Citation: Liao Peilong, Liu Zeyu, Liu Kaerdun, Ma Cheng, Zhu Zhiyang, Yang Siyu, Lü Wenfeng, Yang Yongzhi, Huang Jianbin. Polyesters-based Oil-CO2 Amphiphiles: Design and Miscible Promoting Ability[J]. Acta Physico-Chimica Sinica, ;2020, 36(10): 190703. doi: 10.3866/PKU.WHXB201907034 shu

Polyesters-based Oil-CO2 Amphiphiles: Design and Miscible Promoting Ability

  • Corresponding author: Huang Jianbin, JBHuang@pku.edu.cn
  • Received Date: 10 July 2019
    Revised Date: 19 August 2019
    Available Online: 4 September 2019

    Fund Project: the National Oil and Gas Major Project of China 2016ZX05016-001The project was supported by the National Oil and Gas Major Project of China (2016ZX05016-001)

  • Miscibility between oil and supercritical carbon dioxide (scCO2) phases has attracted significant attention in the field of oil recovery because it can be utilized in miscible gas displacement of oil, achieving nearly 100% recovery efficiency. The high recovery efficiency of miscible CO2 flooding originates from the valuable heavy components of oil and CO2 gas phase forming a homogenous phase with high mobility in the oil-scCO2 miscible system. However, the high pressure required for oil-scCO2 miscibility is a nontrivial obstacle for practical applications of scCO2 flooding recovery. Therefore, it is important to develop assist-miscible agents to lower the necessary miscibility pressure. In oil and water systems, well-developed amphiphiles (such as surfactants) have shown great promise for reducing the interfacial tension and maintaining the stability of the emulsion system. Therefore, "oil-CO2 amphiphiles" that can assist the miscibility between oil and scCO2 have been proposed. Among potential oil-scCO2 amphiphiles, a series of polyester-based oil-CO2 amphiphiles with esters as the CO2-philic groups and long carbon chains as the oil-philic groups were prepared. The polyester-based oil-CO2 amphiphiles, acting as assist-miscible agents, showed great ability to lower the needed miscibility pressure. A visualized miscible method was used to examine the efficiency of the assist-miscible agents with white oil and kerosene as the oil phase. The height of the oil phase inside the chamber was measured through a glass window to monitor the miscibility with increasing CO2 pressure. When the height of the oil reached the top of chamber, the oil filled the entire space, indicating miscibility. Using this method, the following conclusions could be drawn: First, amphiphiles with more ester groups exhibited stronger CO2-philicity, providing stronger ability to dissolve carbon dioxide. Second, amphiphiles with hydrocarbon chain lengths of 16 carbons exhibited the optimal assist-miscible efficiency. Third, greater differences between the oil and scCO2 phase showed more obvious differentiation among amphiphiles, showing the leveling and differentiating effect of oil. The temperature range of 50–80 ℃ did not influence the assist-miscible efficiency of the polyester-based amphiphiles. The best miscibility-assisting performance was obtained with CAA8-X, which contains eight ester groups and a palmitic acid chain. CAA8-X at a concentration of 1% (w, mass fraction) lowered the miscibility pressure in the white oil-scCO2 system by 16.04%. Amphiphiles with polyether (PEO) groups also showed excellent assist-miscible efficiency. The findings presented herein extend the concept of "amphiphilicity" from oil-water phases to oil-scCO2 phases and have the potential to guide future studies regarding scCO2 flooding in actual CO2 flooding oil recovery. Moreover, for other two-phase systems, according to the general amphipathic law and particular system parameters, it should be possible to design the optimal "amphiphiles".
  • 加载中
    1. [1]

      Fernandez-Rodriguez, M. A.; Binks, B. P.; Rodriguez-Valverde, M. A.; Cabrerizo-Vilchez, M. A.; Hidalgo-Alvarez, R. Adv. Colloid Interface Sci. 2017, 247, 208. doi: 10.1016/j.cis.2017.02.001  doi: 10.1016/j.cis.2017.02.001

    2. [2]

      Atanase, L. I.; Riess, G. Colloid Surf. A-Physicochem. Eng. Asp. 2014, 458, 208. doi: 10.1016/j.colsurfa.2014.01.026  doi: 10.1016/j.colsurfa.2014.01.026

    3. [3]

      Blinks, B. P.; Tyowua, A. T. Soft Matter 2016, 12 (3), 876. doi: 10.1039/c5sm02438b  doi: 10.1039/c5sm02438b

    4. [4]

      Marcus, Y. Processes 2019, 7 (3), 156. doi: 10.3390/pr7030156  doi: 10.3390/pr7030156

    5. [5]

      De Sousa, E. M.; Bittencourt, D.; Toussaint, V. A.; Shariati, A.; Florusse, L. J.; Chiavone, O.; Meireles, M. A. A.; Peters, C. J. Fluid Phase Equilib. 2016, 428 (Suppl.), 32. doi: 10.1016/j.fluid.2016.06.046  doi: 10.1016/j.fluid.2016.06.046

    6. [6]

      Hu, Q.; Jiang, Z, L.; Jiang, W. M.; Li, G. Y.; Guan, F.; Jiang, H. X.; Fan, Z. T. Int. J. Adv. Manuf. Technol. 2019, 101, 1125. doi: 10.1007/s00170-018-2990-x  doi: 10.1007/s00170-018-2990-x

    7. [7]

      Chen, B.; He, J.; Xi, Y. Y.; Zeng, X. Y.; Kaban, I.; Zhao, J. Z.; Hao, H. R. J. Hazard. Mater. 2019, 364, 388. doi: 10.1016/j.jhazmat.2018.10.022  doi: 10.1016/j.jhazmat.2018.10.022

    8. [8]

      Teoh, W. H.; Mammucari, R.; Foster, N. R. J. Organomet. Chem. 2013, 724, 102. doi: 10.1016/j.jorganchem.2012.10.005  doi: 10.1016/j.jorganchem.2012.10.005

    9. [9]

      Luo, T.; Zhang, J. L.; Tan, X. N.; Liu, C. C.; Wu, T. B.; Li, W.; Sang, X. X.; Han, B. X.; Li, Z. H.; Mo, G.; et al. Angew. Chem. Int. Ed. 2016, 55, 13731. doi: 10.1002/anie.201608695  doi: 10.1002/anie.201608695

    10. [10]

      Eastoe, J.; Downer, A.; Paul, A.; Steytler, D. C.; Rumsey, E.; Penfold, J.; Heenan, R. K. Phys. Chem. Chem. Phys. 2000, 2 (22), 5235. doi: 10.1039/B005858K  doi: 10.1039/B005858K

    11. [11]

      Yang, S. Y.; Lian, L. M.; Yang, Y. Z.; Li, S.; Tang, J.; Ji, Z. M.; Zhang, Y. F. Xinjiang Petroleum Geology 2015, 36, 555.  doi: 10.7657/XJPG20150510

    12. [12]

    13. [13]

      Olea, R. A. J. Pet. Sci. Eng. 2015, 129, 23. doi: 10.1016/ j. petrol.2015.03.012  doi: 10.1016/j.petrol.2015.03.012

    14. [14]

      Azzolina, N. A.; Nakles, D. V.; Gorecki, C. D.; Peck, W. D.; Ayash, S. C.; Melzer, L. S.; Chatterjee, S. Int. J. Greenh. Gas. Control. 2015, 37, 384. doi: 10.1016/j.ijggc.2015.03.037  doi: 10.1016/j.ijggc.2015.03.037

    15. [15]

      Hollamby, M. J.; Trickett, K.; Mohamed, A.; Cummings, S.; Tabor, R. F.; Myakonkaya, O.; Gold, S.; Rogers, S.; Heenan, R. K.; Eastoe, J. Angew. Chem. Int. Ed. 2009, 48 (27), 4993.doi: 10.1002/anie.200901543  doi: 10.1002/anie.200901543

    16. [16]

      Eastoe, J.; Paul, A.; Downer, A.; Steyther, D. C.; Rumsey, E. Langmuir 2002, 18 (8), 3014. doi: 10.1021/la015576w  doi: 10.1021/la015576w

    17. [17]

      Mohamed, A.; Sagisaka, M.; Guittard, F.; Cummings, S.; Paul, A.; Rogers, S. E.; Heenan, R.K.; Dyer, R.; Eastoe, J. Langmuir 2011, 27 (17), 10562. doi: 10.1021/la2021885  doi: 10.1021/la2021885

    18. [18]

      Zhang, J.; Li, Y.; Cui, B.; Lin, M. Q.; Dong, Z. X. Method for Improving Crude Oil Recovery by Supercritical CO2 Microemulsion. CN Patent 104194762.A, 2014-12-10.

    19. [19]

      Cheng, J. C.; Pang, Z. Q.; Bai, G. W.; Liu, X. Q.; Lei, Y. Z.; Liu, Y.; Wang, Y. Y.; Xiong, X. Method for Improving Carbon Dioxide Flooding Recovery by Using Surfactant. CN Patent 105257264.A, 2016-1-20.

    20. [20]

      Guo, P.; Jiao, S. J.; Chen, F.; He, J.; Li, Y. Q.; Zeng, H. Int. J. Oil Dril. Pro. Tech. 2012, 34, 81.  doi: 10.3969/j.issn.1000-7393.2012.02.022

    21. [21]

    22. [22]

      Medina-Gonzalez, Y.; Camy, S.; Condoret, J. S. ASC Sustain. Chem. Eng. 2014, 2 (12), 2623. doi: 10.1021/sc5004314  doi: 10.1021/sc5004314

    23. [23]

      Liu, K. E. D.; Ma, C.; Zhu, Z. Y.; Yang, S. Y.; Lv, W. F.; Yang, Y. Z.; Huang, J. B. Oilfield Chem. 2019, 36 (2), 361.

    24. [24]

      Shokrollahi, A.; Arabloo, M.; Gharagheizi, F.; Mohammadi, A. H. Fuel 2013, 112, 375. doi: 10.1016/j.fuel.2013.04.036  doi: 10.1016/j.fuel.2013.04.036

    25. [25]

      Voon, C. L.; Awang, M. ICIPEG 2014, 137. doi:10.1007/978-981-287-368-2_1  doi: 10.1007/978-981-287-368-2_1

    26. [26]

      Hinai, N. M.; Saeedi, A.; Wood, C. D.; Myers, M.; Valdez, R.; Sooud, A. K.; Sari, A. Energy Fuel 2018, 32, 1600. doi: 10.1021/acs.energyfuels.7b03733  doi: 10.1021/acs.energyfuels.7b03733

    27. [27]

      Sun, Y.; Du, Z. M.; Sun, L.; Pan, Y. J. Petrol. Explor. Technol. 2017, 7, 1085. doi: 10.1007/s13202-016-0282-2  doi: 10.1007/s13202-016-0282-2

    28. [28]

      Jokić, S.; Jerković, I.; Rajić, M.; Aladić, K.; Bilić, M.; Vidović, S. J. Supercrit. Fluids 2017, 123, 50. doi: 10.1016/j.supflu.2016.12.007  doi: 10.1016/j.supflu.2016.12.007

  • 加载中
    1. [1]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    2. [2]

      Xiaohui Li Ze Zhang Jingyi Cui Juanjuan Yin . Advanced Exploration and Practice of Teaching in the Experimental Course of Chemical Engineering Thermodynamics under the “High Order, Innovative, and Challenging” Framework. University Chemistry, 2024, 39(7): 368-376. doi: 10.3866/PKU.DXHX202311027

    3. [3]

      Juan Yuan Bin Zhang Jinping Wu Mengfan Wang . Design of a Comprehensive Experiment on Preparation and Characterization of Cu2(Salen)2 Nanomaterials with Two Distinct Morphologies. University Chemistry, 2024, 39(10): 420-425. doi: 10.3866/PKU.DXHX202402014

    4. [4]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    5. [5]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    6. [6]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    7. [7]

      Liangyu Gong Jie Wang Fengyu Du Lubin Xu Chuanli Ma Shihai Yan Zhuwei Song Fuheng Liu Xiuzhong Wang . Construction and Practice of “One-Point, Two-Lines and Three-Sides” Innovative Experimental Platform. University Chemistry, 2024, 39(4): 26-32. doi: 10.3866/PKU.DXHX202308023

    8. [8]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    9. [9]

      Daojuan Cheng Fang Fang . Exploration and Implementation of Science-Education Integration in Organic Chemistry Teaching for Pharmacy Majors: A Case Study on Nucleophilic Substitution Reactions of Alkyl Halides. University Chemistry, 2024, 39(11): 72-78. doi: 10.12461/PKU.DXHX202403105

    10. [10]

      Yangrui Xu Yewei Ren Xinlin Liu Hongping Li Ziyang Lu . 具有高传质和亲和表面的NH2-UIO-66基疏水多孔液体用于增强CO2光还原. Acta Physico-Chimica Sinica, 2024, 40(11): 2403032-. doi: 10.3866/PKU.WHXB202403032

    11. [11]

      Rui Li Jiayu Zhang Anyang Li . Two Levels of Understanding of Chemical Bonds: a Case of the Bonding Model of Hypervalent Molecules. University Chemistry, 2024, 39(2): 392-398. doi: 10.3866/PKU.DXHX202308051

    12. [12]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    13. [13]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    14. [14]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    15. [15]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    16. [16]

      Kai Yang Gehua Bi Yong Zhang Delin Jin Ziwei Xu Qian Wang Lingbao Xing . Comprehensive Polymer Chemistry Experiment Design: Preparation and Characterization of Rigid Polyurethane Foam Materials. University Chemistry, 2024, 39(4): 206-212. doi: 10.3866/PKU.DXHX202308045

    17. [17]

      Ruilin Han Xiaoqi Yan . Comparison of Multiple Function Methods for Fitting Surface Tension and Concentration Curves. University Chemistry, 2024, 39(7): 381-385. doi: 10.3866/PKU.DXHX202311023

    18. [18]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    19. [19]

      Conghao Shi Ranran Wang Juli Jiang Leyong Wang . The Illustration on Stereoisomers of Macrocycles Containing Multiple Chiral Centers via Tröger Base-based Macrocycles. University Chemistry, 2024, 39(7): 394-397. doi: 10.3866/PKU.DXHX202311034

    20. [20]

      Muhammad Humayun Mohamed Bououdina Abbas Khan Sajjad Ali Chundong Wang . Designing single atom catalysts for exceptional electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100193-100193. doi: 10.1016/j.cjsc.2023.100193

Metrics
  • PDF Downloads(12)
  • Abstract views(1094)
  • HTML views(346)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return