Citation: Chen Sa, Shang Ran, Wang Bingwu, Wang Zheming, Gao Song. An Anisotropic Diluted Magnetic Hybrid Perovskite Series of [CH3NH3][CoxZn1-x(HCOO)3][J]. Acta Physico-Chimica Sinica, ;2020, 36(1): 190701. doi: 10.3866/PKU.WHXB201907012 shu

An Anisotropic Diluted Magnetic Hybrid Perovskite Series of [CH3NH3][CoxZn1-x(HCOO)3]

  • Corresponding author: Wang Zheming, zmw@pku.edu.cn Gao Song, gaosong@pku.edu.cn
  • Received Date: 1 July 2019
    Revised Date: 5 September 2019
    Accepted Date: 6 September 2019
    Available Online: 20 January 2019

    Fund Project: the National Natural Science Foundation of China 21671008the National Natural Science Foundation of China 21621061The project was supported by the National Natural Science Foundation of China (21671008, 21621061) and the National Key Basic Research Program of China (2018YFA0306003)the National Key Basic Research Program of China 2018YFA0306003

  • Inorganic-organic or hybrid perovskite materials, which are the complementary counterparts of pure inorganic perovskites, can provide many new opportunities in the researches of phase transitions, critical phenomena, and relevant properties, as they combine the characteristics of inorganic and organic components. Therefore, the hybrid perovskites of ammonium metal formate framework are very promising, and their properties have been found to be strongly dependent on the characteristics of the constituent metal ions and/or ammonium ions. Herein, we used solid solution strategies, borrowed from solid state chemistry, to investigate the anisotropic diluted magnetic hybrid perovskite system of [CH3NH3][CoxZn1-x(HCOO)3], wherein the B-sites are occupied by the mixed metal ions of Co2+ and Zn2+. The solid solution compounds of this series in the range x = 0–1 (or the molar percent Co% = 0–100%) were successfully prepared using conventional solution chemistry methods. The resulting compounds were demonstrated to be iso-structural by using both single-crystal and powder X-ray diffraction analyses. The solid solution crystals belong to the orthorhombic space group Pnma, with the cell parameters being a = 8.3015(2)–8.3207(3) Å, b = 11.6574(4)–11.6811(5) Å, c = 8.1315(3)–8.1427(4) Å, and V = 787.89(5)–790.98(7) Å3. The perovskite structure consists of a simple cubic anionic metal-formate framework and CH3NH3+ cations which are located in the framework cavities, with N―H···O hydrogen bonds formed between the framework and the cation. The members of this series showed negligible changes (< 0.4%) in their respective lattice and structural parameters. Thus, the prepared solid solution compounds constitute good molecule-based examples for the study of magnetic dilution under almost the same structural parameters and molecular geometries. Upon dilution, the magnetization per mole of Co at low temperatures and low fields was suppressed by the magnetic anisotropy of Co2+ and gradual destruction of the large spin canting between coupled Co2+ ions, in contrast to the magnetization enhancement observed in the isotropic diluted system of [CH3NH3][MnxZn1-x(HCOO)3] with the same perovskite structure. The percolation limit was estimated as (Co%)P = 27(1)% (or xP = 0.27(1)) from the magnetic data, which was slightly lower than that predicted by the percolation theory for a simple cubic lattice (31%); this trend was due to the strong magnetic anisotropy of the present system. In addition, rare incommensurate phase transitions were primarily detected below ~120 K for the pure Co and Zn members, which may also affect the magnetic properties of the materials.
  • 加载中
    1. [1]

      (a) Wang, Z. L.; Wang, Z. C. Functional and Smart Materials – Structural Evolution and Structural Analysis; Plenum Press: New York, 1998.
      (b) Müller, K. A.; Kool, T. W. Properties of Perovskites and Other Oxides; World Scientific Publishing Co. Pte. Ltd.: London, 2010.

    2. [2]

      (a) Saparov, B.; Mitzi, D. B. Chem. Rev. 2016, 116, 4558. doi: 10.1021/acs.chemrev.5b00715
      (b) Mitzi, D. B. Prog. Inorg. Chem. 1999, 48, 1. doi: 10.1002/9780470166499.ch1
      (c) Li, W.; Wang, Z. M.; Deschler, F.; Gao, S.; Friend, R. H.; Cheetham, A. K. Nat. Rev. Mater. 2017, 2, 16099. doi: 10.1038/natrevmats.2016.99
      (d) Xu, W. J.; Du, Z. Y.; Zhang, W. X.; Chen, X. M. CrystEngComm 2016, 18, 7915. doi: 10.1039/c6ce01485b

    3. [3]

      (a) Shang, R.; Chen, S.; Wang, Z. M.; Gao, S. Functional Magnetic Materials Based on Metal Formate Frameworks. In Metal-Organic Framework Materials; Macgillivray, L. R., Lukehart, C. M. Eds; John Wiley & Sons, Ltd.: Chichester, 2014. doi: 10.1002/9781119951438.eibc2215
      (b) Wang, Z. M.; Hu, K. L.; Gao, S.; Kobayashi, H. Adv. Mater. 2010, 22, 1526. doi: 10.1002/adma.200904438

    4. [4]

      (a) Wang, Z. M.; Zhang, B.; Otsuka, T.; Inoue, K.; Kobayashi, H.; Kurmoo, M. Dalton Trans. 2004, 2209. doi: 10.1039/b404466e
      (b) Wang, X. Y.; Gan, L.; Zhang, S. W.; Gao, S. Inorg. Chem. 2004, 43, 4615. doi: 10.1021/ic0498081
      (c) Hu, K. L.; Kurmoo, M.; Wang, Z. M.; Gao, S. Chem. Eur. J. 2009, 15, 12050. doi: 10.1002/chem.200901605

    5. [5]

      (a) Chen, S.; Shang, R.; Hu, K. L.; Wang, Z. M.; Gao, S. Inorg. Chem. Front. 2014, 1, 83. doi: 10.1039/c3qi00034f
      (b) Kieslich, G.; Kumagai, S.; Butler, K. T.; Okamura, T.; Hendon, C. H.; Sun, S.; Yamashita, M.; Walshd, A.; Cheetham, A. K. Chem. Commun. 2015, 51, 15538. doi: 10.1039/c5cc06190c
      (c) Kieslich, G.; Forse, A. C.; Sun, S.; Butler, K. T.; Kumagai, S.; Wu, Y.; Warren, M. R.; Walsh, A.; Grey, C. P.; Cheetham, A. K. Chem. Mater. 2016, 28, 312. doi: 10.1021/acs.chemmater.5b04143

    6. [6]

      (a) Gómez-Aguirre, L. C.; Pato-Doldán, B.; Mira, J.; Castro-García, S.; Señarís-Rodríguez, M. A.; Sánchez-Andújar, M.; Singleton, J.; Zapf, V. S. J. Am. Chem. Soc. 2016, 138, 1122. doi: 10.1021/jacs.5b11688
      (b) Fu, D. W.; Zhang, W.; Cai, H. L.; Zhang, Y.; Ge, J. Z.; Xiong, R. G.; Huang, S. D.; Nakamura, T. Angew. Chem. Int. Ed. 2011, 50, 11947. doi: 10.1002/anie.201103265
      (c) Jain, P.; Ramachandran, V.; Clark, R. J.; Zhou, H. D.; Toby, B. H.; Dalal, N. S.; Kroto, H. W.; Cheetham, A. K. J. Am. Chem. Soc. 2009, 131, 13625. doi: 10.1021/ja904156s
      (d) Mączka, M.; Gągor, A.; Ptak, M.; Paraguassu, W. T.; da Silva, A.; Sieradzki, A.; Pikul, A. Chem. Mater. 2017, 29, 2264. doi: 10.1021/acs.chemmater.6b05249

    7. [7]

      (a) Yu, Y.; Shang, R.; Chen, S.; Wang, B. W.; Wang, Z. M.; Gao, S. Chem. Eur. J. 2017, 23, 9857. doi: 10.1002/chem.201701099
      (b) Mączka, M.; Pietraszko, A.; Macalik, L.; Sieradzki, A.; Trzmiel, J.; Pikul, A. Dalton Trans. 2014, 43, 17075. doi: 10.1039/c4dt02586e
      (c) Mączka, M.; Bondzior, B.; Dereń, P.; Sieradzki, A.; Trzmiel, J.; Pietraszko, A.; Hanuza, J. Dalton Trans. 2015, 44, 6871. doi: 10.1039/c5dt00060b
      (d) Ptak, M.; Mączka, M.; Gągor, A.; Sieradzki, A.; Stroppa, A.; Di Sante, D.; Perez-Mato, J. M.; Macalik, L. Dalton Trans. 2016, 45, 2574. doi: 10.1039/c5dt04536c
      (e) Ptak, M.; Mączka, M.; Gągor, A.; Sieradzki, A.; Bondzior, B.; Dereń, P.; Pawlus, S. Phys. Chem. Chem. Phys. 2016, 18, 29629. doi: 10.1039/c6cp05151k

    8. [8]

      (a) Chen, S.; Shang, R.; Wang, B. W.; Wang, Z. M.; Gao, S. Angew. Chem. Int. Ed. 2015, 54, 11093. doi: 10.1002/anie.201504396
      (b) Kieslich, G.; Kumagai, Sh.; Forse, A. C.; Sun, S.; Henke, S.; Yamashita, M.; Greyd, C. P.; Cheetham, A. K. Chem. Sci. 2016, 7, 5108. doi: 10.1039/c6sc01247g

    9. [9]

      (a) Evans, N. L.; Thygesen, P. M. M.; Boströ m, H. L. B.; Reynolds, E. M.; Collings, I. E.; Phillips, A. E.; Goodwin, A. L. J. Am. Chem. Soc. 2016, 138, 9393. doi: 10.1021/jacs.6b05208
      (b) Shang, R.; Sun, X.; Wang, Z. M.; Gao, S. Chem. Asian J. 2012, 7, 1697. doi: 10.1002/asia.201200139

    10. [10]

      (a) Chen, S. Ammonium-Metal-Formate Perovskites: Coexistence and Manipulation of Magnetic and Electric Ordering. Ph. D. Dissertation, Peking University, Beijing, 2016.
      (b) Yu, Y. The Study on the Functional Materials of Heterometallic Ammonium Metal Formates. Ph. D. Dissertation, Peking University, Beijing, 2017.

    11. [11]

      (a) de Jongh, L. J. Static Thermodynamic Properties of Site-Random Magnetic Systems and Percolation Problem. In Magnetic Phase Transitions - Proceedings of a Summer School; Ausloos, M., Elliott R. J. Eds.; Springer-Verlag: Berlin Heidelberg, 1983; pp. 172-194.
      (b) Binder, K.; Kob, W. Glassy Materials and Disordered Solids – An Introduction to Their Statictical Mechanics; World Scientific Publishing Co. Pte. Ltd.: Singapore, 2005.
      (c) Zallen, R. The Physics of Amorphous Solids; Wiley: New York, 1983.

    12. [12]

      CrysAlisPro software, Rigaku Oxford Diffraction: Tokyo, Japan, 2015.

    13. [13]

      Sheldrick, G. M. SHELX-97, Program for Crystal Structure Determination, University of Göttingen, Germany, 1997.

    14. [14]

      Mulay, L. N.; Boudreaux, E. A. Theory and Applications of Molecular Diamagnetism; John Wiley & Sons Inc.: New York, 1976.

    15. [15]

      Nakamoto, K. Infrared and Raman Spectra of Inorganic and Coordination Compounds; Wiley: New York, 1986.

    16. [16]

      (a) Mączka, M.; Ciupa, A.; Gągor, A.; Sieradzki, A.; Pikul, A.; Macalik, B.; Drozd, M. Inorg. Chem. 2014, 53, 5260. doi: 10.1021/ic500479e
      (b) Mączka, M.; Ptak, M.; Macalik, L. Vib. Spectrosc. 2014, 71, 98. doi: 10.1016/j.vibspec.2014.01.013
      (c) Mączka, M.; Szymborska-Małek, K.; Ciupa, A.; Hanuza, J. Vib. Spectrosc. 2015, 77, 17. doi: 10.1016/j.vibspec.2015.02.003

    17. [17]

      (a) van Smaalen, S. Incommensurate Crystallography; Oxford University Press Inc.: New York, 2007.
      (b) Janssen, T.; Chapuis, G.; de Boissieu, M. Aperiodic Crystals: from Modulated Phases to Quasicrystals; Oxford University Press Inc.: New York, 2007.

    18. [18]

      Chen, S.; Shang, R.; Wang, B. W. Wang, Z. M.; Gao, S. APL Mater. 2018, 6, 114205. doi: 10.1063/1.5040688  doi: 10.1063/1.5040688

    19. [19]

      Carlin, R. L.; van Duyneveldt, A. J. Magnetic Properties of Transition Metal Compounds; Springer-Verlag: New York, 1977. 

    20. [20]

      (a) Kurmoo, M. Chem. Soc. Rev. 2009, 38, 1353. doi: 10.1039/b804757j
      (b) Lloret, F.; Julve, M.; Cano, J.; Ruiz-García, R.; Pardo, E. Inorg. Chim. Acta 2008, 361, 3432. doi: 10.1016/j.ica.2008.03.114
      (c) Palii, A. V.; Tsukerblat, B. S.; Coronado, E.; Clemente-Juan, J. M.; Borras-Almenar, J. J. Inorg. Chem. 2003, 42, 2455. doi: 10.1021/ic0259686

    21. [21]

      Boča, M.; Svoboda, I.; Renz, F.; Fuess, H. Acta Cryst. C. 2004, 60, m631. doi: 10.1107/s0108270104025776  doi: 10.1107/s0108270104025776

    22. [22]

      Casey, A. T.; Mitra, S. Magnetic Behavior of Components Containing dn Ions. In Theory and Application of Molecular Paramagnetism; Mulay, L. N., Boudreaux, E. A. Eds; Wiley: New York, 1976; pp. 211-215.

    23. [23]

      (a) Breed, D. J.; Gilijamse, K.; Sterkenburg, J. W. E.; Miedema, A. R. J. Appl. Phys. 1970, 41, 1267. doi: 10.1063/1.1658906
      (b) Harris, A. B.; Kirkpatrick, S. Phys. Rev. B 1977, 16, 542. doi: 10.1103/physrevb.16.542
      (c) King, A. R.; Jaccarino, V. J. Appl. Phys. 1981, 52, 1785. doi: 10.1063/1.329714

    24. [24]

      Manaka, H.; Nagata, S.; Watanabe, Y.; Kikunaga, K.; Yamamoto, T.; Terada, N.; Obara, K. J. Phys.: Conf. Ser. 2009, 145, 012080. doi: 10.1088/1742-6596/145/1/012080  doi: 10.1088/1742-6596/145/1/012080

    25. [25]

      (a) Christensen, K.; Moloney, N. R. Complexity and Criticality; Imperial College Press: London, 2005.
      (b) Stinchcombe, R. B. J. Phys. C: Solid State Phys. 1979, 12, 4533. doi: 10.1088/0022-3719/12/21/020
      (c) Sur, A.; Lebowitz, J. L.; Marro, J.; Kalos, M. H.; Kirkpatrick, S. J. Statis. Phys. 1976, 15, 345. doi: 10.1007/bf01020338

    26. [26]

      (a) Enoki, T.; Tsujikawa, I. J. Phys. Soc. Japan 1975, 39, 324. doi: 10.1143/jpsj.39.324
      (b) Elliott, R. J.; Heap, B. R. Proc. R. Soc. London. Ser. A 1962, 265, 264. doi: 10.1098/rspa.1962.0008

  • 加载中
    1. [1]

      Yan ChengHua-Peng RuanYan PengLonghe LiZhenqiang XieLang LiuShiyong ZhangHengyun YeZhao-Bo Hu . Magnetic, dielectric and luminescence synergetic switchable effects in molecular material [Et3NCH2Cl]2[MnBr4]. Chinese Chemical Letters, 2024, 35(4): 108554-. doi: 10.1016/j.cclet.2023.108554

    2. [2]

      Zhi-Yuan YueHua-Kai LiNa WangShan-Shan LiuLe-Ping MiaoHeng-Yun YeChao Shi . Dehydration-triggered structural phase transition-associated ferroelectricity in a hybrid perovskite-type crystal. Chinese Chemical Letters, 2024, 35(10): 109355-. doi: 10.1016/j.cclet.2023.109355

    3. [3]

      Dongying FuLin PanYanli MaYue Zhang . Bilayered Dion–Jacobson lead-iodine hybrid perovskite with aromatic spacer for broadband photodetection. Chinese Chemical Letters, 2025, 36(2): 109621-. doi: 10.1016/j.cclet.2024.109621

    4. [4]

      Fan WuShaoyang WuXin YeYurong RenPeng Wei . Research progress of high-entropy cathode materials for sodium-ion batteries. Chinese Chemical Letters, 2025, 36(4): 109851-. doi: 10.1016/j.cclet.2024.109851

    5. [5]

      Qiuyu Ming Huijun Jiang Zhihao Zhang . A Sightseeing Tour of Folic Acid Processing Plant. University Chemistry, 2024, 39(9): 11-15. doi: 10.12461/PKU.DXHX202404092

    6. [6]

      Yueyue WEIXuehua SUNHongmei CHAIWanqiao BAIYixia RENLoujun GAOGangqiang ZHANGJun ZHANG . Two Ln-Co (Ln=Eu, Sm) metal-organic frameworks: Structures, magnetism, and fluorescent sensing sulfasalazine and glutaraldehyde. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2475-2485. doi: 10.11862/CJIC.20240193

    7. [7]

      Xiaoling WANGHongwu ZHANGDaofu LIU . Synthesis, structure, and magnetic property of a cobalt(Ⅱ) complex based on pyridyl-substituted imino nitroxide radical. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 407-412. doi: 10.11862/CJIC.20240214

    8. [8]

      Xiaxia LIUXiaofang MALuxia GUOXianda HANSisi FENG . Structure and magnetic properties of Mn(Ⅱ) coordination polymers regulated by N-auxiliary ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 587-596. doi: 10.11862/CJIC.20240269

    9. [9]

      Zhaodong WANGIn situ synthesis, crystal structure, and magnetic characterization of a trinuclear copper complex based on a multi-substituted imidazo[1,5-a]pyrazine scaffold. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 597-604. doi: 10.11862/CJIC.20240268

    10. [10]

      Yadan SUNXinfeng LIQiang LIUOshio HirokiYinshan MENG . Structures and magnetism of dinuclear Co complexes based on imine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2212-2220. doi: 10.11862/CJIC.20240131

    11. [11]

      Ning ZhangMengjie QinJiawen ZhuXuejing LouXiao TianWende MaYoumei WangMinghua LuZongwei Cai . Thickness-controllable synthesis of metal-organic framework based hollow nanoflowers with magnetic core via liquid phase epitaxy for phosphopeptides enrichment. Chinese Chemical Letters, 2025, 36(4): 110177-. doi: 10.1016/j.cclet.2024.110177

    12. [12]

      Shenhao QIUQingquan XIAOHuazhu TANGQuan XIE . First-principles study on electronic structure, optical and magnetic properties of rare earth elements X (X=Sc, Y, La, Ce, Eu) doped with two-dimensional GaSe. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2250-2258. doi: 10.11862/CJIC.20240104

    13. [13]

      Run-Han LiTian-Yi DangWei GuanJiang LiuYa-Qian LanZhong-Min Su . Evolution exploration and structure prediction of Keggin-type group IVB metal-oxo clusters. Chinese Chemical Letters, 2024, 35(5): 108805-. doi: 10.1016/j.cclet.2023.108805

    14. [14]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    15. [15]

      Ziyi Liu Xunying Liu Lubing Qin Haozheng Chen Ruikai Li Zhenghua Tang . Alkynyl ligand for preparing atomically precise metal nanoclusters: Structure enrichment, property regulation, and functionality enhancement. Chinese Journal of Structural Chemistry, 2024, 43(11): 100405-100405. doi: 10.1016/j.cjsc.2024.100405

    16. [16]

      Changyuan BaoYunpeng JiangHaoyin ZhongHuaizheng RenJunhui WangBinbin LiuQi ZhaoFan JinYan Meng ChongJianguo SunFei WangBo WangXimeng LiuDianlong WangJohn Wang . Synergizing 3D-printed structure and sodiophilic interface enables highly efficient sodium metal anodes. Chinese Chemical Letters, 2024, 35(11): 109353-. doi: 10.1016/j.cclet.2023.109353

    17. [17]

      Na WangWang LuoHuaiyi ShenHuakai LiZejiang XuZhiyuan YueChao ShiHengyun YeLeping Miao . Crystal engineering regulation achieving inverse temperature symmetry breaking ferroelasticity in a cationic displacement type hybrid perovskite system. Chinese Chemical Letters, 2024, 35(5): 108696-. doi: 10.1016/j.cclet.2023.108696

    18. [18]

      Kangrong YanZiqiu ShenYanchun HuangBenfang NiuHongzheng ChenChang-Zhi Li . Curing the vulnerable heterointerface via organic-inorganic hybrid hole transporting bilayers for efficient inverted perovskite solar cells. Chinese Chemical Letters, 2024, 35(6): 109516-. doi: 10.1016/j.cclet.2024.109516

    19. [19]

      Tian YangYi LiuLina HuaYaoyao ChenWuqian GuoHaojie XuXi ZengChanghao GaoWenjing LiJunhua LuoZhihua Sun . Lead-free hybrid two-dimensional double perovskite with switchable dielectric phase transition. Chinese Chemical Letters, 2024, 35(6): 108707-. doi: 10.1016/j.cclet.2023.108707

    20. [20]

      Xiao-Tong Sun Hao-Fei Ni Yi Zhang Da-Wei Fu . Hybrid perovskite shows temperature-dependent photoluminescence and dielectric response triggered by halogen substitution. Chinese Journal of Structural Chemistry, 2024, 43(6): 100212-100212. doi: 10.1016/j.cjsc.2023.100212

Metrics
  • PDF Downloads(5)
  • Abstract views(207)
  • HTML views(23)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return