Citation: Wang Lulu, Xie Zexin, Zhong Cheng, Tang Yongqiang, Ye Fengming, Wang Liping, Lu Yi. Self-spreadable Octopus-like Electrode Arrays for Long-term Neural Recordings[J]. Acta Physico-Chimica Sinica, ;2020, 36(12): 190903. doi: 10.3866/PKU.WHXB201909035 shu

Self-spreadable Octopus-like Electrode Arrays for Long-term Neural Recordings

  • Corresponding author: Wang Liping, lp.wang@siat.ac.cn Lu Yi, luyi@siat.ac.cn
  • These authors contributed equally to this work.
  • Received Date: 19 September 2019
    Revised Date: 11 November 2019
    Accepted Date: 11 November 2019
    Available Online: 15 November 2019

    Fund Project: the Guangdong Key Lab of Brain Connectome 2017B030301017the Natural Science Foundation of Guangdong Province 2016A030313182the National Natural Science Foundation of China 31871080the Strategic Priority Research Program of the CAS XDBS01030100the Science and Technology Planning Project of Guangdong Province 2018B030331001The project was supported by the National Natural Science Foundation of China (31871080 and 31700921), the Strategic Priority Research Program of the CAS (XDBS01030100), the Youth Innovation Promotion Association of the CAS, the Science and Technology Planning Project of Guangdong Province (2018B030331001), the Natural Science Foundation of Guangdong Province (2016A030313182), and the Guangdong Key Lab of Brain Connectome (2017B030301017)the National Natural Science Foundation of China 31700921

  • Neural electrodes have been extensively utilized for the investigation of neural functions and the understanding of neuronal circuits because of their high spatial and temporal resolution. However, long-term effective electrophysiological recordings in free-behaving animals still constitute a challenging task, which hinders longitudinal studies on complex brain-processing mechanisms at a functional level. Herein, we demonstrate the feasibility and advantages of using a self-spreadable octopus-like electrode (octrode) array for long-term recordings. The octrode array was fabricated by enwrapping a bundle of eight formvar-coated nickel-chromium microwires with a layer of polyethylene glycol in a custom-made mold. After the electrodeposition of platinum nanoparticles, the microwires at the electrode tip were gathered together and then re-enwrapped with a thin layer of gelatin to maintain their structure and mechanical strength for implantation. Shortly after implantation (within 20 min), the biocompatible gelatin encapsulation swelled and dissolved, causing the self-spreading of the recording channels of the octrode array in the brain. The electrochemical characteristics of the electrode/neural tissue interface were investigated by electrochemical impedance spectroscopy (EIS). Four weeks after implantation, the average impedance of the octrodes (1.26 MΩ at 1 kHz) was significantly lower than that of the conventional tetrodes (1.50 MΩ at 1 kHz, p < 0.05, t-test). Additionally, the octrodes exhibited a better pseudo-capacitive characteristic and a considerably faster ion transfer rate at the electrode interface than the tetrodes. Spontaneous action potentials and local field potentials (LFPs) were also recorded in vivo to investigate the electrophysiological performance of the octrodes. The peak-to-peak spike amplitudes recorded for the octrodes were remarkably larger than those recorded for the tetrodes. The signal quality remained at approximately the same level for the four-week period, while the peak-to-peak spike amplitudes recorded for the tetrodes decreased abruptly. Moreover, the voltage amplitudes recorded by the octrodes at 1–200 Hz were notably larger than those by the tetrodes, suggesting a higher sensitivity in the recording of electrophysiological events. Furthermore, we performed immunochemical analyses on the brain tissues at post-implantation to evaluate the histocompatibility of the electrodes. Tissue responses of the octrodes were alleviated considerably, evidenced by the reduced astroglial intensity and increased neuron density around the implant site as compared to the tetrodes, which may be due to the relatively small size of each decentralized recording channel after self-spreading in vivo. Generally, the fabricated octrodes exhibited a lower electrochemical impedance value at the octrode/neural tissue interface and an increased signal quality during the long-term electrophysiological recording in freely moving mice as compared to the conventional tetrodes. All of these are desirable characteristics in neural circuit dissections in vivo.
  • 加载中
    1. [1]

      Spira, M. E.; Hai, A. Nat. Nanotechnol. 2013, 8 (2), 83. doi: 10.1038/nnano.2012.265  doi: 10.1038/nnano.2012.265

    2. [2]

      Jun, J. J.; Steinmetz, N. A.; Siegle, J. H.; Denman, D. J.; Bauza, M.; Barbarits, B.; Lee, A. K.; Anastassiou, C. A.; Andrei, A.; Aydin, C.; et al. Nature 2017, 551 (7679), 232. doi: 10.1038/nature24636  doi: 10.1038/nature24636

    3. [3]

      Lu, Y.; Zhong, C.; Wang, L.; Wei, P.; He, W.; Huang, K.; Zhang, Y.; Zhan, Y.; Feng, G.; Wang, L. Nat. Commun. 2016, 7, 10962. doi: 10.1038/ncomms10962  doi: 10.1038/ncomms10962

    4. [4]

      Gradinaru, V.; Mogri, M.; Thompson, K. R.; Henderson J. M.; Deisseroth. K. Science 2009, 324, 354. doi: 10.1126/science.1167093  doi: 10.1126/science.1167093

    5. [5]

      Peca, J.; Feliciano, C.; Ting, J. T.; Wang, W.; Wells, M. F.; Venkatraman, T. N.; Lascola, C. D.; Fu, Z.; Feng, G. Nature 2011, 472 (7344), 437. doi: 10.1038/nature09965  doi: 10.1038/nature09965

    6. [6]

      Ferenczi, E. A.; Zalocusky, K. A.; Liston, C.; Grosenick, L.; Warden, M. R.; Amatya, D.; Katovich, K.; Mehta, H.; Patenaude, B.; Ramakrishnan, C.; et al. Science 2016, 351 (6268), aac9698. doi: 10.1126/science.aac9698  doi: 10.1126/science.aac9698

    7. [7]

      Wei, P.; Liu, N.; Zhang, Z.; Liu, X.; Tang, Y.; He, X.; Wu, B.; Zhou, Z.; Liu, Y.; Li, J.; et al. Nat. Commun. 2015, 6, 6756. doi: 10.1038/ncomms7756  doi: 10.1038/ncomms7756

    8. [8]

      Donoghue, J. P. Neuron 2008, 60 (3), 511. doi: 10.1016/j.neuron.2008.10.037  doi: 10.1016/j.neuron.2008.10.037

    9. [9]

      Lu, Z. Y.; Xu, S. W.; Wang, H.; Liu, J. T.; Gao, F.; Song, Y. L.; Xie, J. Y.; Xiao, G. H.; Zhang, Y.; Dai, Y. C.; et al. Acta. Phys. -Chim. Sin. 2020, 36, 1907033.  doi: 10.3866/PKU.WHXB201907033

    10. [10]

      Polikov, V. S.; Tresco, P. A.; Reichert, W. M. J. Neurosci. Methods 2005, 148 (1), 1. doi: 10.1016/j.jneumeth.2005.08.015  doi: 10.1016/j.jneumeth.2005.08.015

    11. [11]

      Williams, J. C.; Rennaker R. L.; Kipke D. R. Brain. Res. Protoc. 1999, 4, 303. doi: 10.1016/s1385-299x(99)00034-3  doi: 10.1016/s1385-299x(99)00034-3

    12. [12]

      Neary, J. T.; Kang, Y.; Willoughby, K. A.; Ellis, E. F. J. Neurosci. 2003, 23, 2348. doi: 10.1016/S0006-3223(03)01528-7  doi: 10.1016/S0006-3223(03)01528-7

    13. [13]

      Szarowski, D. H.; Andersen, M. D.; Retterer, S.; Spence, A. J.; Isaacson, M.; Craighead, H. G.; Turner, J. N.; Shain, W. Brain Research 2003, 983, 23. doi: 10.1016/s0006-8993(03)03023-3  doi: 10.1016/s0006-8993(03)03023-3

    14. [14]

      Lu, Y.; Li, Y.; Pan, J.; Wei, P.; Liu, N.; Wu, B.; Cheng, J.; Lu, C.; Wang, L. Biomaterials 2012, 33 (2), 378. doi: 10.1016/j.biomaterials.2011.09.083  doi: 10.1016/j.biomaterials.2011.09.083

    15. [15]

      Chen, R.; Canales, A.; Anikeeva, P. Nat. Rev. Mater. 2017, 2 (2), 16093. doi: 10.1038/natrevmats.2016.93  doi: 10.1038/natrevmats.2016.93

    16. [16]

      Ouyang, J. Acta. Phys. -Chim. Sin. 2018, 34 (11), 1211.  doi: 10.3866/PKU.WHXB201804095

    17. [17]

      Wellman, S. M.; Eles, J. R.; Ludwig, K. A.; Seymour, J. P.; Michelson, N. J.; McFadden, W. E.; Vazquez, A. L.; Kozai, T. D. Y. Adv. Funct. Mater. 2018, 28 (12), 1701269. doi: 10.1002/adfm.201701269  doi: 10.1002/adfm.201701269

    18. [18]

      Wang, M.; Mi, G.; Shi, D.; Bassous, N.; Hickey, D.; Webster, T. J. Adv. Funct. Mater. 2018, 28 (12), 1700905. doi: 10.1002/adfm.201700905  doi: 10.1002/adfm.201700905

    19. [19]

      Harris, A. R.; Wallace, G. G. Adv. Funct. Mater. 2018, 28 (12), 1700587. doi: 10.1002/adfm.201700587  doi: 10.1002/adfm.201700587

    20. [20]

      Lee, H.; Bellamkonda, R. V.; Sun, W.; Levenston, M. E. J. Neural. Eng. 2005, 2 (4), 81. doi: 10.1088/1741-2560/2/4/003  doi: 10.1088/1741-2560/2/4/003

    21. [21]

      Gilletti, A.; Muthuswamy, J. J. Neural. Eng. 2006, 3 (3), 189. doi: 10.1088/1741-2560/3/3/001  doi: 10.1088/1741-2560/3/3/001

    22. [22]

      Rousche, P. J.; Pellinen, D. S.; Pivin, D. P.; Williams, J. C.; Vetter, R. J.; Kipke, D. R. IEEE. Trans. Biomed. Eng. 2001, 48, 361. doi: 10.1109/10.914800v  doi: 10.1109/10.914800v

    23. [23]

      Metz, S.; Bertsch, A.; Bertrand, D.; Renaud, P. Biosens Bioelectron 2004, 19 (10), 1309. doi: 10.1016/j.bios.2003.11.021  doi: 10.1016/j.bios.2003.11.021

    24. [24]

      Skousen, J. L.; Merriam, S. M.; Srivannavit, O.; Perlin, G.; Wise, K. D.; Tresco, P. A. Prog. Brain. Res. 2011, 194, 167. doi: 10.1016/B978-0-444-53815-4.00009-1  doi: 10.1016/B978-0-444-53815-4.00009-1

    25. [25]

      Seymour, J. P.; Kipke, D. R. Biomaterials 2007, 28 (25), 3594. doi: 10.1016/j.biomaterials.2007.03.024  doi: 10.1016/j.biomaterials.2007.03.024

    26. [26]

      Liu, J.; Fu, T. M.; Cheng, Z.; Hong, G.; Zhou, T.; Jin, L.; Duvvuri, M.; Jiang, Z.; Kruskal, P.; Xie, C.; et al. Nat. Nanotechnol. 2015, 10 (7), 629. doi: 10.1038/nnano.2015.115  doi: 10.1038/nnano.2015.115

    27. [27]

      Xie, C.; Liu, J.; Fu, T. M.; Dai, X.; Zhou, W.; Lieber, C. M. Nat. Mater. 2015, 14 (12), 1286. doi: 10.1038/nmat4427  doi: 10.1038/nmat4427

    28. [28]

      Guan, S.; Wang, J.; Gu, X.; Zhao, Y.; Hou, R.; Fan, H.; Zou, L.; Gao, L.; Du, M.; Li, C.; Fang, Y. Sci. Adv. 2019, 5, eaav2842. doi: 10.1126/sciadv.aav2842  doi: 10.1126/sciadv.aav2842

    29. [29]

      Zhong, C.; Zhang, Y.; He, W.; Wei, P.; Lu, Y.; Zhu, Y.; Liu, L.; Wang, L. J. Neurosci. Methods. 2014, 222, 218. doi: 10.1016/j.jneumeth.2013.11.013  doi: 10.1016/j.jneumeth.2013.11.013

    30. [30]

      Lu, Y.; Li, T.; Zhao, X.; Li, M.; Cao, Y.; Yang, H.; Duan, Y. Y. Biomaterials 2010, 31 (19), 5169. doi: 10.1016/j.biomaterials.2010.03.022  doi: 10.1016/j.biomaterials.2010.03.022

    31. [31]

      Zhong, C.; Ke, D.; Wang, L.; Lu, Y.; Wang, L. Electrochem. Commun. 2017, 79, 59. doi: 10.1016/j.elecom.2017.04.015  doi: 10.1016/j.elecom.2017.04.015

    32. [32]

      Wang, L.; Zhong, C.; Ke, D.; Ye, F.; Tu, J.; Wang, L.; Lu, Y. Adv. Opt. Mater. 2018, 6, 1800427. doi: 10.1002/adom.201800427  doi: 10.1002/adom.201800427

    33. [33]

      Abidian, M. R.; Martin, D. C. Biomaterials 2008, 29 (9), 1273. doi: 10.1016/j.biomaterials.2007.11.022  doi: 10.1016/j.biomaterials.2007.11.022

    34. [34]

      Xu, S. D.; Zhuang, Q. C.; Shi, Y. L.; Zhu, Y. B.; Qiu, X. Y.; Sun, Z. Acta Phys. -Chim. Sin. 2011, 27 (10), 2353.  doi: 10.3866/PKU.WHXB20111004

    35. [35]

      Sun, X. Z.; Huang, B.; Zhang, X.; Zhang, D. C.; Zhang, H. T.; Ma, Y. W. Acta Phys. -Chim. Sin. 2014, 30 (11), 2071.  doi: 10.3866/PKU.WHXB201408292

  • 加载中
    1. [1]

      Zhenqiang GuoHuicong YangQian WeiShengjun XuGuangjian HuShuo BaiFeng Li . Dual-additives enable stable electrode-electrolyte interfaces for long life Li-SPAN batteries. Chinese Chemical Letters, 2024, 35(5): 108622-. doi: 10.1016/j.cclet.2023.108622

    2. [2]

      Hongjie GuoQiang WeiYangyang WuWei QiuHongliang LiChangyong Zhang . Enhanced nitrate removal from groundwater using a conductive spacer in flow-electrode capacitive deionization. Chinese Chemical Letters, 2024, 35(8): 109325-. doi: 10.1016/j.cclet.2023.109325

    3. [3]

      Jingxuan LiuShiqi ZhaoXiang Wu . Flexible electrochemical capacitor based NiMoSSe electrode material with superior cycling and structural stability. Chinese Chemical Letters, 2024, 35(7): 109059-. doi: 10.1016/j.cclet.2023.109059

    4. [4]

      Junhan LuoQi QingLiqin HuangZhe WangShuang LiuJing ChenYuexiang Lu . Non-contact gaseous microplasma electrode as anode for electrodeposition of metal and metal alloy in molten salt. Chinese Chemical Letters, 2024, 35(4): 108483-. doi: 10.1016/j.cclet.2023.108483

    5. [5]

      Ning DINGSiyu WANGShihua YUPengcheng XUDandan HANDexin SHIChao ZHANG . Crystalline and amorphous metal sulfide composite electrode materials with long cycle life: Preparation and performance of hybrid capacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1784-1794. doi: 10.11862/CJIC.20240146

    6. [6]

      Tsegaye Tadesse Tsega Jiantao Zai Chin Wei Lai Xin-Hao Li Xuefeng Qian . Earth-abundant CuFeS2 nanocrystals@graphite felt electrode for high performance aqueous polysulfide/iodide redox flow batteries. Chinese Journal of Structural Chemistry, 2024, 43(1): 100192-100192. doi: 10.1016/j.cjsc.2023.100192

    7. [7]

      Xiao LiWanqiang YuYujie WangRuiying LiuQingquan YuRiming HuXuchuan JiangQingsheng GaoHong LiuJiayuan YuWeijia Zhou . Metal-encapsulated nitrogen-doped carbon nanotube arrays electrode for enhancing sulfion oxidation reaction and hydrogen evolution reaction by regulating of intermediate adsorption. Chinese Chemical Letters, 2024, 35(8): 109166-. doi: 10.1016/j.cclet.2023.109166

    8. [8]

      Mingjiao LuZhixing WangGui LuoHuajun GuoXinhai LiGuochun YanQihou LiXianglin LiDing WangJiexi Wang . Boosting the performance of LiNi0.90Co0.06Mn0.04O2 electrode by uniform Li3PO4 coating via atomic layer deposition. Chinese Chemical Letters, 2024, 35(5): 108638-. doi: 10.1016/j.cclet.2023.108638

    9. [9]

      Shihong WuRonghui ZhouHang ZhaoPeng Wu . Sonoafterglow luminescence for in vivo deep-tissue imaging. Chinese Chemical Letters, 2024, 35(10): 110026-. doi: 10.1016/j.cclet.2024.110026

    10. [10]

      Chengde WangLiping HuangShanshan WangLihao WuYi WangJun Dong . A distinction of gliomas at cellular and tissue level by surface-enhanced Raman scattering spectroscopy. Chinese Chemical Letters, 2024, 35(5): 109383-. doi: 10.1016/j.cclet.2023.109383

    11. [11]

      Xing TianDi WuWanheng WeiGuifu DaiZhanxian LiBenhua WangMingming Yu . A lipid droplets-targetable fluorescent probe for polarity detection in cells of iron death, inflammation and fatty liver tissue. Chinese Chemical Letters, 2024, 35(6): 108912-. doi: 10.1016/j.cclet.2023.108912

    12. [12]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

    13. [13]

      Yuanjiao LiuXiaoyang ZhaoSongyao ZhangYi WangYutuo ZhengXinrui MiaoWenli Deng . Site-selection and recognition of aromatic carboxylic acid in response to coronene and pyridine derivative. Chinese Chemical Letters, 2024, 35(8): 109404-. doi: 10.1016/j.cclet.2023.109404

    14. [14]

      Cuiwu MOGangmin ZHANGChao WUZhipeng HUANGChi ZHANG . A(NH2SO3) (A=Li, Na): Two ultraviolet transparent sulfamates exhibiting second harmonic generation response. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1387-1396. doi: 10.11862/CJIC.20240045

    15. [15]

      Caixia LiYi QiuYufeng ZhaoWuliang Feng . Self assembled electron blocking and lithiophilic interface towards dendrite-free solid-state lithium battery. Chinese Chemical Letters, 2024, 35(4): 108846-. doi: 10.1016/j.cclet.2023.108846

    16. [16]

      Lili WangYa YanRulin LiXujie HanJiahui LiTing RanJialu LiBaichuan XiongXiaorong SongZhaohui YinHong WangQingjun ZhuBowen ChengZhen Yin . Interface engineering of 2D NiFe LDH/NiFeS heterostructure for highly efficient 5-hydroxymethylfurfural electrooxidation. Chinese Chemical Letters, 2024, 35(9): 110011-. doi: 10.1016/j.cclet.2024.110011

    17. [17]

      Xiao-Tong Sun Hao-Fei Ni Yi Zhang Da-Wei Fu . Hybrid perovskite shows temperature-dependent photoluminescence and dielectric response triggered by halogen substitution. Chinese Journal of Structural Chemistry, 2024, 43(6): 100212-100212. doi: 10.1016/j.cjsc.2024.100212

    18. [18]

      Zhen Shi Wei Jin Yuhang Sun Xu Li Liang Mao Xiaoyan Cai Zaizhu Lou . Interface charge separation in Cu2CoSnS4/ZnIn2S4 heterojunction for boosting photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100201-100201. doi: 10.1016/j.cjsc.2023.100201

    19. [19]

      Ying ZhaoYin-Hang ChaiTian ChenJie ZhengTing-Ting LiFrancisco AznarezLi-Long DangLu-Fang Ma . Size-controlled synthesis and near-infrared photothermal response of Cp* Rh-based metalla[2]catenanes and rectangular metallamacrocycles. Chinese Chemical Letters, 2024, 35(6): 109298-. doi: 10.1016/j.cclet.2023.109298

    20. [20]

      Zihao WangJing XueZhicui SongJianxiong XingAijun ZhouJianmin MaJingze Li . Li-Zn alloy patch for defect-free polymer interface film enables excellent protection effect towards stable Li metal anode. Chinese Chemical Letters, 2024, 35(10): 109489-. doi: 10.1016/j.cclet.2024.109489

Metrics
  • PDF Downloads(17)
  • Abstract views(958)
  • HTML views(142)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return