Citation: Chen Lifang, Yu Yulv, Kuwa Masako, Cheng Tao, Liu Yan, Murakami Hiroshi, Masafumi Harada, Wang Yuan. Insight into the Formation Mechanism of "Unprotected" Metal Nanoclusters[J]. Acta Physico-Chimica Sinica, ;2020, 36(1): 190700. doi: 10.3866/PKU.WHXB201907008 shu

Insight into the Formation Mechanism of "Unprotected" Metal Nanoclusters

  • Corresponding author: Masafumi Harada, harada@cc.nara-wu.ac.jp Wang Yuan, wangy@pku.edu.cn
  • Received Date: 1 July 2019
    Revised Date: 25 July 2019
    Accepted Date: 26 July 2019
    Available Online: 2 January 2019

    Fund Project: the Ministry of Science and Technology of China 2016YFE0118700The project was supported by the National Natural Science Foundation of China (21573010, 21821004) and the Ministry of Science and Technology of China (2016YFE0118700)the National Natural Science Foundation of China 21573010the National Natural Science Foundation of China 21821004

  • "Unprotected" metal and alloy nanoclusters prepared using the alkaline-ethylene glycol method (AEGM), stabilized by adsorbed solvent molecules and simple ions, have been widely applied in the development of high-performance heterogeneous catalysts and the exploration of the effects of metal particle size and composition, surface ligands of support, and modifiers on the catalytic properties of heterogeneous catalysts. The formation process and mechanism of such unprotected metal nanoclusters need to be further investigated. In this study, the formation process and mechanism of unprotected Pt and Ru nanoclusters prepared with AEGM were investigated by in situ quick X-ray absorption fine spectroscopy (QXAFS), in situ ultraviolet-visible (UV-Vis) absorption spectroscopy, transmission electron microscopy, and dynamic light scattering. It was discovered that during the formation of unprotected Pt nanoclusters, a portion of Pt(Ⅳ) species was reduced to Pt(Ⅱ) species at room temperature. With increasing temperature, Cl- coordinated to Pt ions was gradually replaced with OH- to form intermediate platinum complexes, which further condensated to form colloidal nanoparticles. Obvious scattering signals of the colloidal nanoparticles could be observed in the UV-Vis absorption spectra of the reaction system before the formation of Pt-Pt bonds, as revealed by QXAFS measurements. In situ QXAFS analysis revealed that Pt nanoclusters were derived from the reduction of Pt oxide nanoparticles. The average particle size of the nanoparticles obtained by heating the reaction mixture for 15 min at 80 ℃ was 3.7 nm. High resolution transmission electron microscopy (HRTEM) images showed that the spacing between the crystal planes of the nanoparticles was 0.249 nm, indicating that the intermediate nanoparticles were platinum oxide. As the reaction proceeded, the average size of the nanoparticles decreased to 2.4 nm, and two types of nanoparticles were observed having different contrasts, corresponding to Pt metal nanoclusters standing on the intermediate metal oxide nanoparticles as confirmed by HRTEM images. When the reaction time was further extended, the average size of nanoparticles decreased to 1.4 nm, and the observed lattice spacing of the nanoparticles was the same as that of Pt(111) crystal plane at 0.227 nm, indicating that the final products were Pt metal nanoclusters. In general, when metal oxides are reduced to metal nanoclusters, the density of the nanoparticles will increase, whereas the volume will decrease. Moreover, as shown in this study, the formation of multiple small metal nanoclusters standing on one metal oxide nanoparticle was also observed in TEM photographs. Thus, compared with the size of the initial nanoparticles, the average size of the final metal nanoclusters was significantly reduced. On the other hand, during the formation of unprotected Ru metal nanoclusters, Cl- in RuCl3 was first replaced with OH- to form Ru(OH)63-, which further condensated to form Ru oxide nanoparticles, and unprotected Ru metal nanoclusters were derived from the reduction of Ru oxide nanoparticles by ethylene glycol. Because of the formation of intermediate metal oxide nanoparticles in the reaction process, the subsequent rapid reduction reaction was confined to the nanoparticles, resulting in unprotected metal nanoclusters having a small size and narrow particle size distribution. This study is of significance to the development of high-performance energy conversion catalysts, fine chemical synthesis catalysts, sensors, and other functional systems.
  • 加载中
    1. [1]

      Yu, W.; Tu, W.; Liu, H. Langmuir 1999, 15 (1), 6. doi: 10.1021/la9806505  doi: 10.1021/la9806505

    2. [2]

      Yi, L. L.; Guo, H. G.; Tang, H. D. Ind. Catal. 2003, 11 (12), 45.  doi: 10.3969/j.issn.1008-1143.2003.12.011

    3. [3]

      Yang, H. P.; Zhu, Y. F. Biosens. Bioelectron. 2007, 22 (12), 2989. doi: 10. 1016/j.bios.2006.12.019  doi: 10.1016/j.bios.2006.12.019

    4. [4]

      Chen, C. Y.; Chen, F.; Zhang, L.; Pan, S. X.; Bian, C. Q.; Zheng, X. M.; Meng, X. J.; Xiao, F. S. Chem. Commun. 2015, 51 (27), 5936. doi: 10.1039/C4CC09383F  doi: 10.1039/C4CC09383F

    5. [5]

      Wang, X. M.; Ma, W. G.; Xu, Z. Q.; Wang, H.; Fan, W. J.; Zong, X.; Li, C. Nano Energy 2018, 48, 500. doi: 10.1016/j.nanoen.2018.04.011  doi: 10.1016/j.nanoen.2018.04.011

    6. [6]

      Wang, S. Y.; Gao, Y. Y.; Miao, S.; Liu, T. F.; Mu, L. C.; Li, R. G.; Fan, F. T.; Li, C. J. Am. Chem. Soc. 2017, 139 (34), 11771. doi: 10.1021/jacs.7b04470  doi: 10.1021/jacs.7b04470

    7. [7]

      Hao, J.; Cui, Z. M.; Cao, C. Y. Chem. Phys. Lett. 2016, 658, 88. doi: 10.1016/j.cplett.2016.06.027  doi: 10.1016/j.cplett.2016.06.027

    8. [8]

      Tang, Y. Q.; Xu, R. R.; Guo, G. L.; Yu, J. H.; Wang, Y.; Lai, L. H.; Wu, K. Chem. Bull. 2011, 74 (11), 970.  doi: 10.14159/j.cnki.0441-3776.2011.11.007

    9. [9]

      Wang, Y.; Ren, J. W.; Deng, K.; Gui, L. L.; Tang, Y. Q. Chem. Mater. 2000, 12 (6), 1622. doi: 10.1021/cm0000853  doi: 10.1021/cm0000853

    10. [10]

      Zuo, B. J.; Wang, Y.; Wang, Q. L.; Zhang, J. L.; Wu, N. Z.; Peng, L. D.; Gui, L. L.; Wang, X. D.; Wang, R. M.; Yu, D. P. J. Catal. 2004, 222 (2), 493. doi: 10.1016/j.jcat.2003.12.007  doi: 10.1016/j.jcat.2003.12.007

    11. [11]

      Zhang, J. L.; Wang, Y.; Ji, H.; Wei, Y. G.; Wu, N. Z.; Zuo, B. J.; Wang, Q. L. J. Catal. 2005, 229 (1), 114. doi: 10.1016/j.jcat.2004.09.029  doi: 10.1016/j.jcat.2004.09.029

    12. [12]

      Lian, C.; Liu, H. Q.; Xiao, C.; Yang, W.; Zhang, K.; Liu, Y.; Wang, Y. Chem. Commun. 2012, 48 (25), 3124. doi: 10.1039/c2cc16620h  doi: 10.1039/c2cc16620h

    13. [13]

      Yu, Y. L.; Huang, J.; Wang, Y. ChemCatChem 2018, 10 (21), 4863. doi:10.1002/cctc.201801346  doi: 10.1002/cctc.201801346

    14. [14]

      Dou, J.; Sheng, Y.; Choong, C.; Chen, L. W.; Zeng, H. C. Appl. Catal. B: Environ. 2017, 219, 580. doi: 10.1016/j.apcatb.2017.07.083  doi: 10.1016/j.apcatb.2017.07.083

    15. [15]

      Rioux, R. M.; Song, H.; Hoefelmeyer, J. D.; Yang, P.; Somorjai, G. A. J. Phys. Chem. B 2005, 109 (6), 2192. doi: 10.1021/jp048867x  doi: 10.1021/jp048867x

    16. [16]

      Song, H. J.; Rioux, R. M.; Hoefelmeyer, J. D.; Komor, R.; Niesz, K.; Grass, M.; Yang, P. D.; Somorjai, G. A. J. Am. Chem. Soc. 2006, 128 (9), 3027. doi: 10.1021/ja057383r  doi: 10.1021/ja057383r

    17. [17]

      Sulce, A.; Mitschke, N.; Azov, V.; Kunz, S. ChemCatChem 2019, 11 (11), 2732. doi: 10.1002/cctc.201900238  doi: 10.1002/cctc.201900238

    18. [18]

      Lian, C.; Zhang, K.; Wang, Y. Acta Phys. -Chim. Sin. 2017, 33 (5), 984.  doi: 10.3866/PKU.WHXB201702084

    19. [19]

      Li, W. Z.; Liang, C. H.; Zhou, W. J.; Qiu, J. S.; Zhou, Z. H.; Sun, G. Q.; Xin, Q. J. Phys. Chem. B 2003, 107 (26), 6292. doi: 10.1021/jp022505c  doi: 10.1021/jp022505c

    20. [20]

      Zhou, W. J.; Zhou, Z. H.; Song, S. Q.; Li, W. Z.; Sun, G. Q.; Tsiakaras, P.; Xin, Q. Appl. Catal. B: Environ. 2003, 46, 273. doi: 10.1016/S0926-3373(03)00218-2  doi: 10.1016/S0926-3373(03)00218-2

    21. [21]

      Zhou, Z. H.; Wang, S. L.; Zhou, W. J.; Wang, G. X.; Jiang, L. H.; Li, W. Z.; Song, S. Q.; Liu, J. G.; Sun, G. Q.; Xin, Q. Chem. Commun. 2003, 3, 394. doi: 10.1039/b211075j  doi: 10.1039/b211075j

    22. [22]

      Mu, Y. Y.; Liang, H. P.; Hu, J. S.; Jiang, L.; Wan, L. J. J. Phys. Chem. B 2005, 109 (47), 22212. doi: 10.1021/jp0555448  doi: 10.1021/jp0555448

    23. [23]

      Mao, S.; Mao, G. Supported nanoparticle catalyst. US 6686308 B2, 2004-02-03.

    24. [24]

      Zhu, C. M.; Gao, A.; Wang, Y.; Liu, Y. Chem. Commun. 2014, 50 (90), 13889. doi: 10.1039/c4cc02391a  doi: 10.1039/c4cc02391a

    25. [25]

      Liu, Y.; Chen, L. F.; Cheng, T.; Guo, H. Y.; Sun, B.; Wang, Y. J. Power Sources 2018, 395, 66. doi: 10.1016/j.jpowsour.2018.05.055  doi: 10.1016/j.jpowsour.2018.05.055

    26. [26]

      Zhang, L. W.; Gao, A.; Liu, Y.; Wang, Y.; Ma, J. T. Electrochim. Acta 2014, 132, 416. doi: 10.1016/j.electacta.2014.03.180  doi: 10.1016/j.electacta.2014.03.180

    27. [27]

      Liu, J.; Yin, J.; Feng, B.; Li, F.; Wang, F. Appl. Surf. Sci. 2019, 473, 318. doi: 10.1016/j.apsusc.2018.12.072  doi: 10.1016/j.apsusc.2018.12.072

    28. [28]

      Cha, B. C.; Jun, S. H.; Jeong, B.; Ezazi, M.; Kwon, G.; Kim, D.; Lee, D. H. J. Power Sources 2018, 401, 296. doi: 10.1016/j.jpowsour.2018.09.001  doi: 10.1016/j.jpowsour.2018.09.001

    29. [29]

      Liang, H. P.; Jones, T. G. J.; Lawrence, N. S.; Jiang, L.; Barnard, J. S. J. Phys. Chem. C 2008, 112 (11), 4327. doi: 10.1021/jp7100804  doi: 10.1021/jp7100804

    30. [30]

      Garsany, Y.; Epshteyn, A.; Purdy, A. P.; More, K. L.; Swider-Lyons, K. E. J. Phys. Chem. Lett. 2010, 1 (13), 1977. doi: 10.1021/jz100681g  doi: 10.1021/jz100681g

    31. [31]

      You, D. J.; Kwon, K.; Joo, S. H.; Kim, J. H.; Kim, J. M.; Pak, C.; Chang, H. Int. J. Hydrogen Energy 2013, 38 (5), 2455. doi: 10.1016/j.ijhydene.2012.11.079  doi: 10.1016/j.ijhydene.2012.11.079

    32. [32]

      Li, F. J.; Tang, D. M.; Jian, Z. L.; Liu, D. Q.; Golberg, D.; Yamada, A.; Zhou, H. S. Adv. Mater. 2014, 26 (27), 4659. doi: 10.1002/adma.201400162  doi: 10.1002/adma.201400162

    33. [33]

      Zheng, N.; Zhu, C. M.; Sun, B.; Shi, Z. J.; Liu, Y.; Wang, Y. Acta Phys. -Chim. Sin. 2012, 28 (10), 2263.  doi: 10.3866/PKU.WHXB201208171

    34. [34]

      He, B.; Chen, Y.; Liu, H.; Liu, Y. J. Nanosci. Nanotechnol. 2005, 5 (2), 266. doi: 10.1166/jnn.2005.028  doi: 10.1166/jnn.2005.028

    35. [35]

      Hwang, B. J.; Sarma, L. S.; Chen, C. H.; Bock, C.; Lai, F.J.; Chang, S. H.; Yen, S. C.; Liu, D. G.; Sheu, H. S.; Lee, J. F. J. Phys. Chem. C 2008, 112 (50), 19922. doi: 10.1021/jp807154a  doi: 10.1021/jp807154a

    36. [36]

      Sarma, L. S.; Chen, C. H.; Kumar, S. M. S.; Wang, G. R.; Yen, S. C.; Liu, D. G.; Sheu, H. S.; Yu, K. L.; Tang, M. T.; Lee, J. F.; et al. Langmuir 2007, 23 (10), 5802. doi: 10.1021/la0637418  doi: 10.1021/la0637418

    37. [37]

      Harada, M.; Kamigaito, Y. Langmuir 2012, 28 (5), 2415. doi: 10.1021/la204031j  doi: 10.1021/la204031j

    38. [38]

      Steinfeldt, N. Langmuir 2012, 28 (36), 13072. doi: 10.1021/la3026232  doi: 10.1021/la3026232

  • 加载中
    1. [1]

      Xiaxue Chen Yuxuan Yang Ruolin Yang Yizhu Wang Hongyun Liu . Adjustable Polychromatic Fluorescence: Investigating the Photoluminescent Properties of Copper Nanoclusters. University Chemistry, 2024, 39(9): 328-337. doi: 10.3866/PKU.DXHX202308019

    2. [2]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    3. [3]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    4. [4]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    5. [5]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    6. [6]

      Huan LIShengyan WANGLong ZhangYue CAOXiaohan YANGZiliang WANGWenjuan ZHUWenlei ZHUYang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088

    7. [7]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    8. [8]

      Qin Hou Jiayi Hou Aiju Shi Xingliang Xu Yuanhong Zhang Yijing Li Juying Hou Yanfang Wang . Preparation of Cuprous Iodide Coordination Polymer and Fluorescent Detection of Nitrite: A Comprehensive Chemical Design Experiment. University Chemistry, 2024, 39(8): 221-229. doi: 10.3866/PKU.DXHX202312056

    9. [9]

      Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023

    10. [10]

      Gaofeng Zeng Shuyu Liu Manle Jiang Yu Wang Ping Xu Lei Wang . Micro/Nanorobots for Pollution Detection and Toxic Removal. University Chemistry, 2024, 39(9): 229-234. doi: 10.12461/PKU.DXHX202311055

    11. [11]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    12. [12]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    13. [13]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    14. [14]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    15. [15]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    16. [16]

      Weihan Zhang Menglu Wang Ankang Jia Wei Deng Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043

    17. [17]

      Haiyu Nie Chenhui Zhang Fengpei Du . Ideological and Political Design for the Preparation, Characterization and Particle Size Control Experiment of Nanoemulsion. University Chemistry, 2024, 39(2): 41-46. doi: 10.3866/PKU.DXHX202306055

    18. [18]

      Yongming Guo Jie Li Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057

    19. [19]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    20. [20]

      Zhengli Hu Jia Wang Yi-Lun Ying Shaochuang Liu Hui Ma Wenwei Zhang Jianrong Zhang Yi-Tao Long . Exploration of Ideological and Political Elements in the Development History of Nanopore Electrochemistry. University Chemistry, 2024, 39(8): 344-350. doi: 10.3866/PKU.DXHX202401072

Metrics
  • PDF Downloads(8)
  • Abstract views(186)
  • HTML views(21)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return