currently, it is feasible to induce functional enhancement of peptide colloids via supramolecular assembly. The most important aspect is to design the primary structure of the peptide building block, to precisely control the weak interactions between peptide molecules and rationally optimize the self-assembly process, and control the size and structure of the assemblies. Follow-up studies should focus on the design of molecular precursors, the combination of basic research and practical application of peptide-based supramolecular colloids will be essential. The advantages of peptide-based supramolecular colloids, including their ordered organization, flexible structures, and versatile functions, will open up novel avenues for various applications of supramolecular colloids in fields such as green energy and medicine. It is hoped that this review will provide inspiration and broaden ideas to further drive the development and application of supramolecular colloids.
  • 加载中
    1. [1]

      Shen, J. C.; Sun, J. Q. Bull. Chin. Acad. Sci. 2004, 6, 420.  doi: 10.16418/j.issn.1000-3045.2004.06.006

    2. [2]

      Zhang, X.; Shen, J. C. Chin. Sci. Bull. 2003, 14, 1477.  doi: 10.3321/j.issn:0023-074X.2003.14.001

    3. [3]

      Yang, Y.; Li, J. B. Chin. Sci. Bull. 2013, 58, 2393.  doi: 10.1360/972012-1856

    4. [4]

      Wang, J.; Liu, K.; Xing, R. R.; Yan, X. H. Chem. Soc. Rev. 2016, 45, 5589. doi: 10.1039/c6cs00176a  doi: 10.1039/c6cs00176a

    5. [5]

      Ma, H. M.; Hao, J. C. Chem. Soc. Rev. 2011, 40, 5457. doi: 10.1039/c1cs15059f  doi: 10.1039/c1cs15059f

    6. [6]

      Yan, X. H.; Zhu, P. L.; Li, J. B. Chem. Soc. Rev. 2010, 39, 1877. doi: 10.1039/b915765b  doi: 10.1039/b915765b

    7. [7]

      Zhang, S. G. Nat. Biotechnol. 2003, 21, 1171. doi: 10.1038/nbt874  doi: 10.1038/nbt874

    8. [8]

      Zhang, J. H.; Li, Y. F.; Zhang, X. M.; Yang, B. Adv. Mater. 2010, 22, 4249. doi: 10.1002/adma.201000755  doi: 10.1002/adma.201000755

    9. [9]

      Xing, R. R.; Jiao, T. F.; Yan, L. Y.; Ma, G. H.; Liu, L.; Dai, L. R.; Li, J. B.; Möhwald, H.; Yan, X. H. ACS Appl. Mater. Interfaces 2015, 7, 24733. doi: 10.1021/acsami.5b07453  doi: 10.1021/acsami.5b07453

    10. [10]

      Chen, Z. Q.; Yang, K. Z. Chem. Bull. 1988, 6, 56.  doi: 10.14159/j.cnki.0441-3776.1988.06.018

    11. [11]

      Guo, R. Chem. Bull. 2012, 75, 6.  doi: 10.14159/j.cnki.0441-3776.2012.01.005

    12. [12]

      Kang, Y. T.; Liu, K.; Zhang, X. Langmuir 2014, 30, 5989. doi: 10.1021/la500327s  doi: 10.1021/la500327s

    13. [13]

      Jia, Y.; Li, J. B. Acc. Chem. Res. 2019, 52, 1623. doi: 10.1021/acs.accounts.9b00015  doi: 10.1021/acs.accounts.9b00015

    14. [14]

      Ariga, K.; Hill, J. P.; Lee, M. V.; Vinu, A.; Charvet, R.; Acharya, S. Sci. Technol. Adv. Mater. 2008, 9, 014109. doi: 10.1088/1468-6996/9/1/014109  doi: 10.1088/1468-6996/9/1/014109

    15. [15]

      Wang, J.; Zou, Q. L.; Yan, X. H. Acta Chim. Sin. 2017, 75, 933.  doi: 10.6023/A17060272

    16. [16]

      Chen, C. J.; Liu, K.; Li, J. B.; Yan, X. H. Adv. Colloid Interface Sci. 2015, 225, 177. doi: 10.1016/j.cis.2015.09.001  doi: 10.1016/j.cis.2015.09.001

    17. [17]

      Yan, X. H.; Li, J. B.; Möhwald, H. Adv. Mater. 2012, 24, 2663. doi: 10.1002/adma.201200408  doi: 10.1002/adma.201200408

    18. [18]

      Reches, M.; Gazit, E. Science 2003, 300, 625. doi: 10.1126/science.1082387  doi: 10.1126/science.1082387

    19. [19]

      Zhao, L. Y.; Zou, Q. L.; Yan, X. H. Bull. Chem. Soc. Jpn. 2019, 92, 70. doi: 10.1246/bcsj.20180248  doi: 10.1246/bcsj.20180248

    20. [20]

      Sun, B. B.; Tao, K.; Jia, Y.; Yan, X. H.; Zou, Q. L.; Gazit, E.; Li, J. B. Chem. Soc. Rev. 2019, 48, 4387. doi: 10.1039/c9cs00085b  doi: 10.1039/c9cs00085b

    21. [21]

      Zhao, X. B.; Pan, F.; Xu, H.; Yaseen, M.; Shan, H. H.; Hauser, C. A. E.; Zhang, S. G.; Lu, J. R. Chem. Soc. Rev. 2010, 39, 3480. doi: 10.1039/b915923c  doi: 10.1039/b915923c

    22. [22]

      Li, S. K.; Zou, Q. L.; Xing, R. R.; Govindaraju, T.; Fakhrullin, R.; Yan, X. H. Theranostics 2019, 9, 3249. doi: 10.7150/thno.31814  doi: 10.7150/thno.31814

    23. [23]

      Hartgerink, J. D.; Beniash, E.; Stupp, S. I. Science 2001, 294, 1684. doi: 10.1126/science.1063187  doi: 10.1126/science.1063187

    24. [24]

      Yan, X. H.; Cui, Y.; Qi, W.; Su, Y.; Yang, Y.; He, Q.; Li, J. B. Small 2008, 4, 1687. doi: 10.1002/smll.200800960  doi: 10.1002/smll.200800960

    25. [25]

      Hu, Y. Y.; Xu, L.; Li, G. H.; Xu, L.; Song, A. X.; Hao, J. C. Langmuir 2015, 31, 8599. doi: 10.1021/acs.langmuir.5b02036  doi: 10.1021/acs.langmuir.5b02036

    26. [26]

      Yan, X. H.; Möhwald, H. Biomacromolecules 2017, 18, 3469. doi: 10.1021/acs.biomac.7b01437  doi: 10.1021/acs.biomac.7b01437

    27. [27]

      Kai, L.; Zhang, R. Y.; Li, Y. X.; Jiao, T. F.; Ding, D.; Yan, X. H. Adv. Mater. Interfaces 2017, 4, 1600183. doi: 10.1002/admi.201770006  doi: 10.1002/admi.201770006

    28. [28]

      Wang, J. Q.; Sun, Y. J.; Dai, J. R.; Zhao, Y. R.; Cao, M. W.; Wang, D.; Xu, H. Acta Phys. -Chim. Sin. 2015, 31, 1365.  doi: 10.3866/PKU.WHXB201505051

    29. [29]

      Fichman, G.; Gazit, E. Acta Biomater. 2014, 10, 1671. doi: 10.1016/j.actbio.2013.08.013  doi: 10.1016/j.actbio.2013.08.013

    30. [30]

      Yuan, C. Q.; Li, S. K.; Zou, Q. L.; Ren, Y.; Yan, X. H. Phys. Chem. Chem. Phys. 2017, 19, 23614. doi: 10.1039/c7cp01923h  doi: 10.1039/c7cp01923h

    31. [31]

      Wang, J.; Yuan, C. Q.; Han, Y. C.; Wang, Y. L.; Liu, X. M.; Zhang, S. J.; Yan, X. H. Small 2017, 13, 1702175. doi: 10.1039/C7CP01923H  doi: 10.1039/C7CP01923H

    32. [32]

      Li, S. K.; Xing, R. R.; Chang, R.; Zou, Q. L.; Yan, X. H. Curr. Opin. Colloid Interface Sci. 2018, 35, 17. doi: 10.1016/j.cocis.2017.12.004  doi: 10.1016/j.cocis.2017.12.004

    33. [33]

      Cui, Y.; Fei, J. B.; Li, J. B. Sci. Sin. Chim. 2011, 41, 273.  doi: 10.1360/032010-723

    34. [34]

      Wang, D.; Sun, Y. W.; Cao, M. W.; Wang, J. Q.; Hao, J. C. RSC Adv. 2015, 5, 95604. doi: 10.1039/c5ra18441j  doi: 10.1039/c5ra18441j

    35. [35]

      Zhao, L. Y.; Li, S. K.; Liu, Y. M.; Xing, R. R.; Yan, X. H. CCS Chem. 2019, 1, 173. doi: 10.31635/ccschem.019.20180017  doi: 10.31635/ccschem.019.20180017

    36. [36]

      Song, J. W.; Xing, R. R.; Jiao, T. F.; Peng, Q. M.; Yuan, C. Q.; Möhwald, H.; Yan, X. H. ACS Appl. Mater. Interfaces 2018, 10, 2368. doi: 10.1021/acsami.7b17933  doi: 10.1021/acsami.7b17933

    37. [37]

      Yan, C. Q.; Pochan, D. J. Chem. Soc. Rev. 2010, 39, 3528. doi: 10.1039/b919449p  doi: 10.1039/b919449p

    38. [38]

      Abbas, M.; Zou, Q. L.; Li, S. K.; Yan, X. H. Adv. Mater. 2017, 29, 1605021. doi: 10.1002/adma.201605021  doi: 10.1002/adma.201605021

    39. [39]

      Li, J. L.; Xing, R. R.; Bai, S.; Yan, X. H. Soft Matter 2019, 15, 1704. doi: 10.1039/c8sm02573h  doi: 10.1039/c8sm02573h

    40. [40]

      Yuan, C. Q.; Ji, W.; Xing, R. R.; Li, J. B.; Gazit, E.; Yan, X. H. Nat. Rev. Chem. 2019, 3, 567. doi: 10.1038/s41570-019-0129-8  doi: 10.1038/s41570-019-0129-8

    41. [41]

      Smits, F. C. M.; Buddingh, B. C.; van Eldijk, M. B.; van Hest, J. C. M. Macromol. Biosci. 2015, 15, 36. doi: 10.1002/mabi.201400419  doi: 10.1002/mabi.201400419

    42. [42]

      Mahadevi, A. S.; Sastry, G. N. Chem. Rev. 2016, 116, 2775. doi: 10.1021/cr500344e  doi: 10.1021/cr500344e

    43. [43]

      Wang, J.; Shen, G. Z.; Ma, K.; Jiao, T. F.; Liu, K.; Yan, X. H. Phys. Chem. Chem. Phys. 2016, 18, 30926. doi: 10.1039/c6cp06150h  doi: 10.1039/c6cp06150h

    44. [44]

      Xing, R. R.; Jiao, T. F.; Feng, L.; Zhang, Q. R.; Zou, Q. L.; Yan, X. H.; Zhou, J. X.; Gao, F. M. Sci. Adv. Mater. 2015, 7, 1701. doi: 10.1166/sam.2015.2411  doi: 10.1166/sam.2015.2411

    45. [45]

      Wang, J.; Liu, K.; Yan, L. Y.; Wang, A. H.; Bai, S.; Yan, X. H. ACS Nano 2016, 10, 2138. doi: 10.1021/acsnano.5b06567  doi: 10.1021/acsnano.5b06567

    46. [46]

      Reches, M.; Gazit, E. Nano Lett. 2004, 4, 581. doi: 10.1021/nl035159z  doi: 10.1021/nl035159z

    47. [47]

      Yan, X. H.; Cui, Y.; He, Q.; Wang, K. W.; Li, J. B. Chem. Mater. 2008, 20, 1522. doi: 10.1021/cm702931b  doi: 10.1021/cm702931b

    48. [48]

      Han, T. H.; Kim, J.; Park, J. S.; Park, C. B.; Ihee, H.; Kim, S. O. Adv. Mater. 2007, 19, 3924. doi: 10.1002/adma.2007001839  doi: 10.1002/adma.2007001839

    49. [49]

      Zhao, Y. R.; Wang, J. Q.; Deng, L.; Zhou, P.; Wang, S. J.; Wang, Y. T.; Xu, H.; Lu, J. R. Langmuir 2013, 29, 13457. doi: 10.1021/la402441w  doi: 10.1021/la402441w

    50. [50]

      Xu, H.; Wang, J.; Han, S. Y.; Wang, J. Q.; Yu, D. Y.; Zhang, H. Y.; Xia, D. H.; Zhao, X. B.; Waigh, T. A.; Lu, J. R. Langmuir 2009, 25, 4115. doi: 10.1021/la802499n  doi: 10.1021/la802499n

    51. [51]

      Hill, T. A.; Shepherd, N. E.; Diness, F.; Fairlie, D. P. Angew. Chem. Int. Edit. 2014, 53, 13020. doi: 10.1002/anie.201401058  doi: 10.1002/anie.201401058

    52. [52]

      Manchineella, S.; Govindaraju, T. Chempluschem 2017, 82, 88. doi: 10.1002/cplu.201600450  doi: 10.1002/cplu.201600450

    53. [53]

      Yang, M. Y.; Xing, R. R.; Shen, G. Z.; Yuan, C. Q.; Yan, X. H. Colloid Surf. A-Physicochem. Eng. Asp. 2019, 572, 259. doi: 10.1016/j.colsurfa.2019.04.020  doi: 10.1016/j.colsurfa.2019.04.020

    54. [54]

      Cao, M. W.; Xing, R. R.; Chang, R.; Wang, Y.; Yan, X. H. Coord. Chem. Rev. 2019, 397, 14. doi: 10.1016/j.ccr.2019.06.013  doi: 10.1016/j.ccr.2019.06.013

    55. [55]

      Zhao, L. Y.; Shen, G. Z.; Ma, G. H.; Yan, X. H. Adv. Colloid Interface Sci. 2017, 249, 308. doi: 10.1016/j.cis.2017.04.008  doi: 10.1016/j.cis.2017.04.008

    56. [56]

      Li, Y. X.; Yan, L. Y.; Liu, K.; Wang, J.; Wang, A. H.; Bai, S.; Yan, X. H. Small 2016, 12, 2575. doi: 10.1002/smll.201600230  doi: 10.1002/smll.201600230

    57. [57]

      Zou, Q. L.; Zhang, L.; Yan, X. H.; Wang, A. H.; Ma, G. H.; Li, J. B.; Mohwald, H.; Mann, S. Angew. Chem. Int. Edit. 2014, 53, 2366. doi: 10.1002/anie.201308792  doi: 10.1002/anie.201308792

    58. [58]

      Liu, K.; Xing, R. R.; Chen, C. J.; Shen, G. Z.; Yan, L. Y.; Zou, Q. L.; Ma, G. H.; Möhwald, H.; Yan, X. H. Angew. Chem. Int. Edit. 2015, 54, 500. doi: 10.1002/anie.201409149  doi: 10.1002/anie.201409149

    59. [59]

      Liu, K.; Kang, Y.; Ma, G. H.; Möhwald, H.; Yan, X. H. Phys. Chem. Chem. Phys. 2016, 18, 16738. doi: 10.1039/c6cp01358a  doi: 10.1039/c6cp01358a

    60. [60]

      Mahler, A.; Reches, M.; Rechter, M.; Cohen, S.; Gazit, E. Adv. Mater. 2006, 18, 1365. doi: 10.1002/adma.200501765  doi: 10.1002/adma.200501765

    61. [61]

      Smith, A. M.; Williams, R. J.; Tang, C.; Coppo, P.; Collins, R. F.; Turner, M. L.; Saiani, A.; Ulijn, R. V. Adv. Mater. 2008, 20, 37. doi: 10.1002/adma.200701221  doi: 10.1002/adma.200701221

    62. [62]

      Xing, R. R.; Yuan, C. Q.; Li, S. K.; Song, J. W.; Li, J. B.; Yan, X. H. Angew. Chem. Int. Edit. 2018, 57, 1537. doi: 10.1002/anie.201710642  doi: 10.1002/anie.201710642

    63. [63]

      Ji, W.; Yuan, C. Q.; Chakraborty, P.; Gilead, S.; Yan, X. H.; Gazit, E. Commun. Chem. 2019, 2, 65. doi: 10.1038/s42004-019-0170-z  doi: 10.1038/s42004-019-0170-z

    64. [64]

      Liu, K.; Xing, R. R.; Zou, Q. L.; Ma, G. H.; Möhwald, H.; Yan, X. H. Angew. Chem. Int. Edit. 2016, 55, 3036. doi: 10.1002/anie.201509810  doi: 10.1002/anie.201509810

    65. [65]

      Zou, Q. L.; Abbas, M.; Zhao, L. Y.; Li, S. K.; Shen, G. Z.; Yan, X. H. J. Am. Chem. Soc. 2017, 139, 1921. doi: 10.1021/jacs.6b11382  doi: 10.1021/jacs.6b11382

    66. [66]

      Ren, X. K.; Zou, Q. L.; Yuan, C. Q.; Chang, R.; Xing, R. R.; Yan, X. H. Angew. Chem. Int. Edit. 2019, 58, 5872. doi: 10.1002/anie.201814575  doi: 10.1002/anie.201814575

    67. [67]

      Li, Y. X.; Zou, Q. L.; Yuan, C. Q.; Li, S. K.; Xing, R. R.; Yan, X. H. Angew. Chem. Int. Edit. 2018, 57, 17084. doi: 10.1002/anie.201810087  doi: 10.1002/anie.201810087

    68. [68]

      Zhang, H.; Kang, L.; Zou, Q. L.; Xin, X.; Yan, X. H. Curr. Opin. Biotechnol. 2019, 58, 45. doi: 10.1016/j.copbio.2018.11.007  doi: 10.1016/j.copbio.2018.11.007

    69. [69]

      Zou, Q. L.; Yan, X. H. Chem. -Eur. J. 2018, 24, 755. doi: 10.1002/chem.201880461  doi: 10.1002/chem.201880461

    70. [70]

      Li, S. K.; Zou, Q. L.; Li, Y. X.; Yuan, C. Q.; Xing, R. R.; Yan, X. H. J. Am. Chem. Soc. 2018, 140, 10794. doi: 10.1021/jacs.8b04912  doi: 10.1021/jacs.8b04912

    71. [71]

      Zhang, H.; Liu, K.; Li, S. K.; Xin, X.; Yuan, S. L.; Ma, G. H.; Yan, X. H. ACS Nano 2018, 12, 8266. doi: 10.1021/acsnano.8b03529  doi: 10.1021/acsnano.8b03529

    72. [72]

      Han, J. J.; Liu, K.; Chang, R.; Zhao, L. Y.; Yan, X. H. Angew. Chem. Int. Edit. 2019, 58, 2000. doi: 10.1002/anie.201811478  doi: 10.1002/anie.201811478

    73. [73]

      Liu, K.; Ren, X. K.; Sun, J. X.; Zou, Q. L.; Yan, X. H. Adv. Sci. 2018, 5, 1701001. doi: 10.1002/advs.201701001  doi: 10.1002/advs.201701001

    74. [74]

      Liu, K.; Xing, R. R.; Li, Y. X.; Zou, Q. L.; Mohwald, H.; Yan, X. H. Angew. Chem. Int. Edit. 2016, 55, 12503. doi: 10.1002/anie.201606795  doi: 10.1002/anie.201606795

    75. [75]

      Liu, K.; Zhang, H.; Xing, R. R.; Zou, Q. L.; Yan, X. H. ACS Nano 2017, 11, 12840. doi: 10.1021/acsnano.7b08215  doi: 10.1021/acsnano.7b08215

    76. [76]

      Liu, K.; Yuan, C. Q.; Zou, Q. L.; Xie, Z. C.; Yan, X. H. Angew. Chem. Int. Edit. 2017, 56, 7876. doi: 10.1002/anie.201704678  doi: 10.1002/anie.201704678

    77. [77]

      Zou, Q. L.; Liu, K.; Abbas, M.; Yan, X. H. Adv. Mater. 2016, 28, 1031. doi: 10.1002/adma.201502454  doi: 10.1002/adma.201502454

    78. [78]

      Han, B. X. Acta Phys. -Chim. Sin. 2017, 33, 2125.  doi: 10.3866/PKU.WHXB201706154

    79. [79]

      Hauser, C. A. E.; Zhang, S. G. Chem. Soc. Rev. 2010, 39, 2780. doi: 10.1039/b921448h  doi: 10.1039/b921448h

    80. [80]

      Standley, S. M.; Toft, D. J.; Cheng, H.; Soukasene, S.; Chen, J.; Raja, S. M.; Band, V.; Band, H.; Cryns, V. L.; Stupp, S. I. Cancer Res. 2010, 70, 3020. doi: 10.1158/0008-5472.Can-09-3267  doi: 10.1158/0008-5472.Can-09-3267

    81. [81]

      Allemani, C.; Matsuda, T.; Di Carlo, V.; Harewood, R.; Matz, M.; Niksic, M.; Bonaventure, A.; Valkov, M.; Johnson, C. J.; Esteve, J.; et al. Lancet 2018, 391, 1023. doi: 10.1016/S0140-6736(17)33326-3

    82. [82]

      Xing, R. R.; Liu, K.; Jiao, T. F.; Zhang, N.; Ma, K.; Zhang, R. Y.; Zou, Q. L.; Ma, G. H.; Yan, X. H. Adv. Mater. 2016, 28, 3669. doi: 10.1002/adma.201600284  doi: 10.1002/adma.201600284

    83. [83]

      Liu, Y. M.; Zhao, L. Y.; Xing, R. R.; Jiao, T. F.; Song, W. X.; Yan, X. H. Chem. -Asian J. 2018, 13, 3526. doi: org/10.1002/asia.201800825  doi: 10.1002/asia.201800825

    84. [84]

      Abbas, M.; Xing, R. R.; Zhang, N.; Zou, Q. L.; Yan, X. H. ACS Biomater. Sci. Eng. 2017, 4, 2046. doi: 10.1021/acsbiomaterials.7b00624  doi: 10.1021/acsbiomaterials.7b00624

    85. [85]

      Yan, X. H.; van Hest, J. C. M. Chem. -Asian J. 2018, 13, 3331. doi: 10.1002/asia.201801457  doi: 10.1002/asia.201801457

    86. [86]

      Li, J. L.; Wang, A. H.; Ren, P.; Yan, X. H.; Bai, S. Chem. Commun. 2019, 55, 3191. doi: 10.1039/c9cc00025a  doi: 10.1039/c9cc00025a

    87. [87]

      Chang, R.; Zou, Q. L.; Xing, R. R.; Yan, X. H. Adv. Therap. 2019, 2, 1900048. doi: 10.1002/adtp.201900048  doi: 10.1002/adtp.201900048

    88. [88]

      Li, J. L.; Wang, A. H.; Zhao, L. Y.; Dong, Q. Q.; Wang, M. Y.; Xu, H. L.; Yan, X. H.; Bai, S. ACS Appl. Mater. Interfaces 2018, 10, 28420. doi: 10.1021/acsami.8b09933  doi: 10.1021/acsami.8b09933

    89. [89]

      Brown, S. B.; Brown, E. A.; Walker, I. Lancet Oncol. 2004, 5, 497. doi: 10.1016/S1470-2045(04)01529-3  doi: 10.1016/S1470-2045(04)01529-3

    90. [90]

      Wan, J. B.; Liu, S. Z.; Pan, S. Y.; Xu, X.; Li, X.; Ye, B. Acta Phys. -Chim. Sin.2011, 27, 32.  doi: 10.3866/PKU.WHXB20110127

    91. [91]

      Sun, H. F.; Li, S. K.; Qi, W.; Xing, R. R.; Zou, Q. L.; Yan, X. H. Colloid Surf. A-Physicochem. Eng. Asp. 2018, 538, 795. doi: 10.1016/j.colsurfa.2017.11.072  doi: 10.1016/j.colsurfa.2017.11.072

    92. [92]

      Ma, K.; Xing, R. R.; Jiao, T. F.; Shen, G. Z.; Chen, C. J.; Li, J. B.; Yan, X. H. ACS Appl. Mater. Interfaces 2016, 8, 30759. doi: 10.1021/acsami.6b10754  doi: 10.1021/acsami.6b10754

    93. [93]

      Xing, R. R.; Li, S. K.; Zhang, N.; Shen, G. Z.; Möhwald, H.; Yan, X. H. Biomacromolecules 2017, 18, 3514. doi: 10.1021/acs.biomac.7b00787  doi: 10.1021/acs.biomac.7b00787

    94. [94]

      Guo, Z. N.; Zhang, H.; Lu, S. B.; Wang, Z. T.; Tang, S. Y.; Shao, J. D.; Sun, Z. B.; Xie, H. H.; Wang, H. Y.; Yu, X. F.; et al. Adv. Funct. Mater. 2015, 25, 6996. doi: 10.1002/adfm.201502902  doi: 10.1002/adfm.201502902

    95. [95]

      Hessel, C. M.; Pattani, V. P.; Rasch, M.; Panthani, M. G.; Koo, B.; Tunnell, J. W.; Korgel, B. A. Nano Lett. 2011, 11, 2560. doi: 10.1021/nl201400z  doi: 10.1021/nl201400z

    96. [96]

      Zhang, Y. K.; Zhang, H.; Zou, Q. L.; Xing, R. R.; Jiao, T. F.; Yan, X. H. J. Mat. Chem. B 2018, 6, 7335. doi: 10.1039/c8tb01487f  doi: 10.1039/c8tb01487f

    97. [97]

      Wang, X. H.; Han, Q. S.; Li, J. Y.; Yang, R.; Diao, G. W.; Wang, C. Acta Phys. -Chim. Sin. 2014, 30, 1363.  doi: 10.3866/PKU.WHXB201405063

    98. [98]

      Xing, R. R.; Zou, Q. L.; Yuan, C. Q.; Zhao, L. Y.; Yan, X. H. Adv. Mater. 2019, 31, 1900822. doi: 10.1002/adma.201900822  doi: 10.1002/adma.201900822

    99. [99]

      Zhao, L. Y.; Liu, Y. M.; Chang, R.; Xing, R. R.; Yan, X. H. Adv. Funct. Mater. 2019, 29, 1806877. doi: 10.1002/adfm.201806877  doi: 10.1002/adfm.201806877

  • 加载中
    1. [1]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    2. [2]

      Yixuan Zhu Qingtong Wang Jin Li Lin Chen Junlong Zhao . Blog of Oxytocin. University Chemistry, 2024, 39(9): 134-140. doi: 10.12461/PKU.DXHX202310090

    3. [3]

      Ruoxi Sun Yiqian Xu Shaoru Rong Chunmiao Han Hui Xu . The Enchanting Collision of Light and Time Magic: Exploring the Footprints of Long Afterglow Lifetime. University Chemistry, 2024, 39(5): 90-97. doi: 10.3866/PKU.DXHX202310001

    4. [4]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    5. [5]

      Xiaofei NIUKe WANGFengyan SONGShuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057

    6. [6]

      Luhong Chen Yan Zhang . Chem&Bio Interdisciplinary Graduates Training in Nanjing University Promoted by Chemistry and Biomedicine Innovation Center. University Chemistry, 2024, 39(6): 12-16. doi: 10.3866/PKU.DXHX202311089

    7. [7]

      Yunhao Zhang Yinuo Wang Siran Wang Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083

    8. [8]

      Fengqiao Bi Jun Wang Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069

    9. [9]

      Cunming Yu Dongliang Tian Jing Chen Qinglin Yang Kesong Liu Lei Jiang . Chemistry “101 Program” Synthetic Chemistry Experiment Course Construction: Synthesis and Properties of Bioinspired Superhydrophobic Functional Materials. University Chemistry, 2024, 39(10): 101-106. doi: 10.12461/PKU.DXHX202408008

    10. [10]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    11. [11]

      Wenyan Dan Weijie Li Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060

    12. [12]

      Jia Yao Xiaogang Peng . Theory of Macroscopic Molecular Systems: Theoretical Framework of the Physical Chemistry Course in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 27-37. doi: 10.12461/PKU.DXHX202408117

    13. [13]

      Tingyu Zhu Hui Zhang Wenwei Zhang . Exploration and Practice of Ideological and Political Education in the Course of Experiments on Chemical Functional Molecules: Synthesis and Catalytic Performance Study of Chiral Mn(III)Cl-Salen Complex. University Chemistry, 2024, 39(4): 75-80. doi: 10.3866/PKU.DXHX202311011

    14. [14]

      Rui Li Jiayu Zhang Anyang Li . Two Levels of Understanding of Chemical Bonds: a Case of the Bonding Model of Hypervalent Molecules. University Chemistry, 2024, 39(2): 392-398. doi: 10.3866/PKU.DXHX202308051

    15. [15]

      Yanxin Wang Hongjuan Wang Yuren Shi Yunxia Yang . Application of Python for Visualizing in Structural Chemistry Teaching. University Chemistry, 2024, 39(3): 108-117. doi: 10.3866/PKU.DXHX202306005

    16. [16]

      Xu Liu Chengfang Liu Jie Huang Xiangchun Li Wenyong Lai . Research on the Application of Diversified Teaching Models in the Teaching of Physical Chemistry. University Chemistry, 2024, 39(8): 112-118. doi: 10.3866/PKU.DXHX202402021

    17. [17]

      Ruming Yuan Laiying Zhang Xiaoming Xu Pingping Wu Gang Fu . Application of Mathematica in Visualizing Physical Chemistry Formulas. University Chemistry, 2024, 39(8): 375-382. doi: 10.3866/PKU.DXHX202401030

    18. [18]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    19. [19]

      Lijun Huo Mingcun Wang Tianyi Zhao Mingjie Liu . Exploration of Undergraduate and Graduate Integrated Teaching in Polymer Chemistry with Aerospace Characteristics. University Chemistry, 2024, 39(6): 103-111. doi: 10.3866/PKU.DXHX202312059

    20. [20]

      Simin Fang Hong Wu Wei Liu Wei Wei Hongyan Feng Wan Li . Construction and Application of Teaching Resources for Inorganic and Analytical Chemistry Experimental Course in the Context of Digital Empowerment. University Chemistry, 2024, 39(10): 156-163. doi: 10.3866/PKU.DXHX202402053

Metrics
  • PDF Downloads(21)
  • Abstract views(1845)
  • HTML views(521)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return