Physiochemical Mechanisms of Biomolecular Liquid-Liquid Phase Separation
- Corresponding author: Zhang Changsheng, changshengzhang@pku.edu.cn Lai Luhua, lhlai@pku.edu.cn
Citation: Zhang Changsheng, Lai Luhua. Physiochemical Mechanisms of Biomolecular Liquid-Liquid Phase Separation[J]. Acta Physico-Chimica Sinica, ;2020, 36(1): 190705. doi: 10.3866/PKU.WHXB201907053
Dolgin, E. Nature 2018, 555 (7696), 300. doi: 10.1038/d41586-018-03070-2
doi: 10.1038/d41586-018-03070-2
Brangwynne, C. P.; Eckmann, C. R.; Courson, D. S.; Rybarska, A.; Hoege, C.; Gharakhani, J.; Julicher, F.; Hyman, A. A. Science 2009, 324 (5935), 1729. doi: 10.1126/science.1172046
doi: 10.1126/science.1172046
Franzmann, T. M.; Jahnel, M.; Pozniakovsky, A.; Mahamid, J.; Holehouse, A. S.; Nuske, E.; Richter, D.; Baumeister, W.; Grill, S. W.; Pappu, R. V.; et al. Science 2018, 359 (6371), 47. doi: 10.1126/science.aao5654
doi: 10.1126/science.aao5654
Sabari, B. R.; Dall'Agnese, A.; Boija, A.; Klein, I. A.; Coffey, E. L.; Shrinivas, K.; Abraham, B. J.; Hannett, N. M.; Zamudio, A. V.; Manteiga, J. C.; et al. Science 2018, 361 (6400), 379. doi: 10.1126/science.aar3958
doi: 10.1126/science.aar3958
Boija, A.; Klein, I. A.; Sabari, B. R.; Dall'Agnese, A.; Coffey, E. L.; Zamudio, A. V.; Li, C. H.; Shrinivas, K.; Manteiga, J. C.; Hannett, N. M.; Abraham, B. J.; et al. Cell 2018, 175 (7), 1842. doi: 10.1016/j.cell.2018.10.042
doi: 10.1016/j.cell.2018.10.042
Kilic, S.; Lezaja, A.; Gatti, M.; Bianco, E.; Michelena, J.; Imhof, R.; Altmeyer, M. EMBO J. 2019, e101379. doi: 10.15252/embj.2018101379
doi: 10.15252/embj.2018101379
Rai, A. K.; Chen, J. X.; Selbach, M.; Pelkmans, L. Nature 2018, 559 (7713), 211. doi: 10.1038/s41586-018-0279-8
doi: 10.1038/s41586-018-0279-8
Ryan, V. H.; Dignon, G. L.; Zerze, G. H.; Chabata, C. V.; Silva, R.; Conicella, A. E.; Amaya, J.; Burke, K. A.; Mittal, J.; Fawzi, N. L. Mol. Cell 2018, 69 (3), 465. doi: 10.1016/j.molcel.2017.12.022
doi: 10.1016/j.molcel.2017.12.022
Sear, R. P. Soft Matter 2007, 3 (6), 680. doi: 10.1039/b618126k
doi: 10.1039/b618126k
Su, X.; Ditlev, J. A.; Hui, E.; Xing, W.; Banjade, S.; Okrut, J.; King, D. S.; Taunton, J.; Rosen, M. K.; Vale, R. D. Science 2016, 352 (6285), 595. doi: 10.1126/science.aad9964
doi: 10.1126/science.aad9964
Du, M.; Chen, Z. J. Science 2018, 361 (6403), 704. doi: 10.1126/science.aat1022
doi: 10.1126/science.aat1022
Milovanovic, D.; Wu, Y.; Bian, X.; De Camilli, P. Science 2018, 361 (6402), 604. doi: 10.1126/science.aat5671
doi: 10.1126/science.aat5671
Gomes, E.; Shorter, J. J. Biol. Chem. 2019, 294 (18), 7115. doi: 10.1074/jbc.TM118.001192
doi: 10.1074/jbc.TM118.001192
Alberti, S.; Gladfelter, A.; Mittag, T. Cell 2019, 176 (3), 419. doi: 10.1016/j.cell.2018.12.035
doi: 10.1016/j.cell.2018.12.035
Boeynaems, S.; Holehouse, A. S.; Weinhardt, V.; Kovacs, D.; Van Lindt, J.; Larabell, C.; Van Den Bosch, L.; Das, R.; Tompa, P. S.; Pappu, R. V.; et al. Proc. Natl. Acad. Sci. U.S.A. 2019, 116 (16), 7889. doi: 10.1073/pnas.1821038116
doi: 10.1073/pnas.1821038116
Amiram, M.; Quiroz, F. G.; Callahan, D. J.; Chilkoti, A. Nat. Mater. 2011, 10 (2), 141. doi: 10.1038/nmat2942
doi: 10.1038/nmat2942
Stroberg, W.; Schnell, S. J. Theor. Biol. 2017, 434, 42. doi: 10.1016/j.jtbi.2017.04.006
doi: 10.1016/j.jtbi.2017.04.006
Shayegan, M.; Tahvildari, R.; Metera, K.; Kisley, L.; Michnick, S. W.; Leslie, S. R. J. Am. Chem. Soc. 2019, 141 (19), 7751. doi: 10.1021/jacs.8b13349
doi: 10.1021/jacs.8b13349
Wang, J.; Choi, J. M.; Holehouse, A. S.; Lee, H. O.; Zhang, X.; Jahnel, M.; Maharana, S.; Lemaitre, R.; Pozniakovsky, A.; Drechsel, D.; et al. Cell 2018, 174 (3), 688. doi: 10.1016/j.cell.2018.06.006
doi: 10.1016/j.cell.2018.06.006
Patel, A.; Lee, H. O.; Jawerth, L.; Maharana, S.; Jahnel, M.; Hein, M. Y.; Stoynov, S.; Mahamid, J.; Saha, S.; Franzmann, T. M.; et al. Cell 2015, 162 (5), 1066. doi: 10.1016/j.cell.2015.07.047
doi: 10.1016/j.cell.2015.07.047
Brangwynne, C. P.; Mitchison, T. J.; Hyman, A. A. Proc. Natl. Acad. Sci. U.S.A. 2011, 108 (11), 4334. doi: 10.1073/pnas.1017150108
doi: 10.1073/pnas.1017150108
Eggers, J.; Lister, J. R.; Stone, H. A. J. Fluid Mech. 1999, 401, 293. doi: 10.1017/s002211209900662x
doi: 10.1017/s002211209900662x
Berry, J.; Weber, S. C.; Vaidya, N.; Haataja, M.; Brangwynne, C. P. Proc. Natl. Acad. Sci. U.S.A. 2015, 112 (38), E5237. doi: 10.1073/pnas.1509317112
doi: 10.1073/pnas.1509317112
Shin, Y.; Brangwynne, C. P. Science 2017, 357 (6357). doi: 10.1126/science.aaf4382
doi: 10.1126/science.aaf4382
Feric, M.; Vaidya, N.; Harmon, T. S.; Mitrea, D. M.; Zhu, L.; Richardson, T. M.; Kriwacki, R. W.; Pappu, R. V.; Brangwynne, C. P. Cell 2016, 165 (7), 1686. doi: 10.1016/j.cell.2016.04.047
doi: 10.1016/j.cell.2016.04.047
Wei, M. T.; Elbaum-Garfinkle, S.; Holehouse, A. S.; Chen, C. C. H.; Feric, M.; Arnold, C. B.; Priestley, R. D.; Pappu, R. V.; Brangwynne, C. P. Nat. Chem. 2017, 9 (11), 1118. doi: 10.1038/nchem.2803
doi: 10.1038/nchem.2803
Brady, J. P.; Farber, P. J.; Sekhar, A.; Lin, Y. H.; Huang, R.; Bah, A.; Nott, T. J.; Chan, H. S.; Baldwin, A. J.; Forman-Kay, J. D.; et al. Proc. Natl. Acad. Sci. U.S.A. 2017, 114 (39), E8194. doi: 10.1073/pnas.1706197114
doi: 10.1073/pnas.1706197114
Reichheld, S. E.; Muiznieks, L. D.; Keeley, F. W.; Sharpe, S. Proc. Natl. Acad. Sci. U.S.A. 2017, 114 (22), E4408. doi: 10.1073/pnas.1701877114
doi: 10.1073/pnas.1701877114
Schuster, B. S.; Reed, E. H.; Parthasarathy, R.; Jahnke, C. N.; Caldwell, R. M.; Bermudez, J. G.; Ramage, H.; Good, M. C.; Hammer, D. A. Nat. Commun. 2018, 9, 2985. doi: 10.1038/s41467-018-05403-1
doi: 10.1038/s41467-018-05403-1
Muiznieks, L. D.; Keeley, F. W. J. Biol. Chem. 2010, 285 (51), 39779. doi: 10.1074/jbc.M110.164467
doi: 10.1074/jbc.M110.164467
Ambadipudi, S.; Biernat, J.; Riedel, D.; Mandelkow, E.; Zweckstetter, M. Nat. Commun. 2017, 8, 275. doi: 10.1038/s41467-017-00480-0
doi: 10.1038/s41467-017-00480-0
Burke, K. A.; Janke, A. M.; Rhine, C. L.; Fawzi, N. L. Mol. Cell 2015, 60 (2), 231. doi: 10.1016/j.molcel.2015.09.006
doi: 10.1016/j.molcel.2015.09.006
Langdon, E. M.; Qiu, Y.; Niaki, A. G.; McLaughlin, G. A.; Weidmann, C. A.; Gerbich, T. M.; Smith, J. A.; Crutchley, J. M.; Termini, C. M.; Weeks, K. M.; et al. Science 2018, 360 (6391), 922. doi: 10.1126/science.aar7432
doi: 10.1126/science.aar7432
Cho, E. J.; Kim, J. S. J. Phys. Chem. B 2012, 116 (12), 3874. doi: 10.1021/jp3006525
doi: 10.1021/jp3006525
Banerjee, P. R.; Milin, A. N.; Moosa, M. M.; Onuchic, P. L.; Deniz, A. A. Angew. Chem. Int. Ed. 2017, 56 (38), 11354. doi: 10.1002/anie.201703191
doi: 10.1002/anie.201703191
Nguemaha, V.; Zhou, H. X. Sci. Rep. 2018, 8, 6728. doi: 10.1038/s41598-018-25132-1
doi: 10.1038/s41598-018-25132-1
Panagiotopoulos, A. Z. Mol. Phys. 1987, 61 (4), 813. doi: 10.1080/00268978700101491
doi: 10.1080/00268978700101491
Kern, N.; Frenkel, D. J. Chem. Phys. 2003, 118 (21), 9882. doi: 10.1063/1.1569473
doi: 10.1063/1.1569473
Li, Q.; Peng, X.; Li, Y.; Tang, W.; Zhu, J.; Huang, J.; Qi, Y.; Zhang, Z. Nucleic Acids Res. 2019. Online publication date: 6-Sep-2019. doi: 10.1093/nar/gkz778
Wu, R. B.; Li, P. L. Chin. Sci. Bull. 2019, 64.doi: 10.1360/N972019-00281
doi: 10.1360/N972019-00281
Banani, S. F.; Lee, H. O.; Hyman, A. A.; Rosen, M. K. Nat. Rev. Mol. Cell Biol. 2017, 18 (5), 285. doi: 10.1038/nrm.2017.7
doi: 10.1038/nrm.2017.7
Li, P.; Banjade, S.; Cheng, H. C.; Kim, S.; Chen, B.; Guo, L.; Llaguno, M.; Hollingsworth, J. V.; King, D. S.; Banani, S. F.; et al. Nature 2012, 483 (7389), 336. doi: 10.1038/nature10879
doi: 10.1038/nature10879
Sun, D.; Wu, R.; Zheng, J.; Li, P.; Yu, L. Cell Res. 2018, 28 (4), 405. doi: 10.1038/s41422-018-0017-7
doi: 10.1038/s41422-018-0017-7
Zeng, M.; Shang, Y.; Araki, Y.; Guo, T.; Huganir, R. L.; Zhang, M. Cell 2016, 166 (5), 1163. doi: 10.1016/j.cell.2016.07.008
doi: 10.1016/j.cell.2016.07.008
Martin, E. W.; Mittag, T. Biochemistry 2018, 57 (17), 2478. doi: 10.1021/acs.biochem.8b00008
doi: 10.1021/acs.biochem.8b00008
Uversky, V. N. Curr. Opin. Struct. Biol. 2017, 44, 18. doi: 10.1016/j.sbi.2016.10.015
doi: 10.1016/j.sbi.2016.10.015
Nott, T. J.; Petsalaki, E.; Farber, P.; Jervis, D.; Fussner, E.; Plochowietz, A.; Craggs, T. D.; Bazett-Jones, D. P.; Pawson, T.; Forman-Kay, J. D.; et al. Mol. Cell 2015, 57 (5), 936. doi: 10.1016/j.molcel.2015.01.013
doi: 10.1016/j.molcel.2015.01.013
Lin, Y. H.; Forman-Kay, J. D.; Chan, H. S. Phys. Rev. Lett. 2016, 117 (17), 178101. doi: 10.1103/PhysRevLett.117.178101
doi: 10.1103/PhysRevLett.117.178101
Vernon, R. M.; Chong, P. A.; Tsang, B.; Kim, T. H.; Bah, A.; Farber, P.; Lin, H.; Forman-Kay, J. D. Elife 2018, 7, e31486. doi: 10.7554/eLife.31486
doi: 10.7554/eLife.31486
Escobedo, A.; Topal, B.; Kunze, M. B. A.; Aranda, J.; Chiesa, G.; Mungianu, D.; Bernardo-Seisdedos, G.; Eftekharzadeh, B.; Gairi, M.; Pierattelli, R.; et al. Nat. Commun. 2019, 10, 2034. doi: 10.1038/s41467-019-09923-2
doi: 10.1038/s41467-019-09923-2
Sawaya, M. R.; Sambashivan, S.; Nelson, R.; Ivanova, M. I.; Sievers, S. A.; Apostol, M. I.; Thompson, M. J.; Balbirnie, M.; Wiltzius, J. J. W.; McFarlane, H. T.; et al. Nature 2007, 447 (7143), 453. doi: 10.1038/nature05695
doi: 10.1038/nature05695
Peskett, T. R.; Rau, F.; O'Driscoll, J.; Patani, R.; Lowe, A. R.; Saibil, H. R. Mol. Cell 2018, 70 (4), 588. doi: 10.1016/j.molcel.2018.04.007
doi: 10.1016/j.molcel.2018.04.007
Fiumara, F.; Fioriti, L.; Kandel, E. R.; Hendrickson, W. A. Cell 2010, 143 (7), 1121. doi: 10.1016/j.cell.2010.11.042
doi: 10.1016/j.cell.2010.11.042
Vieregg, J. R.; Lueckheide, M.; Marciel, A. B.; Leon, L.; Bologna, A. J.; Rivera, J. R.; Tirrell, M. V. J. Am. Chem. Soc. 2018, 140 (5), 1632. doi: 10.1021/jacs.7b03567
doi: 10.1021/jacs.7b03567
Jain, A.; Vale, R. D. Nature 2017, 546 (7657), 243. doi: 10.1038/nature22386
doi: 10.1038/nature22386
Zhang, H.; Elbaum-Garfinkle, S.; Langdon, E. M.; Taylor, N.; Occhipinti, P.; Bridges, A. A.; Brangwynne, C. P.; Gladfelter, A. S. Mol. Cell 2015, 60 (2), 220. doi: 10.1016/j.molcel.2015.09.017
doi: 10.1016/j.molcel.2015.09.017
Brangwynne, C. P.; Tompa, P.; Pappu, R. V. Nat. Phys. 2015, 11 (11), 899. doi: 10.1038/nphys3532
doi: 10.1038/nphys3532
Flory, P. J. J. Chem. Phys. 1942, 10 (1), 51. doi: 10.1063/1.1723621
doi: 10.1063/1.1723621
Huggins, M. L. J.Phys. Chem. 1942, 46 (1), 151. doi: 10.1021/ j150415a018
doi: 10.1021/j150415a018
Zhou, H. X.; Nguemaha, V.; Mazarakos, K.; Qin, S. Trends Biochem. Sci. 2018, 43 (7), 499. doi: 10.1016/j.tibs.2018.03.007
doi: 10.1016/j.tibs.2018.03.007
Overbeek, J. T.; Voorn, M. J. J. Cell. Physiol. Supplement 1957, 49 (Suppl 1), 7. doi: 10.1002/jcp.1030490404
doi: 10.1002/jcp.1030490404
Wittmer, J.; Johner, A.; Joanny, J. F. Europhys. Lett. 1993, 24 (4), 263. doi: 10.1209/0295-5075/24/4/005
doi: 10.1209/0295-5075/24/4/005
Borue, V. Y.; Erukhimovich, I. Y. Macromolecules 1988, 21 (11), 3240. doi: 10.1021/ma00189a019
doi: 10.1021/ma00189a019
Lin, Y. H.; Brady, J. P.; Forman-Kay, J. D.; Chan, H. S. New J. Phys. 2017, 19, 115003. doi: 10.1088/1367-2630/aa9369
doi: 10.1088/1367-2630/aa9369
McCarty, J.; Delaney, K. T.; Danielsen, S. P. O.; Fredrickson, G. H.; Shea, J. E. J. Phys. Chem. Lett. 2019, 10 (8), 1644. doi: 10.1021/acs.jpclett.9b00099
doi: 10.1021/acs.jpclett.9b00099
Banjade, S.; Wu, Q.; Mittal, A.; Peeples, W. B.; Pappu, R. V.; Rosen, M. K. Proc. Natl. Acad. Sci. U.S.A. 2015, 112 (47), E6426. doi: 10.1073/pnas.1508778112
doi: 10.1073/pnas.1508778112
Quiroz, F. G.; Chilkoti, A. Nat. Mater. 2015, 14 (11), 1164. doi: 10.1038/nmat4418
doi: 10.1038/nmat4418
Zhou, H.; Song, Z.; Zhong, S.; Zuo, L.; Qi, Z.; Qu, L. J.; Lai, L. Angew. Chem. Int. Ed. 2019, 58 (15), 4858. doi: 10.1002/anie.201810373
doi: 10.1002/anie.201810373
Chang, L. W.; Lytle, T. K.; Radhakrishna, M.; Madinya, J. J.; Velez, J.; Sing, C. E.; Perry, S. L. Nat. Commun. 2017, 8, 1273. doi: 10.1038/s41467-017-01249-1
doi: 10.1038/s41467-017-01249-1
Dignon, G. L.; Zheng, W.; Mittal, J. Curr. Opin. Chem. Eng. 2019, 23, 92. doi: 10.1016/j.coche.2019.03.004
doi: 10.1016/j.coche.2019.03.004
Dignon, G. L.; Zheng, W.; Kim, Y. C.; Best, R. B.; Mittal, J. Plos Comput. Biol. 2018, 14 (1), e1005941. doi: 10.1371/journal.pcbi.1005941
doi: 10.1371/journal.pcbi.1005941
Choi, J. M.; Dar, F.; Pappu, R. V. bioRxiv 2019, 611095. doi: 10.1101/611095
doi: 10.1101/611095
Das, S.; Eisen, A.; Lin, Y. H.; Chan, H. S. J. Phys. Chem. B 2018, 122 (21), 5418. doi: 10.1021/acs.jpcb.7b11723
doi: 10.1021/acs.jpcb.7b11723
Das, S.; Amin, A. N.; Lin, Y. H.; Chan, H. S. Phys. Chem. Chem. Phys. 2018, 20 (45), 28558. doi: 10.1039/c8cp05095c
doi: 10.1039/c8cp05095c
Dignon, G. L.; Zheng, W.; Best, R. B.; Kim, Y. C.; Mittal, J. Proc. Natl. Acad. Sci. U.S.A. 2018, 115 (40), 9929. doi: 10.1073/pnas.1804177115
doi: 10.1073/pnas.1804177115
Harmon, T. S.; Holehouse, A. S.; Rosen, M. K.; Pappu, R. V. Elife 2017, 6, e30294. doi: 10.7554/eLife.30294
doi: 10.7554/eLife.30294
Mitrea, D. M.; Kriwacki, R. W. Cell Commun. Signal. 2016, 14, 1. doi: 10.1186/s12964-015-0125-7
doi: 10.1186/s12964-015-0125-7
Strulson, C. A.; Molden, R. C.; Keating, C. D.; Bevilacqua, P. C. Nat. Chem. 2012, 4 (11), 941. doi: 10.1038/nchem.1466
doi: 10.1038/nchem.1466
Case, L. B.; Zhang, X.; Ditlev, J. A.; Rosen, M. K. Science 2019, 363 (6431), 1093. doi: 10.1126/science.aau6313
doi: 10.1126/science.aau6313
Riback, J. A.; Katanski, C. D.; Kear-Scott, J. L.; Pilipenko, E. V.; Rojek, A. E.; Sosnick, T. R.; Drummond, D. A. Cell 2017, 168 (6), 1028. doi: 10.1016/j.cell.2017.02.027
doi: 10.1016/j.cell.2017.02.027
Altmeyer, M.; Neelsen, K. J.; Teloni, F.; Pozdnyakova, I.; Pellegrino, S.; Grofte, M.; Rask, M. B. D.; Streicher, W.; Jungmichel, S.; Nielsen, M. L.; et al. Nat. Commun. 2015, 6, 8088. doi: 10.1038/ncomms9088
doi: 10.1038/ncomms9088
Hnisz, D.; Shrinivas, K.; Young, R. A.; Chakraborty, A. K.; Sharp, P. A. Cell 2017, 169 (1), 13. doi: 10.1016/j.cell.2017.02.007
doi: 10.1016/j.cell.2017.02.007
Wang, J. T. f.; Smith, J.; Chen, B. C.; Schmidt, H.; Rasoloson, D.; Paix, A.; Lambrus, B. G.; Calidas, D.; Betzig, E.; Seydoux, G. Elife 2014, 3, e04591. doi: 10.7554/eLife.04591
doi: 10.7554/eLife.04591
Smith, J.; Calidas, D.; Schmidt, H.; Lu, T.; Rasoloson, D.; Seydoux, G. Elife 2016, 5, e21337. doi: 10.7554/eLife.21337
doi: 10.7554/eLife.21337
Zhang, G.; Wang, Z.; Du, Z.; Zhang, H. Cell 2018, 174 (6), 1492. doi: 10.1016/j.cell.2018.08.006
doi: 10.1016/j.cell.2018.08.006
Li, S.; Yang, P.; Tian, E.; Zhang, H. Mol. Cell 2013, 52 (3), 421. doi: 10.1016/j.molcel.2013.09.014
doi: 10.1016/j.molcel.2013.09.014
Boczek, E. E.; Alberti, S. Science 2018, 361 (6402), 548. doi: 10.1126/science.aau5477
doi: 10.1126/science.aau5477
Wippich, F.; Bodenmiller, B.; Trajkovska, M. G.; Wanka, S.; Aebersold, R.; Pelkmans, L. Cell 2013, 152 (4), 791. doi: 10.1016/j.cell.2013.01.033
doi: 10.1016/j.cell.2013.01.033
Zacharogianni, M.; Gomez, A. A.; Veenendaal, T.; Smout, J.; Rabouille, C. Elife 2014, 3, e04132. doi: 10.7554/eLife.04132
doi: 10.7554/eLife.04132
van Leeuwen, W.; van der Krift, F.; Rabouille, C. J. Cell Biol. 2018, 217 (7), 2261. doi: 10.1083/jcb.201802003
doi: 10.1083/jcb.201802003
Shin, Y.; Chang, Y. C.; Lee, D. S. W.; Berry, J.; Sanders, D. W.; Ronceray, P.; Wingreen, N. S.; Haataja, M.; Brangwynne, C. P. Cell 2018, 175 (6), 1481. doi: 10.1016/j.cell.2018.10.057
doi: 10.1016/j.cell.2018.10.057
Larson, A. G.; Elnatan, D.; Keenen, M. M.; Trnka, M. J.; Ohnston, J. B. J.; Burlingame, A. L.; Agard, D. A.; Redding, S.; Narlikar, G. J. Nature 2017, 547 (7662), 236. doi: 10.1038/nature22822
doi: 10.1038/nature22822
Lu, H.; Yu, D.; Hansen, A. S.; Ganguly, S.; Liu, R.; Heckert, A.; Darzacq, X.; Zhou, Q. Nature 2018, 558 (7709), 318. doi: 10.1038/s41586-018-0174-3
doi: 10.1038/s41586-018-0174-3
Harlen, K. M.; Churchman, L. S. Nat. Rev. Mol. Cell Biol. 2017, 18 (4), 263. doi: 10.1038/nrm.2017.10
doi: 10.1038/nrm.2017.10
Fang, X.; Wang, L.; Ishikawa, R.; Li, Y.; Fiedler, M.; Liu, F.; Calder, G.; Rowan, B.; Weigel, D.; Li, P.; Dean, C. Nature 2019, 569 (7755), 265. doi: 10.1038/s41586-019-1165-8
doi: 10.1038/s41586-019-1165-8
Ferrolino, M. C.; Mitrea, D. M.; Michael, J. R.; Kriwacki, R. W. Nat. Commun. 2018, 9, 5064. doi: 10.1038/s41467-018-07530-1
doi: 10.1038/s41467-018-07530-1
Jiang, H.; Wang, S.; Huang, Y.; He, X.; Cui, H.; Zhu, X.; Zheng, Y. Cell 2015, 163 (1), 108. doi: 10.1016/j.cell.2015.08.010
doi: 10.1016/j.cell.2015.08.010
Woodruff, J. B. J. Mol. Biol. 2018, 430 (23), 4762. doi: 10.1016/j.jmb.2018.04.041
doi: 10.1016/j.jmb.2018.04.041
Bergeron-Sandoval, L. P.; Heris, H. K.; Hendricks, A. G.; Ehrlicher, A. J.; Franois, P.; Pappu, R. V.; Michnick, S. W. bioRxiv 2017, 145664. doi: 10.1101/145664
doi: 10.1101/145664
Saito, M.; Hess, D.; Eglinger, J.; Fritsch, A. W.; Kreysing, M.; Weinert, B. T.; Choudhary, C.; Matthias, P. Nat. Chem. Biol. 2019, 15 (1), 51. doi: 10.1038/s41589-018-0180-7
doi: 10.1038/s41589-018-0180-7
Patel, A.; Malinovska, L.; Saha, S.; Wang, J.; Alberti, S.; Krishnan, Y.; Hyman, A. A. Science 2017, 356 (6339), 753. doi: 10.1126/science.aaf6846
doi: 10.1126/science.aaf6846
Aumiller, W. M., Jr.; Keating, C. D. Nat. Chem. 2016, 8 (2), 129. doi: 10.1038/nchem.2414
doi: 10.1038/nchem.2414
Cermakova, K.; Hodges, H. C. Molecules 2018, 23 (8), 1958. doi: 10.3390/molecules23081958
doi: 10.3390/molecules23081958
McGurk, L.; Gomes, E.; Guo, L.; Mojsilovic-Petrovic, J.; Tran, V.; Kalb, R. G.; Shorter, J.; Bonini, N. M. Mol. Cell 2018, 71 (5), 703. doi: 10.1016/j.molcel.2018.07.002
doi: 10.1016/j.molcel.2018.07.002
Jin, F.; Yu, C.; Lai, L.; Liu, Z. Plos Comput. Biol. 2013, 9 (10), e1003249. doi: 10.1371/journal.pcbi.1003249
doi: 10.1371/journal.pcbi.1003249
Yu, C.; Niu, X.; Jin, F.; Liu, Z.; Jin, C.; Lai, L. Sci. Rep. 2016, 6, 22298. doi: 10.1038/srep22298
doi: 10.1038/srep22298
Fang, M. Y.; Markmiller, S.; Vu, A. Q.; Javaherian, A.; Dowdle, W. E.; Jolivet, P.; Bushway, P. J.; Castello, N. A.; Baral, A.; Chan, M. Y.; et al. Neuron 2019, 5, 802, doi: 10.1016/j.neuron.2019.05.048
doi: 10.1016/j.neuron.2019.05.048
Warshel, A.; Kato, M.; Pisliakov, A. V. J. Chem. Theory Comput. 2007, 3 (6), 2034. doi: 10.1021/ct700127w
doi: 10.1021/ct700127w
Ponder, J. W.; Wu, C.; Ren, P.; Pande, V. S.; Chodera, J. D.; Schnieders, M. J.; Haque, I.; Mobley, D. L.; Lambrecht, D. S.; DiStasio, R. A., et al. J. Phys. Chem. B 2010, 114 (8), 2549. doi: 10.1021/jp910674d
doi: 10.1021/jp910674d
Zhang, C.; Bell, D.; Harger, M.; Ren, P. J. Chem. Theory Comput. 2017, 13 (2), 666. doi: 10.1021/acs.jctc.6b00918
doi: 10.1021/acs.jctc.6b00918
Ruan, H.; Sun, Q.; Zhang, W.; Liu, Y.; Lai, L. Drug Discov. Today 2019, 24 (1), 217. doi: 10.1016/j.drudis.2018.09.017
doi: 10.1016/j.drudis.2018.09.017
Xinyi Hong , Tailing Xue , Zhou Xu , Enrong Xie , Mingkai Wu , Qingqing Wang , Lina Wu . Non-Site-Specific Fluorescent Labeling of Proteins as a Chemical Biology Experiment. University Chemistry, 2024, 39(4): 351-360. doi: 10.3866/PKU.DXHX202310010
Xinyu ZENG , Guhua TANG , Jianming OUYANG . Inhibitory effect of Desmodium styracifolium polysaccharides with different content of carboxyl groups on the growth, aggregation and cell adhesion of calcium oxalate crystals. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1563-1576. doi: 10.11862/CJIC.20230374
Pingping Zhu , Yongjun Xie , Yuanping Yi , Yu Huang , Qiang Zhou , Shiyan Xiao , Haiyang Yang , Pingsheng He . Excavation and Extraction of Ideological and Political Elements for the Virtual Simulation Experiments at Molecular Level: Taking the Project “the Simulation and Computation of Conformation, Morphology and Dimensions of Polymer Chains” as an Example. University Chemistry, 2024, 39(2): 83-88. doi: 10.3866/PKU.DXHX202309063
Junjie Zhang , Yue Wang , Qiuhan Wu , Ruquan Shen , Han Liu , Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084
Shuang Meng , Haixin Long , Zhou Zhou , Meizhu Rong . Inorganic Chemistry Curriculum Design and Implementation of Based on “Stepped-Task Driven + Multi-Dimensional Output” Model: A Case Study on Intermolecular Forces. University Chemistry, 2024, 39(3): 122-131. doi: 10.3866/PKU.DXHX202309008
Jie ZHAO , Sen LIU , Qikang YIN , Xiaoqing LU , Zhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385
Feiya Cao , Qixin Wang , Pu Li , Zhirong Xing , Ziyu Song , Heng Zhang , Zhibin Zhou , Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094
Chunai Dai , Yongsheng Han , Luting Yan , Zhen Li , Yingze Cao . Ideological and Political Design of Solid-liquid Contact Angle Measurement Experiment. University Chemistry, 2024, 39(2): 28-33. doi: 10.3866/PKU.DXHX202306065
Lan Ma , Cailu He , Ziqi Liu , Yaohan Yang , Qingxia Ming , Xue Luo , Tianfeng He , Liyun Zhang . Magical Surface Chemistry: Fabrication and Application of Oil-Water Separation Membranes. University Chemistry, 2024, 39(5): 218-227. doi: 10.3866/PKU.DXHX202311046
Yanyang Li , Zongpei Zhang , Kai Li , Shuangquan Zang . Ideological and Political Design for the Comprehensive Experiment of the Synthesis and Aggregation-Induced Emission (AIE) Performance Study of Salicylaldehyde Schiff-Base. University Chemistry, 2024, 39(2): 105-109. doi: 10.3866/PKU.DXHX202307020
Peipei Sun , Jinyuan Zhang , Yanhua Song , Zhao Mo , Zhigang Chen , Hui Xu . 引入内建电场增强光载流子分离以促进H2的生产. Acta Physico-Chimica Sinica, 2024, 40(11): 2311001-. doi: 10.3866/PKU.WHXB202311001
Wendian XIE , Yuehua LONG , Jianyang XIE , Liqun XING , Shixiong SHE , Yan YANG , Zhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050
Xinhao Yan , Guoliang Hu , Ruixi Chen , Hongyu Liu , Qizhi Yao , Jiao Li , Lingling Li . Polyethylene Glycol-Ammonium Sulfate-Nitroso R Salt System for the Separation of Cobalt (II). University Chemistry, 2024, 39(6): 287-294. doi: 10.3866/PKU.DXHX202310073
Linhan Tian , Changsheng Lu . Discussion on Sextuple Bonding in Diatomic Motifs of Chromium Family Elements. University Chemistry, 2024, 39(8): 395-402. doi: 10.3866/PKU.DXHX202401056
Fei Xie , Chengcheng Yuan , Haiyan Tan , Alireza Z. Moshfegh , Bicheng Zhu , Jiaguo Yu . d带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013
Yutong Dong , Huiling Xu , Yucheng Zhao , Zexin Zhang , Ying Wang . The Hidden World of Surface Tension and Droplets. University Chemistry, 2024, 39(6): 357-365. doi: 10.3866/PKU.DXHX202312022
Shui Hu , Houjin Li , Zhenming Zang , Lianyun Li , Rong Lai . Integration of Science and Education Promotes the Construction of Undergraduate-to-Master’s Integration Experimental Courses: A Case Study on the Extraction, Separation and Identification of Artemisinin from Artemisia annua. University Chemistry, 2024, 39(4): 314-321. doi: 10.3866/PKU.DXHX202310063
Yang Chen , Peng Chen , Yuyang Song , Yuxue Jin , Song Wu . Application of Chemical Transformation Driven Impurity Separation in Experiments Teaching: A Novel Method for Purification of α-Fluorinated Mandelic Acid. University Chemistry, 2024, 39(6): 253-263. doi: 10.3866/PKU.DXHX202310077
Jia Zhou . Constructing Potential Energy Surface of Water Molecule by Quantum Chemistry and Machine Learning: Introduction to a Comprehensive Computational Chemistry Experiment. University Chemistry, 2024, 39(3): 351-358. doi: 10.3866/PKU.DXHX202309060
Yong Shu , Xing Chen , Sai Duan , Rongzhen Liao . How to Determine the Equilibrium Bond Distance of Homonuclear Diatomic Molecules: A Case Study of H2. University Chemistry, 2024, 39(7): 386-393. doi: 10.3866/PKU.DXHX202310102