Citation: Wang Liang, Zhu Chenglu, Yin Lisha, Huang Wei. Construction of Pt-M (M = Co, Ni, Fe)/g-C3N4 Composites for Highly Efficient Photocatalytic H2 Generation[J]. Acta Physico-Chimica Sinica, ;2020, 36(7): 190700. doi: 10.3866/PKU.WHXB201907001 shu

Construction of Pt-M (M = Co, Ni, Fe)/g-C3N4 Composites for Highly Efficient Photocatalytic H2 Generation

  • Corresponding author: Yin Lisha, iamlsyin@njtech.edu.cn
  • Received Date: 1 July 2019
    Revised Date: 26 August 2019
    Available Online: 5 September 2019

    Fund Project: The project was supported by the Jiangsu Provincial Natural Science Foundation, China (BK20160987)the Jiangsu Provincial Natural Science Foundation, China BK20160987

  • Platinum (Pt) is recognized as an excellent cocatalyst which not only suppresses the charge carrier recombination of the photocatalyst but also reduces the overpotential for photocatalytic H2 generation. Albeit of its good performance, the high cost and low abundance restricted the utilization of Pt in large-scale photocatalytic H2 generation. Pt based transition metal alloys are demonstrated to reveal enhanced activities towards various catalytic reactions, suggesting the possibility to substitute Pt as the cocatalyst. In the present work, Pt was partially substituted with Co, Ni, and Fe and Pt-M (M = Co, Ni, and Fe)/g-C3N4 composites were constructed through co-reduction of H2PtCl6 and transition metal salts by the reductant of ethylene glycol. The crystal structure and valence states were measured by X-ray diffractometer (XRD) and X-ray photoelectron spectrometer (XPS), respectively. The higher degree of XRD peaks and larger binding energies for Pt 4f5/2 and Pt 4f7/2 after incorporating Co2+ ions indicated that Co was successfully introduced into the lattice of Pt and Pt-Co bimetallic alloys was attained through the solvothermal treatment. The morphology was subsequently observed by transmission electron microscope (TEM), which showed a good dispersion of Pt-Co nanoparticles on the surface of g-C3N4. Meanwhile, the shrinkage of lattice fringe after introducing cobalt salt further confirmed the presence of Pt-Co bimetallic alloys. The UV-Vis absorption spectra of g-C3N4 and Pt, Pt-Co deposited g-C3N4 were subsequently performed. It was found that the absorption edges were all consistent for all three samples as anticipated, implying that the band gap energy was maintained after hybridizing with Pt or Pt-Co alloys. Furthermore, the photocatalytic H2 generation was carried out over the as-prepared composites with triethanolamine (TEOA) as sacrificial reagent. Under visible-light illumination, the1% (w) Pt2.5M/g-C3N4 (M = Co, Fe, Ni) composites all exhibited higher or comparable activity towards photocatalytic H2 generation when compared to 1% (w) Pt loaded counterpart. In addition, the atomic ratios of Pt/Co and the loading amount of Pt-Co cocatalyst were modified to optimize the photocatalytic performance, among which, 1% (w) Pt2.5Co/g-C3N4 composite revealed the highest activity with a 1.6-time enhancement. Electrochemical impedance spectra (EIS) and photoluminescence (PL) spectra indicated that the enhancement might be attributed to improved charge transfer from g-C3N4 to Pt2.5Co cocatalyst and inhibited charge carrier recombination in the presence of Pt2.5Co cocatalyst. Therefore, the present study demonstrates the great potential to partially replace Pt with low-cost and abundant transition metals and to fabricate Pt based bimetallic alloys as promising cocatalysts for highly efficient photocatalytic H2 generation.
  • 加载中
    1. [1]

      Cao, S.; Low, J.; Yu, J.; Jaroniec, M. Adv. Mater. 2015, 27, 2150. doi: 10.1002/adma.201500033  doi: 10.1002/adma.201500033

    2. [2]

      Ong, W. J.; Tan, L. L.; Ng, Y. H.; Yong, S. T.; Chai, S. P. Chem. Rev. 2016, 116, 7159. doi: 10.1021/acs.chemrev.6b00075  doi: 10.1021/acs.chemrev.6b00075

    3. [3]

      Wang, X.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.; Carlsson, J. M.; Domen, K.; Antonietti, M. Nat. Mater. 2009, 8, 76. doi: 10.1038/nmat2317  doi: 10.1038/nmat2317

    4. [4]

      Huang, P.; Huang, J.; Pantovich, S. A.; Carl, A. D.; Fenton, T. G.; Caputo, C. A.; Grimm, R. L.; Frenkel, A. I.; Li, G. J. Am. Chem. Soc. 2018, 140, 16042. doi: 10.1021/jacs.8b10380  doi: 10.1021/jacs.8b10380

    5. [5]

      Li, J.; Wu, D.; Iocozzia, J.; Du, H.; Liu, X.; Yuan, Y.; Zhou, W.; Li, Z.; Xue, Z.; Lin, Z. Angew. Chem. Int. Ed. 2019, 58, 1985. doi: 10.1002/anie.201813117  doi: 10.1002/anie.201813117

    6. [6]

      Zhou, Z.; Zhang, Y.; Shen, Y.; Liu, S.; Zhang, Y. Chem. Soc. Rev. 2018, 47, 2298. doi: 10.1039/c7cs00840f  doi: 10.1039/c7cs00840f

    7. [7]

      Xiao, Y.; Tian, G.; Li, W.; Xie, Y.; Jiang, B.; Tian, C.; Zhao, D.; Fu, H. J. Am. Chem. Soc. 2019, 141, 2508. doi: 10.1021/jacs.8b12428  doi: 10.1021/jacs.8b12428

    8. [8]

      Zou, X.; Zhang, Y. Chem. Soc. Rev. 2015, 44, 5148. doi: 10.1039/c4cs00448e  doi: 10.1039/c4cs00448e

    9. [9]

      Toshima, N.; Yonezawa, T. New J. Chem. 1998, 22, 1179. doi: 10.1039/a805753b  doi: 10.1039/a805753b

    10. [10]

      Han, M. R.; Zhou, Y. A.; Zhou, X.; Chu, W. Acta Phys. -Chim. Sin. 2019, 35, 850.  doi: 10.3866/PKU.WHXB201811040

    11. [11]

      Di, Y.; Wang, X.; Thomas, A.; Antonietti, M. ChemCatChem 2010, 2, 834. doi: 10.1002/cctc.201000057  doi: 10.1002/cctc.201000057

    12. [12]

      Li, X. H.; Antonietti, M. Chem. Soc. Rev. 2013, 42, 6593. doi: 10.1039/c3cs60067j  doi: 10.1039/c3cs60067j

    13. [13]

      Li, X.; Bi, W.; Zhang, L.; Tao, S.; Chu, W.; Zhang, Q.; Luo, Y.; Wu, C.; Xie, Y. Adv. Mater. 2016, 28, 2427. doi: 10.1002/adma.201505281  doi: 10.1002/adma.201505281

    14. [14]

      Yuan, Y. P.; Ruan, L. W.; Barber, J.; Loo, S. C. J.; Xue, C. Energy Environ. Sci. 2014, 7, 3934. doi: 10.1039/c4ee02914c  doi: 10.1039/c4ee02914c

    15. [15]

      Morales Guio, C. G.; Stern, L. A.; Hu, X. Chem. Soc. Rev. 2014, 43, 6555. doi: 10.1039/c3cs60468c  doi: 10.1039/c3cs60468c

    16. [16]

      Kudo, A.; Miseki, Y. Chem. Soc. Rev. 2009, 38, 253. doi: 10.1039/b800489g  doi: 10.1039/b800489g

    17. [17]

      Yang, J.; Wang, D.; Han, H.; Li, C. Acc. Chem. Res. 2013, 46, 1900. doi: 10.1021/ar300227e  doi: 10.1021/ar300227e

    18. [18]

      Yu, J.; Qi, L.; Jaroniec, M. J. Phys. Chem. C 2010, 114, 13118. doi: 10.1021/jp104488b  doi: 10.1021/jp104488b

    19. [19]

      Wang, Y.; Wang, Y.; Xu, R. J. Phys. Chem. C 2013, 117, 783. doi: 10.1021/jp309603c  doi: 10.1021/jp309603c

    20. [20]

      Maeda, K.; Wang, X.; Nishihara, Y.; Lu, D.; Antonietti, M.; Domen, K. J. Phys. Chem. C 2009, 113, 4940. doi: 10.1021/jp809119m  doi: 10.1021/jp809119m

    21. [21]

      Zeb Gul Sial, M. A.; Ud Din, M. A.; Wang, X. Chem. Soc. Rev. 2018, 47, 6175. doi: 10.1039/c8cs00113h  doi: 10.1039/c8cs00113h

    22. [22]

      Wu, J.; Zhang, J.; Peng, Z.; Yang, S.; Wagner, F. T.; Yang, H. J. Am. Chem. Soc. 2010, 132, 4984. doi: 10.1021/ja100571h  doi: 10.1021/ja100571h

    23. [23]

      Murthi, V. S.; Urian, R. C.; Mukerjee, S. J. Phys. Chem. B 2004, 108, 11011. doi: 10.1021/jp048985k  doi: 10.1021/jp048985k

    24. [24]

      Stamenkovic, V.; Schmidt, T. J.; Ross, P. N.; Markovic, N. M. J. Phys. Chem. B 2002, 106, 11970. doi: 10.1021/jp021182h  doi: 10.1021/jp021182h

    25. [25]

      Travitsky, N.; Ripenbein, T.; Golodnitsky, D.; Rosenberg, Y.; Burshtein, L.; Peled, E. J. Power Sources 2006, 161, 782. doi: 10.1016/j.jpowsour.2006.05.035  doi: 10.1016/j.jpowsour.2006.05.035

    26. [26]

      Huang, S.; He, Q.; Zai, J.; Wang, M.; Li, X.; Li, B.; Qian, X. Chem. Commun. 2015, 51, 8950. doi: 10.1039/c5cc02584b  doi: 10.1039/c5cc02584b

    27. [27]

      Yin, L.; Yuan, Y. P.; Cao, S. W.; Zhang, Z.; Xue, C. RSC Adv. 2014, 4, 6127. doi: 10.1039/c3ra46362a  doi: 10.1039/c3ra46362a

    28. [28]

      Hu, Z.; Yu, J. C. J. Mater. Chem. A 2013, 1, 12221. doi: 10.1039/c3ta12407j  doi: 10.1039/c3ta12407j

    29. [29]

      Zhao, H.; Dong, J.; Xing, S.; Li, Y.; Shen, J.; Xu, J. Int. J. Hydrogen Energy 2011, 36, 9551. doi: 10.1016/j.ijhydene.2011.05.015  doi: 10.1016/j.ijhydene.2011.05.015

    30. [30]

      Han, C.; Lu, Y.; Zhang, J.; Ge, L.; Li, Y.; Chen, C.; Xin, Y.; Wu, L.; Fang, S. J. Mater. Chem. A 2015, 3, 23274. doi: 10.1039/c5ta05370f  doi: 10.1039/c5ta05370f

    31. [31]

      Chang, F.; Shan, S.; Petkov, V.; Skeete, Z.; Lu, A.; Ravid, J.; Wu, J.; Luo, J.; Yu, G.; Ren, Y.; Zhong, C. J. Am. Chem. Soc. 2016, 138, 12166. doi: 10.1021/jacs.6b05187  doi: 10.1021/jacs.6b05187

    32. [32]

      Chen, H.; Wang, D.; Yu, Y.; Newton, K. A.; Muller, D. A.; Abruña, H.; DiSalvo, F. J. J. Am. Chem. Soc. 2012, 134, 18453. doi: 10.1021/ja308674b  doi: 10.1021/ja308674b

    33. [33]

      Choi, S. I.; Lee, S. U.; Kim, W. Y.; Choi, R.; Hong, K.; Nam, K. M.; Han, S. W.; Park, J. T. ACS Appl. Mater. Interf. 2012, 4, 6228. doi: 10.1021/am301824w  doi: 10.1021/am301824w

    34. [34]

      Wakisaka, M.; Mitsui, S.; Hirose, Y.; Kawashima, K.; Uchida, H.; Watanabe, M. J. Phys. Chem. B 2006, 110, 23489. doi: 10.1021/jp0653510  doi: 10.1021/jp0653510

    35. [35]

      Li, Y. H.; Xing, J.; Chen, Z. J.; Li, Z.; Tian, F.; Zheng, L. R.; Wang, H. F.; Hu, P.; Zhao, H. J.; Yang, H. G. Nat. Commun. 2013, 4, 2500. doi: 10.1038/ncomms3500  doi: 10.1038/ncomms3500

    36. [36]

      Greeley, J.; Mavrikakis, M. Nat. Mater. 2004, 3, 810. doi: 10.1038/nmat1223  doi: 10.1038/nmat1223

  • 加载中
    1. [1]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    2. [2]

      Jianyu Qin Yuejiao An Yanfeng ZhangIn Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-. doi: 10.3866/PKU.WHXB202408002

    3. [3]

      Liang DongJingkuo QuTuo ZhangGuanghui ZhuNingning MaChang ZhaoYi YuanXiangjiu GuanLiejin Guo . MOF-derived NiCo bimetallic cocatalyst for enhanced photocatalytic overall water splitting. Chinese Chemical Letters, 2025, 36(3): 110397-. doi: 10.1016/j.cclet.2024.110397

    4. [4]

      Kai Han Guohui Dong Ishaaq Saeed Tingting Dong Chenyang Xiao . Morphology and photocatalytic tetracycline degradation of g-C3N4 optimized by the coal gangue. Chinese Journal of Structural Chemistry, 2024, 43(2): 100208-100208. doi: 10.1016/j.cjsc.2023.100208

    5. [5]

      Hualin JiangWenxi YeHuitao ZhenXubiao LuoVyacheslav FominskiLong YePinghua Chen . Novel 3D-on-2D g-C3N4/AgI.x.y heterojunction photocatalyst for simultaneous and stoichiometric production of H2 and H2O2 from water splitting under visible light. Chinese Chemical Letters, 2025, 36(2): 109984-. doi: 10.1016/j.cclet.2024.109984

    6. [6]

      Guixu Pan Zhiling Xia Ning Wang Hejia Sun Zhaoqi Guo Yunfeng Li Xin Li . Preparation of high-efficient donor-π-acceptor system with crystalline g-C3N4 as charge transfer module for enhanced photocatalytic hydrogen evolution. Chinese Journal of Structural Chemistry, 2024, 43(12): 100463-100463. doi: 10.1016/j.cjsc.2024.100463

    7. [7]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    8. [8]

      Yanghanbin Zhang Dongxiao Wen Wei Sun Jiahe Peng Dezhong Yu Xin Li Yang Qu Jizhou Jiang . State-of-the-art evolution of g-C3N4-based photocatalytic applications: A critical review. Chinese Journal of Structural Chemistry, 2024, 43(12): 100469-100469. doi: 10.1016/j.cjsc.2024.100469

    9. [9]

      Yingqi BAIHua ZHAOHuipeng LIXinran RENJun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259

    10. [10]

      Wenda WANGJinku MAYuzhu WEIShuaishuai MA . Waste biomass-derived carbon modified porous graphite carbon nitride heterojunction for efficient photodegradation of oxytetracycline in seawater. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 809-822. doi: 10.11862/CJIC.20230353

    11. [11]

      Deqi FanYicheng TangYemei LiaoYan MiYi LuXiaofei Yang . Two birds with one stone: Functionalized wood composites for efficient photocatalytic hydrogen production and solar water evaporation. Chinese Chemical Letters, 2024, 35(9): 109441-. doi: 10.1016/j.cclet.2023.109441

    12. [12]

      Wenjing XiongYulin XuFangzhou ZhaoBaokai XiaHongqiang WangWei LiuSheng ChenYongzhi Zhang . Graphene architecture interpenetrated with mesoporous carbon nanosheets promotes fast and stable potassium storage. Chinese Chemical Letters, 2025, 36(4): 109738-. doi: 10.1016/j.cclet.2024.109738

    13. [13]

      Liang Ma Zhou Li Zhiqiang Jiang Xiaofeng Wu Shixin Chang Sónia A. C. Carabineiro Kangle Lv . Effect of precursors on the structure and photocatalytic performance of g-C3N4 for NO oxidation and CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100416-100416. doi: 10.1016/j.cjsc.2024.100416

    14. [14]

      Zhi Zhu Xiaohan Xing Qi Qi Wenjing Shen Hongyue Wu Dongyi Li Binrong Li Jialin Liang Xu Tang Jun Zhao Hongping Li Pengwei Huo . Fabrication of graphene modified CeO2/g-C3N4 heterostructures for photocatalytic degradation of organic pollutants. Chinese Journal of Structural Chemistry, 2023, 42(12): 100194-100194. doi: 10.1016/j.cjsc.2023.100194

    15. [15]

      Qingwang LIU . MoS2/Ag/g-C3N4 Z-scheme heterojunction: Preparation and photocatalytic performance. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 821-832. doi: 10.11862/CJIC.20240148

    16. [16]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    17. [17]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    18. [18]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    19. [19]

      Xin JiangHan JiangYimin TangHuizhu ZhangLibin YangXiuwen WangBing Zhao . g-C3N4/TiO2-X heterojunction with high-efficiency carrier separation and multiple charge transfer paths for ultrasensitive SERS sensing. Chinese Chemical Letters, 2024, 35(10): 109415-. doi: 10.1016/j.cclet.2023.109415

    20. [20]

      Fei ZHOUXiaolin JIA . Co3O4/TiO2 composite photocatalyst: Preparation and synergistic degradation performance of toluene. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2232-2240. doi: 10.11862/CJIC.20240236

Metrics
  • PDF Downloads(27)
  • Abstract views(757)
  • HTML views(98)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return