Citation: Qin Yanyan, She Pengfei, Guo Song, Huang Xiaomeng, Liu Shujuan, Zhao Qiang, Huang Wei. Structural Manipulation and Triboluminescence of Tetrahalomanganese(Ⅱ) Complexes[J]. Acta Physico-Chimica Sinica, ;2020, 36(1): 190707. doi: 10.3866/PKU.WHXB201907078 shu

Structural Manipulation and Triboluminescence of Tetrahalomanganese(Ⅱ) Complexes

  • Corresponding author: Zhao Qiang, iamqzhao@njupt.edu.cn Huang Wei, provost@nwpu.edu.cn
  • Received Date: 25 July 2019
    Revised Date: 2 September 2019
    Accepted Date: 3 September 2019
    Available Online: 10 January 2019

    Fund Project: the China Postdoctoral Science Foundation 2018M642282The project was supported by the National Funds for Distinguished Young Scientists, China (61825503), the China Postdoctoral Science Foundation (2018M642282), the Natural Science Foundation of Jiangsu Province, China (BK20180760) and the Jiangsu Planned Projects for Postdoctoral Research Funds, China (2018K155C)the Natural Science Foundation of Jiangsu Province, China BK20180760the National Funds for Distinguished Young Scientists, China 61825503the Jiangsu Planned Projects for Postdoctoral Research Funds, China 2018K155C

  • Triboluminescence is a fascinating luminescence phenomenon induced by mechanical stimuli. Triboluminescent materials have potential applications in lighting, displays, and sensing, owing to their distinctive modes of light generation. However, organic triboluminescent materials are severely limited, and their luminescence mechanism remains unclear. Herein, we found that the luminescent manganese(Ⅱ) complex [BPP]2[MnBr4] displayed interesting triboluminescence performance. A series of green emissive tetrahalomanganese(Ⅱ) complexes was rationally designed and synthesized. The associated single crystal structures revealed that all complexes consisted of one [MnX4]2− (X = Br or Cl) ion and two organic cationic ligands per unit cell, with a tetrahedral geometrical symmetry around the Mn(Ⅱ) ion. In addition, the photophysical properties of tetrahalomanganese(Ⅱ) complexes were easily tuned by varying the organic ligands or halogen ions, which is beneficial for these organic-inorganic hybrid structures. Under UV light irradiation, all tetrahalomanganese(Ⅱ) complexes in the solid state exhibited bright green luminescence and a broad featureless emission band at 450–650 nm. The time-resolved photoluminescent decay curves demonstrated that the emission lifetimes of the prepared tetrahalomanganese(Ⅱ) complexes ranged from 260.5 μs to 1.95 ms, which was attributed to phosphorescence. The long-lived emission was mainly due to the spin-forbidden nature of the metal center dd (4T1(G)→ 6A1) radiative transition. Thermogravimetric analysis was performed to examine the thermodynamic stabilities of the tetrahalomanganese(Ⅱ) complexes. The thermal stabilities of manganese(Ⅱ) complexes with P-based ligands were higher than those of the complexes containing N-based ligands. Upon applying a force to the crystals, the tetrahalomanganese(Ⅱ) complexes all exhibited prominent triboluminescence that could be observed by the naked eye in the dark. Systematic analysis of the crystals showed that the TL activities of the manganese(Ⅱ) complexes were related to the intra- and inter-molecular C-H···X (X = Br or Cl) interactions. The intra- and inter-molecular C-H···X interactions significantly reduced the possible energy loss caused by molecular vibrations and rotations in the [MnX4]2− unit under mechanical stress, improving TL emission. Moreover, a comparison of photoluminescence and triboluminescence indicated that different excitation sources yielded two distinct luminescence processes: transition of excitons excited by illumination and recombination of electrons and holes on the surface driven by polarization charges. Overall, the results presented herein new opportunities for fundamental research based on the developed class of triboluminescent materials.
  • 力致发光(Triboluminescence,TL)是一种由力刺激引起的结构断裂诱导的发光现象,在结构损伤检测1、应力传感2, 3、显示和安全标记4, 5等方面具有潜在应用价值,逐渐引起了科研工作者的广泛关注。TL不同于传统的光致发光(Photoluminescence,PL)和电致发光(Electroluminescence,EL),它具有独特的发光过程。自从Francis Bacon发现第一例TL材料以来,科研工作者相继开发出了一系列TL材料体系,并对其发光机理做了大量有益探索6-9,但由于这类材料复杂的发光过程,迄今为止,其发光机理及其构效关系尚不明确。曾有文献报道,对于有机功能化TL材料,它的发光受分子结构和分子内/分子间相互作用的影响较大10-14。因此,深入分析和探讨材料的TL性能与分子结构之间的关系就显得尤为必要。

    在发光金属配合物中,锰(Ⅱ)配合物以其独特的金属中心dd (4T1(G) → 6A1)辐射跃迁和长寿命磷光发射等特点逐渐引起了人们的浓厚兴趣15-18。最近研究表明,许多锰(Ⅱ)配合物具有丰富的发光颜色,如绿光、黄光、橙光以及红光等19-23。具有四面体结构的锰(Ⅱ)配合物通常呈现出绿光发射,而具有八面体结构的锰(Ⅱ)配合物多呈现出红光发射。同时,这一类配合物还具有较高的发光量子效率,这使其成为一类非常有潜力的有机光电功能材料。Chen等24实现了离子型四溴化锰(Ⅱ)配合物[PPh4]2[MnBr4]在有机电致发光二极管(Organic Light-Emitting Diodes,OLEDs)中的应用。该配合物的固态发光寿命为317.0 μs,固态的光致发光量子效率为98%,利用该配合物制备的非掺杂型OLEDs的外量子效率达到了9.6%。2018年,Zhao等25设计并合成了一类基于二苯并呋喃基氧化膦衍生物作为配体的新型磷光中性四配位锰(Ⅱ)配合物。该类锰(Ⅱ)配合物表现出强的绿色磷光发射和高的光致发光量子效率(81.4%)。作者将其作为客体材料,制备了电流效率为35.47 cd∙A−1、功率效率为34.35 lm∙W−1和外量子效率为10.49%的有机发光二极管。这类中性锰(Ⅱ)配合物进一步丰富了低成本和低毒性金属发光材料的种类,且在电致发光器件方面展现出了较好的应用前景。

    尽管四面体锰(Ⅱ)配合物以其优异的光电性能被成功应用于有机电致发光器件,然而,对于具有TL特性的锰(Ⅱ)配合物来说,其材料体系依然有限,并且一直在不断开发中。2001年,Cotton等26从晶体的空间群组方面初步探索了四面体锰(Ⅱ)配合物的结构与TL的相关性。由于实验条件和表征方法受限,作者对这类配合物TL机理的研究并不深入。Balsamy等27报道了一类具有TL性质的甲基三苯基膦四卤化锰(Ⅱ)配合物,但作者并未对其TL产生原因做进一步研究。Zheng等28报道了一类具有中心对称结构的四面体中性锰(Ⅱ)配合物力致发光材料。由于该配合物是中心对称且非离子型的,并且在晶体断裂过程中没有产生无序基团,因此作者认为诱导中性锰(Ⅱ)配合物TL发射的机理与先前报道的不同,但作者并未对其进行详细研究。综上所述,具有中心或非中心对称结构的化合物都可能表现出TL特性。

    为了深入研究TL性质与分子结构间潜在的相关性,我们设计了分别含有不同共轭单元或卤素离子的有机膦配体MPPBr、EPPBr、TPPBr、BPPBr、EPPCl、BPPCl和有机胺配体BEABr、BPyBr (图 1),并合成了一系列基于这些配体的四卤化锰(Ⅱ)配合物。本文中,我们主要集中于研究这些配合物的晶体结构、PL和TL特性,并比较了PL和TL过程之间的差异。所有同构型配合物在固态下都呈现出明亮的绿光PL和TL发射。经研究表明,分子内/分子间C-H…X (X = Br或Cl)相互作用对锰(Ⅱ)配合物的TL性能有重要影响。当对晶体施加一定的力时,由结构断裂引起的电荷分离产生的电场促进了电子的激发,随后电子和空穴的复合进一步促进了该类材料的TL发射。相似的PL和TL光谱表明这两种绿光发射可能源自于相同的激发态。同时,对于四卤化锰(Ⅱ)配合物来说,改变有机配体或卤素离子可对它们的光物理性质进行有效调控。这种简单的分子调控策略也证实了该类材料结构与性能之间的相关性。

    图 1

    图 1.  (a) 本文中所涉及的有机配体;(b)锰(Ⅱ)配合物[BPP]2[MnBr4]的晶体结构
    Figure 1.  (a) The structures of organic ligands; (b) The crystal structure of manganese(Ⅱ) complex [BPP]2[MnBr4].

    The ellipsoid is drawn at the 50% probability level. Hydrogen atoms have been omitted for the sake of clarity.

    0 ℃下,将苄基溴(99.8%)和吡啶(99.5%)以1 : 1当量比置于二氯甲烷(99.0%)溶液中,搅拌8 h,然后旋蒸除去溶剂,即可获得有机配体BPyBr。其它的有机配体和MnX2·4H2O (X = Br或Cl) (98.0%)均购于萨恩化学技术有限公司。除非另有说明,否则所有试剂均购于商业供应商且无需进一步纯化即可使用。所有的实验操作均在室温下和空气中进行。

    在室温下,将有机配体与MnX2·4H2O (X = Br或Cl)以2 : 1当量比在无水二氯甲烷溶液中搅拌6 h,旋蒸除去有机溶剂,得到锰(Ⅱ)配合物。所有锰(Ⅱ)配合物的单晶均是在二氯甲烷和正己烷的混合溶液中生长。待有机溶剂缓慢挥发,即可得绿色晶体。配合物[BPP]2[MnBr4]、[BEA]2[MnBr4]、[BPy]2[MnBr4]、[EPP]2[MnCl4]和[BPP]2[MnCl4]的CCDC号分别是1937749、1937750、1937751、1889594和1937752。详细的晶体学数据可见于表S1 (Supporting Information (SI)),这些数据由剑桥晶体数据中心免费提供。

    核磁共振氢谱利用德国布鲁克公司400 MHz核磁共振波谱仪测定,其中表征所需的氘代氯仿(CDCl3)由百灵威化学公司提供。在Bruker Smart APEXII单晶衍射仪上进行单晶结构测定,石墨-单色化的Mo-Kα (λ = 0.71073 Å) (1 Å = 0.1 nm)作辐射源。在SHELX-97软件上采用方向法对晶体结构进行解析,利用全矩阵最小二乘法F2对所有数据进行优化。使用岛津紫外分光光度计(UV-3600)完成紫外-可见吸收光谱的测试。在Edinburgh FL 920分光光度计上测量固态下样品的光致发光光谱、激发光谱、发射寿命和发光量子效率。在氮气氛围下,用NETZSCH STA 2500热分析仪以10 ℃∙min−1的加热速率进行热重分析(TGA)测试。在配备有检测器的简易实验装置上对所有材料进行TL光谱测试。在完全黑暗的环境下使用两块玻璃片研磨晶体。除非另有说明,否则所有其它实验均在室温下进行。

    本文中选择的有机配体结构如图 1a所示。我们利用单晶X射线衍射仪(SC-XRD)表征锰(Ⅱ)配合物的结构。单晶结构显示所有配合物的每个晶胞都包含有一个[MnX4]2− (X = Br或Cl)离子和两个有机阳离子配体,并且Mn2+离子周围的几何对称构型为四面体结构。以配合物[BPP]2[MnBr4]为例,其晶体结构如图 1b所示。Br-Mn-Br的键角为105.68(9)°–111.54(9)°,Mn-Br键的键长为2.532(3)–2.594 (3) Å。

    图 2为四卤化锰(Ⅱ)配合物的发射光谱和时间分辨光致发光衰减曲线。固态下,所有四卤化锰(Ⅱ)配合物均呈现出明亮的绿光发射,其无特征发射带在450–650 nm范围(λex = 280 nm)。该发射带可归属于金属Mn2+中心的特征4T1(G) → 6A1(dd)辐射跃迁20, 23, 28。由图 2b可知,这些锰(Ⅱ)配合物分别显示出了从260.5 µs到1.95 ms的磷光发射寿命(表S2 (SI))。四卤化锰(Ⅱ)配合物的长寿命发射主要是由金属中心dd跃迁的自旋禁阻特性引起的。配合物[EPP]2[MnCl4]和[BPP]2[MnCl4]的发射寿命达到了毫秒级,这主要是因为,与Br原子相比,Cl原子的自旋轨道耦合作用较低,从而导致这两个配合物激发态发射寿命的增加28。图S1 (SI)为锰(Ⅱ)配合物的PL激发光谱和紫外–可见吸收光谱,数据表明锰(Ⅱ)配合物在250–350 nm的范围内有较强吸收。并且,使用积分球测得的锰(Ⅱ)配合物展现出了从0.29到0.91显著不同的发光量子效率。表S2 (SI)总结了锰配合物的发光波长、寿命及量子效率。

    图 2

    图 2.  在298 K (λex = 280 nm)下测得的固态锰(Ⅱ)配合物的(a)归一化发射光谱和(b)时间分辨光致发光衰减曲线
    Figure 2.  (a) The normalized emission spectra and (b) time-resolved photoluminescence decay curves of solid state manganese(Ⅱ) complexes measured at 298 K (λex = 280 nm).

    为了考查四卤化锰(Ⅱ)配合物的热力学稳定性,我们对其进行了热重分析测试(TGA)。如图 3所示,含有机膦配体的锰(Ⅱ)配合物的热分解温度高于320 ℃,而对于含胺配体的锰(Ⅱ)配合物来说,其热分解温度低于250 ℃。这主要是由于在室温下,膦配体的稳定性优于胺配体,因此含有机膦配体的锰(Ⅱ)配合物的热分解温度也高于含胺配体的锰(Ⅱ)配合物。同时,锰(Ⅱ)配合物在有机溶剂如二氯甲烷、四氢呋喃或丙酮中均具有较低的溶解性。这说明锰(Ⅱ)配合物良好的热稳定性与其分子内部堆积方式有关。

    图 3

    图 3.  四卤化锰(Ⅱ)配合物的TGA热分析图
    Figure 3.  The TGA thermograms of tetrahalomanganese (Ⅱ) complexes.

    在单晶衍射数据的基础上,我们考查了所有配合物的TL特性。在黑暗条件下,所有的同构型配合物均可显示出明亮的绿光TL特性(视频(Movie) S1 (SI))。由于TL是一种由结构断裂引起的发光,因此配合物的发光过程可能与分子的堆积结构有关。为了进一步探究分子堆积与TL之间的构效关系,我们研究了所有的单晶结构并详细计算了分子间的距离。晶体分析显示,所有四卤化锰(Ⅱ)配合物的单晶结构中都存在多重分子内/分子间C-H…π和C-H…X (X = Br或Cl)相互作用(距离d ≤ 3.0 Å)和ππ堆积相互作用,但在[MnX4]2−单元中参与形成C-H…X相互作用的卤素原子个数却是完全不同的。在配合物[BPP]2[MnBr4]的[MnBr4]2−单元中, 只有一个溴原子与―CH2―基团和三苯基膦单元中的氢原子形成三个较短的C-H…Br氢键,距离(d)分别为2.965、2.974和2.976 Å (图 4a,表S3 (SI))。在配合物[BPP]2[MnCl4]和[BEA]2[MnBr4]的[MnX4]2−单元中均有三个氯原子或三个溴原子与相邻氢原子参与形成氢键,C-H…X距离为2.590–2.938 Å,2.858–3.018 Å (图 4bc,表S3 (SI))。此外,我们还观察到[EPP]2[MnCl4]中的所有氯原子均与相邻分子形成C-H…X相互作用(d = 2.599–2.931Å,图 4d和表S3)。分子内/分子间形成的多重C-H…π和C-H…X (X = Br或Cl)相互作用促使配合物表现出了明显的TL性质。因此,我们认为这些有效的分子内/分子间C-H…X相互作用大大降低了由分子振动和旋转引起的能量损失,从而促进了四卤化锰(Ⅱ)配合物的TL发射。此外,相较于[BPP]2[MnBr4],[EPP]2[MnCl4]晶体中存在较多的C-H…X相互作用,这使其具有良好的热稳定性。表S3总结了配合物中存在的分子内/分子间C-H…π和C-H…X (X = Br或Cl)相互作用。

    图 4

    图 4.  配合物[BPP]2[MnBr4] (a)、[BPP]2[MnCl4] (b)、[BEA]2[MnBr4] (c)和[EPP]2[MnCl4] (d)的晶体堆积结构图
    Figure 4.  Crystal packing structures of complex [BPP]2[MnBr4] (a), [BPP]2[MnCl4] (b), [BEA]2[MnBr4] (c) and [EPP]2[MnCl4] (d).

    为了深入理解TL行为,我们进一步研究了固态四卤化锰(Ⅱ)配合物的TL光谱(图 5)。在配备有探测器系统的实验装置上进行TL光谱测试,如图S2 (SI)所示。以配合物[BPP]2[MnBr4]为例,由于Mn2+的固有电子跃迁方式,配合物[BPP]2[MnBr4]的TL光谱在510 nm处显示出了特征宽发射峰,这与其在室温下固态PL光谱类似。相似的TL和PL光谱表明,其绿光发射可能源自相同的激发态,即Mn2+4T1态。因此,我们推测,可以用能量转移29, 30来解释发光锰(Ⅱ)配合物的激发过程(图 6)。对于光致发光过程,锰(Ⅱ)配合物中有机配体的激子首先被激发到单重态(Singlet State,S),并通过系间窜越(Intersystem Crossing,ISC)转移到三重态(Triplet State,T),然后通过有效的能量转移跃迁到[MnX4]2−的最低激发态(4T1),再经历辐射衰减到基态,进而产生较强的光致发光。而对于力致发光过程来说,当施加外力时,晶体结构的非中心对称性促使晶体表面电荷的产生,从而促进了内部晶体压电电势的产生和电子的激发,随后由电子和空穴重组所释放的能量转移到[MnX4]2−的激发态(4T1),进而产生较强的力致发光。这两种发光过程的最大差异在于激发源的不同,一种是由光激发产生的激子跃迁,另一种则是在晶体表面由极化电荷引起的电子和空穴的重组。此外,我们还研究了配合物[TPP]2[MnBr4]24和[MPP]2[MnBr4]27的TL性质,它们的TL光谱如图S3 (SI)所示。综上所述,四卤化锰(Ⅱ)配合物的力致发光特性可能具有一定的普适性。

    图 5

    图 5.  锰(Ⅱ)配合物的TL和PL光谱(归一化)
    Figure 5.  The normalized TL and PL spectra of manganese(Ⅱ) complexes.

    图 6

    图 6.  锰(Ⅱ)配合物中PL (a)和TL (b)的简易激发和能量转移过程
    Figure 6.  Simplified excitation and energy transfer processes of PL (a) and TL (b) in manganese(Ⅱ) complexes.

    本文设计并合成了一系列具有力致发光性能的锰(Ⅱ)配合物。该类锰(Ⅱ)配合物在固态下均呈现出绿光PL和TL发射。单晶结构分析表明,锰(Ⅱ)配合物的TL特性主要与其分子内/分子间存在的较强的C-H…X (X = Br或Cl)相互作用有关。这类相互作用可最大程度地降低发光分子由振动和旋转引起的能量损失。锰(Ⅱ)配合物相似的TL和PL发射光谱证明了这两种不同方式的发光过程来自于配合物的同一激发态,即发光Mn2+4T1激发态。在外力的刺激下,锰(Ⅱ)配合物分子内部结构发生断裂并产生电场,该电场促进了配合物激子的产生与重组,从而诱导了锰(Ⅱ)配合物的TL发射。此外,基于四卤化锰(Ⅱ)配合物中独特的有机–无机杂化结构,我们可以通过改变其分子结构从而实现对锰(Ⅱ)配合物发射波长及寿命的有效调控。本论文的研究内容及结果在分子水平上为四卤化锰(Ⅱ)配合物TL特性的研究提供了新的视角,并且将会对力致发光领域的发展起到一定的推动作用。

    Supporting Information: available free of charge via the internet at http://www.whxb.pku.edu.cn.


    1. [1]

      Sage, I.; Bourhill, G. J. Mater. Chem. 2001, 11, 231. doi: 10.1039/b007029g  doi: 10.1039/b007029g

    2. [2]

      Olawale, D. O.; Dickens, T.; Sullivan, W. G.; Okoli, O. I.; Sobanjo, J. O.; Wang, B. J. Lumin. 2011, 131, 1407. doi: 10.1016/j.jlumin.2011.03.015  doi: 10.1016/j.jlumin.2011.03.015

    3. [3]

      Eddingsaas, N. C.; Suslick, K. S. J. Am. Chem. Soc. 2007, 129, 6718. doi: 10.1021/ja0716498  doi: 10.1021/ja0716498

    4. [4]

      Wang, X. D.; Zhang, H. L.; Yu, R. M.; Dong, L.; Peng, D. F.; Zhang, A. H.; Zhang, Y.; Liu, H.; Pan, C. F.; Wang, Z. L. Adv. Mater. 2015, 27, 2324. doi: 10.1002/adma.201405826  doi: 10.1002/adma.201405826

    5. [5]

      Li, W. L.; Huang, Q. Y.; Mao, Z.; Li, Q.; Jiang, L.; Xie, Z. L.; Xu, R.; Yang, Z. Y.; Zhao, J.; Yu, T.; et al. Angew. Chem. Int. Ed. 2018, 57, 12727. doi: 10.1002/anie.201806861  doi: 10.1002/anie.201806861

    6. [6]

      Yang, J.; Ren, Z. C.; Xie, Z. L.; Liu, Y. J.; Wang, C.; Xie, Y. J.; Peng, Q.; Xu, B.; Tian, W. J.; Zhang, F.; et al. Angew. Chem. Int. Ed. 2017, 56, 880. doi: 10.1002/anie.201610453  doi: 10.1002/anie.201610453

    7. [7]

      Wong, H. Y.; Lo, W. S.; Chan, W. T. K.; Law G. L. Inorg. Chem. 2017, 56, 5135. doi: 10.1021/acs.inorgchem.7b00273  doi: 10.1021/acs.inorgchem.7b00273

    8. [8]

      Hirai, Y.; Nakanishi, T.; Kitagawa, Y.; Fushimi, K.; Seki, T.; Ito, H.; Hasegawa, Y. Angew. Chem. Int. Ed. 2017, 56, 7171. doi: 10.1002/anie.201703638  doi: 10.1002/anie.201703638

    9. [9]

      Hirai, Y.; da Rosa, P. P. F.; Nakanishi, T.; Kitagawa, Y.; Fushimi, K.; Seki, T.; Ito, H.; Hasegawa, Y. Inorg. Chem. 2018, 57, 14653. doi: 10.1021/acs.inorgchem.8b02367  doi: 10.1021/acs.inorgchem.8b02367

    10. [10]

      Xie, Z. L.; Yu, T.; Chen, J. R.; Ubba, E.; Wang, L. Y.; Mao, Z.; Su, T. T.; Zhang, Y.; Aldred, M. P.; Chi, Z. G. Chem. Sci. 2018, 9, 5787. doi: 10.1039/c8sc01703d  doi: 10.1039/c8sc01703d

    11. [11]

      Wang, J. Q.; Wang, C.; Gong, Y. B.; Liao, Q. Y.; Han, M. M.; Jiang, T. J.; Dang, Q. X.; Li, Y. Q.; Li, Q. Q.; Li, Z. Angew. Chem. Int. Ed. 2018, 57, 16821. doi: 10.1002/anie.201811660  doi: 10.1002/anie.201811660

    12. [12]

      Yang, J.; Gao, X. M.; Xie, Z. L.; Gong, Y. B.; Fang, M. M.; Peng, Q.; Chi, Z. G.; Li, Z. Angew. Chem. Int. Ed. 2017, 56, 15299. doi: 10.1002/anie.201708119  doi: 10.1002/anie.201708119

    13. [13]

      Yang, J.; Qin, J. W.; Geng, P. Y.; Wang, J. Q.; Fang, M. M.; Li, Z. Angew. Chem. Int. Ed. 2018, 57, 14174. doi: 10.1002/anie.201809463  doi: 10.1002/anie.201809463

    14. [14]

      Marchetti, F.; Nicola, D. C.; Pettinari, R.; Timokhin, I.; Pettinari, C. J. Chem. Educ. 2012, 89, 652. doi: 10.1021/ed2001494  doi: 10.1021/ed2001494

    15. [15]

      Wrighton, M.; Ginley, D. Chem. Phys. 1974, 4, 295. doi: 10.1016/0301-0104(74)80097-2  doi: 10.1016/0301-0104(74)80097-2

    16. [16]

      Cotton, F. A.; Goodgame, D. M. L.; Goodgame, M. J. Am. Chem. Soc. 1962, 84, 167. doi: 10.1021/ja00861a008  doi: 10.1021/ja00861a008

    17. [17]

      Hardy, G. E.; Zink, J. I. Inorg. Chem. 1976, 15, 3061. doi: 10.1021/ic50166a026  doi: 10.1021/ic50166a026

    18. [18]

      Pitula, S.; Mudring, A. V. Chem. Eur. J. 2010, 16, 3355. doi: 10.1002/chem.200802660  doi: 10.1002/chem.200802660

    19. [19]

      Zhang, Y.; Liao, W. Q.; Fu, D. W.; Ye, H. Y.; Liu, C. M.; Chen, Z. N.; Xiong, R. G. Adv. Mater. 2015, 27, 3942. doi: 10.1002/adma.201501026  doi: 10.1002/adma.201501026

    20. [20]

      Bortoluzzi, M.; Castro, J.; Enrichi, F.; Vomiero, A.; Busato, M.; Huang, W. Z. Inorg. Chem. Commun. 2018, 92, 145. doi: 10.1016/j.inoche.2018.04.023  doi: 10.1016/j.inoche.2018.04.023

    21. [21]

      Hausmann, D.; Kuzmanoski A.; Feldmann, C. Dalton Trans. 2016, 45, 6541. doi: 10.1039/c6dt00458j  doi: 10.1039/c6dt00458j

    22. [22]

      Berezin, A. S.; Samsonenko, D. G.; Brel, V. K.; Artem'ev, A. V. Dalton Trans. 2018, 47, 7306. doi: 10.1039/c8dt01041b  doi: 10.1039/c8dt01041b

    23. [23]

      Wu, Y.; Zhang, X.; Xu, L. J.; Yang, M.; Chen, Z. N. Inorg. Chem. 2018, 57, 9175. doi: 10.1021/acs.inorgchem.8b01205  doi: 10.1021/acs.inorgchem.8b01205

    24. [24]

      Xu, L. J.; Sun, C. Z.; Xiao, H.; Wu, Y.; Chen, Z. N. Adv. Mater. 2017, 29, 1605739. doi: 10.1002/adma.201605739  doi: 10.1002/adma.201605739

    25. [25]

      Qin, Y. Y.; Tao, P.; Gao, L.; She, P. F.; Liu, S. J.; Li, X. L.; Li, F. Y.; Wang, H.; Zhao, Q.; Miao, Y. Q.; et al. Adv. Optical Mater. 2019, 7, 1801160. doi: 10.1002/adom.201801160  doi: 10.1002/adom.201801160

    26. [26]

      Cotton, F. A.; Daniels, L. M.; Huang, P. L. Inorg. Chem. 2001, 40, 3576. doi: 10.1021/ic0101836  doi: 10.1021/ic0101836

    27. [27]

      Balsamy, S.; Natarajan, P.; Vedalakshmi, R.; Muralidharan, S. Inorg. Chem. 2014, 53, 6054. doi: 10.1021/ic500400y  doi: 10.1021/ic500400y

    28. [28]

      Chen, J.; Zhang, Q.; Zheng, F. K.; Liu, Z. F.; Wang, S. H.; Wu, A. Q.; Guo, G. C. Dalton Trans. 2015, 44, 3289. doi: 10.1039/c4dt03694h  doi: 10.1039/c4dt03694h

    29. [29]

      Jiang, D. M.; Bo, L.; Zhu, T.; Tao, J. B.; Yang. X. P. Acta Phys. -Chim. Sin. 2018, 34, 812.  doi: 10.3866/PKU.WHXB201801086

    30. [30]

      Xia, H. Y.; Geng, T.; Zhao, Xu.; Li, F. F.; Wang, F. Y.; Gao, L. N. Acta Phys. -Chim. Sin. 2019, 35, 337.  doi: 10.3866/PKU.WHXB201803082

    1. [1]

      Sage, I.; Bourhill, G. J. Mater. Chem. 2001, 11, 231. doi: 10.1039/b007029g  doi: 10.1039/b007029g

    2. [2]

      Olawale, D. O.; Dickens, T.; Sullivan, W. G.; Okoli, O. I.; Sobanjo, J. O.; Wang, B. J. Lumin. 2011, 131, 1407. doi: 10.1016/j.jlumin.2011.03.015  doi: 10.1016/j.jlumin.2011.03.015

    3. [3]

      Eddingsaas, N. C.; Suslick, K. S. J. Am. Chem. Soc. 2007, 129, 6718. doi: 10.1021/ja0716498  doi: 10.1021/ja0716498

    4. [4]

      Wang, X. D.; Zhang, H. L.; Yu, R. M.; Dong, L.; Peng, D. F.; Zhang, A. H.; Zhang, Y.; Liu, H.; Pan, C. F.; Wang, Z. L. Adv. Mater. 2015, 27, 2324. doi: 10.1002/adma.201405826  doi: 10.1002/adma.201405826

    5. [5]

      Li, W. L.; Huang, Q. Y.; Mao, Z.; Li, Q.; Jiang, L.; Xie, Z. L.; Xu, R.; Yang, Z. Y.; Zhao, J.; Yu, T.; et al. Angew. Chem. Int. Ed. 2018, 57, 12727. doi: 10.1002/anie.201806861  doi: 10.1002/anie.201806861

    6. [6]

      Yang, J.; Ren, Z. C.; Xie, Z. L.; Liu, Y. J.; Wang, C.; Xie, Y. J.; Peng, Q.; Xu, B.; Tian, W. J.; Zhang, F.; et al. Angew. Chem. Int. Ed. 2017, 56, 880. doi: 10.1002/anie.201610453  doi: 10.1002/anie.201610453

    7. [7]

      Wong, H. Y.; Lo, W. S.; Chan, W. T. K.; Law G. L. Inorg. Chem. 2017, 56, 5135. doi: 10.1021/acs.inorgchem.7b00273  doi: 10.1021/acs.inorgchem.7b00273

    8. [8]

      Hirai, Y.; Nakanishi, T.; Kitagawa, Y.; Fushimi, K.; Seki, T.; Ito, H.; Hasegawa, Y. Angew. Chem. Int. Ed. 2017, 56, 7171. doi: 10.1002/anie.201703638  doi: 10.1002/anie.201703638

    9. [9]

      Hirai, Y.; da Rosa, P. P. F.; Nakanishi, T.; Kitagawa, Y.; Fushimi, K.; Seki, T.; Ito, H.; Hasegawa, Y. Inorg. Chem. 2018, 57, 14653. doi: 10.1021/acs.inorgchem.8b02367  doi: 10.1021/acs.inorgchem.8b02367

    10. [10]

      Xie, Z. L.; Yu, T.; Chen, J. R.; Ubba, E.; Wang, L. Y.; Mao, Z.; Su, T. T.; Zhang, Y.; Aldred, M. P.; Chi, Z. G. Chem. Sci. 2018, 9, 5787. doi: 10.1039/c8sc01703d  doi: 10.1039/c8sc01703d

    11. [11]

      Wang, J. Q.; Wang, C.; Gong, Y. B.; Liao, Q. Y.; Han, M. M.; Jiang, T. J.; Dang, Q. X.; Li, Y. Q.; Li, Q. Q.; Li, Z. Angew. Chem. Int. Ed. 2018, 57, 16821. doi: 10.1002/anie.201811660  doi: 10.1002/anie.201811660

    12. [12]

      Yang, J.; Gao, X. M.; Xie, Z. L.; Gong, Y. B.; Fang, M. M.; Peng, Q.; Chi, Z. G.; Li, Z. Angew. Chem. Int. Ed. 2017, 56, 15299. doi: 10.1002/anie.201708119  doi: 10.1002/anie.201708119

    13. [13]

      Yang, J.; Qin, J. W.; Geng, P. Y.; Wang, J. Q.; Fang, M. M.; Li, Z. Angew. Chem. Int. Ed. 2018, 57, 14174. doi: 10.1002/anie.201809463  doi: 10.1002/anie.201809463

    14. [14]

      Marchetti, F.; Nicola, D. C.; Pettinari, R.; Timokhin, I.; Pettinari, C. J. Chem. Educ. 2012, 89, 652. doi: 10.1021/ed2001494  doi: 10.1021/ed2001494

    15. [15]

      Wrighton, M.; Ginley, D. Chem. Phys. 1974, 4, 295. doi: 10.1016/0301-0104(74)80097-2  doi: 10.1016/0301-0104(74)80097-2

    16. [16]

      Cotton, F. A.; Goodgame, D. M. L.; Goodgame, M. J. Am. Chem. Soc. 1962, 84, 167. doi: 10.1021/ja00861a008  doi: 10.1021/ja00861a008

    17. [17]

      Hardy, G. E.; Zink, J. I. Inorg. Chem. 1976, 15, 3061. doi: 10.1021/ic50166a026  doi: 10.1021/ic50166a026

    18. [18]

      Pitula, S.; Mudring, A. V. Chem. Eur. J. 2010, 16, 3355. doi: 10.1002/chem.200802660  doi: 10.1002/chem.200802660

    19. [19]

      Zhang, Y.; Liao, W. Q.; Fu, D. W.; Ye, H. Y.; Liu, C. M.; Chen, Z. N.; Xiong, R. G. Adv. Mater. 2015, 27, 3942. doi: 10.1002/adma.201501026  doi: 10.1002/adma.201501026

    20. [20]

      Bortoluzzi, M.; Castro, J.; Enrichi, F.; Vomiero, A.; Busato, M.; Huang, W. Z. Inorg. Chem. Commun. 2018, 92, 145. doi: 10.1016/j.inoche.2018.04.023  doi: 10.1016/j.inoche.2018.04.023

    21. [21]

      Hausmann, D.; Kuzmanoski A.; Feldmann, C. Dalton Trans. 2016, 45, 6541. doi: 10.1039/c6dt00458j  doi: 10.1039/c6dt00458j

    22. [22]

      Berezin, A. S.; Samsonenko, D. G.; Brel, V. K.; Artem'ev, A. V. Dalton Trans. 2018, 47, 7306. doi: 10.1039/c8dt01041b  doi: 10.1039/c8dt01041b

    23. [23]

      Wu, Y.; Zhang, X.; Xu, L. J.; Yang, M.; Chen, Z. N. Inorg. Chem. 2018, 57, 9175. doi: 10.1021/acs.inorgchem.8b01205  doi: 10.1021/acs.inorgchem.8b01205

    24. [24]

      Xu, L. J.; Sun, C. Z.; Xiao, H.; Wu, Y.; Chen, Z. N. Adv. Mater. 2017, 29, 1605739. doi: 10.1002/adma.201605739  doi: 10.1002/adma.201605739

    25. [25]

      Qin, Y. Y.; Tao, P.; Gao, L.; She, P. F.; Liu, S. J.; Li, X. L.; Li, F. Y.; Wang, H.; Zhao, Q.; Miao, Y. Q.; et al. Adv. Optical Mater. 2019, 7, 1801160. doi: 10.1002/adom.201801160  doi: 10.1002/adom.201801160

    26. [26]

      Cotton, F. A.; Daniels, L. M.; Huang, P. L. Inorg. Chem. 2001, 40, 3576. doi: 10.1021/ic0101836  doi: 10.1021/ic0101836

    27. [27]

      Balsamy, S.; Natarajan, P.; Vedalakshmi, R.; Muralidharan, S. Inorg. Chem. 2014, 53, 6054. doi: 10.1021/ic500400y  doi: 10.1021/ic500400y

    28. [28]

      Chen, J.; Zhang, Q.; Zheng, F. K.; Liu, Z. F.; Wang, S. H.; Wu, A. Q.; Guo, G. C. Dalton Trans. 2015, 44, 3289. doi: 10.1039/c4dt03694h  doi: 10.1039/c4dt03694h

    29. [29]

      Jiang, D. M.; Bo, L.; Zhu, T.; Tao, J. B.; Yang. X. P. Acta Phys. -Chim. Sin. 2018, 34, 812.  doi: 10.3866/PKU.WHXB201801086

    30. [30]

      Xia, H. Y.; Geng, T.; Zhao, Xu.; Li, F. F.; Wang, F. Y.; Gao, L. N. Acta Phys. -Chim. Sin. 2019, 35, 337.  doi: 10.3866/PKU.WHXB201803082

  • 加载中
    1. [1]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    2. [2]

      Jiaxun Wu Mingde Li Li Dang . The R eaction of Metal Selenium Complexes with Olefins as a Tutorial Case Study for Analyzing Molecular Orbital Interaction Modes. University Chemistry, 2025, 40(3): 108-115. doi: 10.12461/PKU.DXHX202405098

    3. [3]

      Qiaowen CHANGKe ZHANGGuangying HUANGNuonan LIWeiping LIUFuquan BAICaixian YANYangyang FENGChuan ZUO . Syntheses, structures, and photo-physical properties of iridium phosphorescent complexes with phenylpyridine derivatives bearing different substituting groups. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 235-244. doi: 10.11862/CJIC.20240311

    4. [4]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    5. [5]

      Changqing MIAOFengjiao CHENWenyu LIShujie WEIYuqing YAOKeyi WANGNi WANGXiaoyan XINMing FANG . Crystal structures, DNA action, and antibacterial activities of three tetranuclear lanthanide-based complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2455-2465. doi: 10.11862/CJIC.20240192

    6. [6]

      Cheng Zheng Shiying Zheng Yanping Zhang Shoutian Zheng Qiaohua Wei . Synthesis, Copper Content Analysis, and Luminescent Performance Study of Binuclear Copper (I) Complexes with Isomeric Luminescence Shift: A Comprehensive Chemical Experiment Recommendation. University Chemistry, 2024, 39(7): 322-329. doi: 10.3866/PKU.DXHX202310131

    7. [7]

      Tingyu Zhu Hui Zhang Wenwei Zhang . Exploration and Practice of Ideological and Political Education in the Course of Experiments on Chemical Functional Molecules: Synthesis and Catalytic Performance Study of Chiral Mn(III)Cl-Salen Complex. University Chemistry, 2024, 39(4): 75-80. doi: 10.3866/PKU.DXHX202311011

    8. [8]

      Huiying Xu Minghui Liang Zhi Zhou Hui Gao Wei Yi . Application of Quantum Chemistry Computation and Visual Analysis in Teaching of Weak Interactions. University Chemistry, 2025, 40(3): 199-205. doi: 10.12461/PKU.DXHX202407011

    9. [9]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    10. [10]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    11. [11]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    12. [12]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    13. [13]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    14. [14]

      Wei Li Ze Chang Meihui Yu Ying Zhang . Curriculum Ideological and Political Design of Piezoelectricity Measurement Experiments of Coordination Compounds. University Chemistry, 2024, 39(2): 77-82. doi: 10.3866/PKU.DXHX202308004

    15. [15]

      Ji Qi Jianan Zhu Yanxu Zhang Jiahao Yang Chunting Zhang . Visible Color Change of Copper (II) Complexes in Reversible SCSC Transformation: The Effect of Structure on Color. University Chemistry, 2024, 39(3): 43-57. doi: 10.3866/PKU.DXHX202307050

    16. [16]

      Cunling Ye Xitong Zhao Hongfang Wang Zhike Wang . A Formula for the Calculation of Complex Concentrations Arising from Side Reactions and Its Applications. University Chemistry, 2024, 39(4): 382-386. doi: 10.3866/PKU.DXHX202310043

    17. [17]

      Keweiyang Zhang Zihan Fan Liyuan Xiao Haitao Long Jing Jing . Unveiling Crystal Field Theory: Preparation, Characterization, and Performance Assessment of Nickel Macrocyclic Complexes. University Chemistry, 2024, 39(5): 163-171. doi: 10.3866/PKU.DXHX202310084

    18. [18]

      Wenjing ZHANGXiaoqing WANGZhipeng LIU . Recent developments of inorganic metal complex-based photothermal materials and their applications in photothermal therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2356-2372. doi: 10.11862/CJIC.20240254

    19. [19]

      Qingjun PANZhongliang GONGYuwu ZHONG . Advances in modulation of the excited states of photofunctional iron complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 45-58. doi: 10.11862/CJIC.20240365

    20. [20]

      Linjie ZHUXufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207

Metrics
  • PDF Downloads(17)
  • Abstract views(278)
  • HTML views(26)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return