Citation: Zhou Wei, Guo Jun-Kang, Shen Sheng, Pan Jinbo, Tang Jie, Chen Lang, Au Chak-Tong, Yin Shuang-Feng. Progress in Photoelectrocatalytic Reduction of Carbon Dioxide[J]. Acta Physico-Chimica Sinica, ;2020, 36(3): 190604. doi: 10.3866/PKU.WHXB201906048 shu

Progress in Photoelectrocatalytic Reduction of Carbon Dioxide

  • Corresponding author: Yin Shuang-Feng, sf_yin@hnu.edu.cn
  • Received Date: 13 June 2019
    Revised Date: 30 July 2019
    Accepted Date: 13 August 2019
    Available Online: 19 March 2019

    Fund Project: Hunan Provincial Innovation Foundation for Postgraduate, China CX2018B193the National Natural Science Foundation of China 21476065the National Natural Science Foundation of China 21725602the National Natural Science Foundation of China 21671062This project was financially supported by the National Natural Science Foundation of China (21725602, 21476065, 21671062, 21776064), Innovative Research Groups of Hunan Province, China (2019JJ10001), Hunan Provincial Innovation Foundation for Postgraduate, China (CX2018B193)Innovative Research Groups of Hunan Province, China 2019JJ10001the National Natural Science Foundation of China 21776064

  • Carbon dioxide is the most common compound. As a potential source of carbon, it can be used to prepare a variety of high value-added chemicals, such as carbon monoxide, methane, methanol, and formic acid. The traditional method of thermal catalytic conversion of CO2 requires high energy consumption and harsh reaction conditions. Therefore, the efficient conversion of CO2 to value-added chemicals under mild conditions has long been an area of great interest in the field of catalysis. Photocatalysis usually takes place under mild reaction conditions and is environmentally friendly. However, pure photocatalytic reactions generally have a limited solar energy utilization efficiency and low separation efficiency of photogenerated charge carriers. In view of the above problems, the introduction of electrocatalysis on the basis of photocatalysis can improve the charge separation efficiency. At a lower overpotential, multi-electrons and protons can be transferred to CO2, thus improving the catalytic reaction efficiency. Photoelectrochemical catalysis combines the advantages of photocatalysis and electrocatalysis to improve the efficiency of the catalytic reduction of CO2, offering a new method for the clean utilization of CO2. According to the principle of photocatalysis, the absorption capacity of a semiconductor is governed by its band structure. Optimization of the band structure is a major strategy to enhance the absorptivity of photocatalysts. In addition, the loading of light-absorbent materials on photocatalysts is an effective way to enhance the photocatalytic absorption of a photocatalytic system. During photoelectrocatalytic CO2 reduction, numerous photogenerated charge carriers recombine in bulk and on the surface of the catalyst, greatly reducing the efficiency of the catalytic reaction. Therefore, increasing the separation efficiency of charge carriers is an important means to improve the photoelectrocatalytic efficiency. In photoelectrocatalytic CO2 reduction, heterojunction construction and electric field formation often lead to the efficient separation of charge carriers. The interfacial reaction is a crucial step in the photoelectrocatalytic process. After generation, the photogenerated charge carriers need to migrate to the surface of the catalyst to participate in the redox reaction. In photoelectrocatalytic CO2 reduction, electrons participate in the reduction of CO2, while holes participate in the oxidation of water. Studies show that acceleration of the interfacial reaction process is of paramount importance for improving the efficiency of the photoelectrocatalytic reduction of CO2. This review summarizes the basic enhancement strategies of photoelectrocatalytic CO2 reduction from three aspects: light absorption, charge separation, and surface reaction, based on the basic mechanism of the reduction. The future prospects and research areas are also proposed.
  • 加载中
    1. [1]

      Wang, W.; Wang, S.; Ma, X.; Gong, J. L. Chem. Soc. Rev. 2011, 40, 3703. doi: 10.1039/C1CS15008A  doi: 10.1039/C1CS15008A

    2. [2]

      Halmann, M. Nature 1978, 275, 115. doi: 10.1038/275115a0  doi: 10.1038/275115a0

    3. [3]

      Gonell, F.; Puga, A. V.; Julián-López, B.; García, H.; Corma, A. Appl. Catal. B-Environ. 2016, 180, 263. doi: 10.1016/j.apcatb.2015.06.019  doi: 10.1016/j.apcatb.2015.06.019

    4. [4]

      Zong, X.; Sun, C.; Yu, H.; Chen, Z. G.; Xing, Z.; Ye, D.; Lu, G. Q.; Li, X.; Wang, L. J. Phys. Chem. C 2013, 117, 4937. doi: 10.1021/jp311729b  doi: 10.1021/jp311729b

    5. [5]

      Handoko, A. D.; Tang, J. Int. J. Hydrog. Energy 2013, 38, 13017. doi: 10.1016/j.ijhydene.2013.03.128  doi: 10.1016/j.ijhydene.2013.03.128

    6. [6]

      Chen, X. Y.; Zhou, Y.; Liu, Q.; Li, Z.; Liu, J.; Zou, Z. ACS Appl. Mater. Inter. 2012, 4, 3372. doi: 10.1021/am300661s  doi: 10.1021/am300661s

    7. [7]

      Wang, S. B.; Wang, X. C. Appl. Catal. B-Environ. 2015, 162, 494. doi: 10.1016/j.apcatb.2014.07.026  doi: 10.1016/j.apcatb.2014.07.026

    8. [8]

      Barton, E. E.; Rampulla, D. M.; Bocarsly, A. B. J. Am. Chem. Soc. 2008, 130, 6342. doi: 10.1021/ja0776327  doi: 10.1021/ja0776327

    9. [9]

      Li, Q.; Zheng, M.; Zhong, M.; Ma, L.; Wang, F.; Ma, L.; Shen, W. Sci. Rep. 2016, 6, 29738. doi: 10.1038/srep29738  doi: 10.1038/srep29738

    10. [10]

      Sun, Z.; Yang, Z.; Liu, H.; Wang, H.; Wu, Z. Appl. Surf. Sci. 2014, 315, 360. doi: 10.1016/j.apsusc.2014.07.153  doi: 10.1016/j.apsusc.2014.07.153

    11. [11]

      Chen, X. Y.; Yu, T.; Gao, F.; Zhang, H. T.; Liu, L. F.; Wang, Y. M.; Li, Z. S.; Zou, Z. G.; Liu, J. M. Appl. Phys. Lett. 2007, 91, 022114. doi: 10.1063/1.2757132  doi: 10.1063/1.2757132

    12. [12]

      Zhou, P.; Yan, S. C.; Zou, Z. G. CrystEngComm 2015, 17, 992. doi: 10.1039/c4ce02198c  doi: 10.1039/c4ce02198c

    13. [13]

      Thaweesak, S.; Lyu, M.; Peerakiatkhajohn, P.; Butburee, T.; Luo, B.; Chen, H.; Wang, L. Appl. Catal. B-Environ. 2017, 202, 184. doi: 10.1016/j.apcatb.2016.09.022  doi: 10.1016/j.apcatb.2016.09.022

    14. [14]

      Wang, S. B.; Ding, Z. X.; Wang, X. C. Chem. Commun. 2015, 51, 1517. doi: 10.1039/c4cc07225a  doi: 10.1039/c4cc07225a

    15. [15]

      Wang, S. B.; Hou, Y. D.; Wang, X. C. ACS Appl. Mater. Inter. 2015, 7, 4327. doi: 10.1021/am508766s  doi: 10.1021/am508766s

    16. [16]

      Wang, S. B.; Wang, X. C. Angew. Chem. Int. Edit. 2016, 55, 2308. doi: 10.1002/anie.201507145  doi: 10.1002/anie.201507145

    17. [17]

      Qin, J.; Wang, S.; Wang, X. C. Appl. Catal. B-Environ. 2017, 209, 476. doi: 10.1016/j.apcatb.2017.03.018  doi: 10.1016/j.apcatb.2017.03.018

    18. [18]

      Wang, S. B.; Yao, W. S.; Lin, J. L.; Ding, Z. X.; Wang, X. C. Angew. Chem. Int. Edit. 2014, 53, 1034. doi: 10.1002/ange.201310957  doi: 10.1002/ange.201310957

    19. [19]

      Wang, X. C.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.; Carlsson, J. M.; Domen, K.; Antonietti, M. Nat. Mater. 2009, 8, 76. doi: 10.1142/9789814317665_0039  doi: 10.1142/9789814317665_0039

    20. [20]

      Ou, H. H.; Lin, L. H.; Zheng, Y.; Yang, P. J.; Fang, Y. X.; Wang, X. C. Adv. Mater. 2017, 29, 1700008. doi: 10.1002/adma.201700008  doi: 10.1002/adma.201700008

    21. [21]

      Qin, J. N.; Wang, S. B.; Ren, H.; Hou, Y. D.; Wang, X. C. Appl. Catal. B-Environ. 2015, 179, 1. doi: 10.1016/j.apcatb.2015.05.005  doi: 10.1016/j.apcatb.2015.05.005

    22. [22]

      García, A.; Fernandez-Blanco, C.; Herance, J. R.; Albero, J.; García, H. J. Mater. Chem. A 2017, 5, 16522. doi: 10.1039/c7ta04045h  doi: 10.1039/c7ta04045h

    23. [23]

      Wang, P. L.; Wang, S. C.; Wang, H. Q.; Wu, Z. B.; Wang, L. Z. Part. Part. Syst. Char. 2018, 35, 1700371. doi: 10.1002/ppsc.201700371  doi: 10.1002/ppsc.201700371

    24. [24]

      Zhang, N.; Long, R.; Gao, C.; Xiong, Y. J. Sci. Chin. Mater. 2018, 61, 771. doi: 10.1007/s40843-017-9151-y  doi: 10.1007/s40843-017-9151-y

    25. [25]

      Chang, X. X.; Wang, T.; Yang, P. P.; Zhang, G.; Gong, J. L. Adv. Mater. 2018, 31, 1804710. doi: 10.1002/adma.201804710  doi: 10.1002/adma.201804710

    26. [26]

      Castro, S.; Albo, J.; Irabien, A. ACS Sustain. Chem. Eng. 2018, 6, 15877. doi: 10.1021/acssuschemeng.8b03706  doi: 10.1021/acssuschemeng.8b03706

    27. [27]

      Pradhan, N.; Adhikari, S. D.; Nag, A.; Sarma, D. D. Angew. Chem. Int. Edit. 2016, 56, 7038. doi: 10.1002/anie.201611526  doi: 10.1002/anie.201611526

    28. [28]

      Linic, S. J.; Christopher, P.; Ingram, D. B. Nat. Mater. 2011, 10, 911. doi: 10.1038/nmat3151  doi: 10.1038/nmat3151

    29. [29]

      Gu, J.; Wuttig, A.; Krizan, J. W.; Hu, Y.; Detweiler, Z. M.; Cava, R. J.; Bocarsly, A. B. J. Phys. Chem. C 2013, 117, 12415. doi: 10.1021/jp402007z  doi: 10.1021/jp402007z

    30. [30]

      Xie, K.; Umezawa, N.; Zhang, N.; Reunchan, P.; Zhang, Y.; Ye, J. H. Energ. Environ. Sci. 2011, 4, 4211. doi: 10.1039/c1ee01594j  doi: 10.1039/c1ee01594j

    31. [31]

      Cuong, D. D; Lee, B; Choi, K. M; Ahn, H-S; Han, S. W; Lee, J. C. Phys. Rev. Lett. 2007, 98, 115503. doi: 10.1103/physrevlett.98.115503  doi: 10.1103/physrevlett.98.115503

    32. [32]

      Cordero, F. Phys. Rev. B 2007, 76, 172106. doi: 10.1103/physrevb.76.172106  doi: 10.1103/physrevb.76.172106

    33. [33]

      Cushing, S. K.; Li, J.; Meng, F.; Senty, T. R.; Suri, S.; Zhi, M. J.; Li, M.; Bristow, A. D.; Wu, N. Q. J. Am. Chem. Soc. 2012, 134, 15033. doi: 10.1021/ja305603t  doi: 10.1021/ja305603t

    34. [34]

      DuChene, J. S.; Tagliabue, G.; Welch, A. J.; Cheng, W. H.; Atwater, H. A. Nano Lett. 2018, 18, 2545. doi: 10.1021/acs.nanolett.8b00241  doi: 10.1021/acs.nanolett.8b00241

    35. [35]

      Hou, J. G.; Cheng, H. J.; Takeda, O.; Zhu, H. M. Angew. Chem. Int. Edit. 2015, 127, 8480. doi: 10.1002/ange.201502319  doi: 10.1002/ange.201502319

    36. [36]

      Kim, Y.; Creel, E. B.; Corson, E. R.; McCloskey, B. D.; Urban, J. J.; Kostecki, R. Adv. Energy Mater. 2018, 8, 1800363. doi: 10.1002/aenm.201800363  doi: 10.1002/aenm.201800363

    37. [37]

      Shen, Q.; Chen, Z. F.; Huang, X. F.; Liu, M. C.; Zhao, G. H. Environ. Sci. Technol. 2015, 49, 5828. doi: 10.1021/acs.est.5b00066  doi: 10.1021/acs.est.5b00066

    38. [38]

      Xu, Y. J.; Jia, Y. J.; Zhang, Y. Q.; Nie, R.; Zhu, Z. P.; Wang, J. G.; Jing, H. W. Appl. Catal. B-Environ. 2017, 205, 254. doi: 10.1016/j.apcatb.2016.12.039  doi: 10.1016/j.apcatb.2016.12.039

    39. [39]

      Song, Q. Q.; Li, J. Q.; Wang, L.; Qin, Y.; Pang, L. Y.; Liu, H. J. Catal. 2019, 370, 176. doi: 10.1016/j.jcat.2018.12.021  doi: 10.1016/j.jcat.2018.12.021

    40. [40]

      Li, A.; Wang, T.; Li, C. C.; Huang, Z. Q.; Luo, Z. B.; Gong, J. L. Angew. Chem. Int. Edit. 2018, 58, 3804. doi: 10.1002/anie.201812773  doi: 10.1002/anie.201812773

    41. [41]

      Xu, Q. L.; Zhang, L. Y.; Yu, J. G.; Wageh, S.; Al-Ghamdi, A. A.; Jaroniec, M. Mater. Today 2018, 21, 1042. doi: 10.1016/j.mattod.2018.04.008  doi: 10.1016/j.mattod.2018.04.008

    42. [42]

      Zheng, J. G.; Li, X. J.; Qin, Y. H.; Zhang, S. Q.; Sun, M. S.; Duan, X. G.; Sun, H. Q.; Li, P. Q.; Wang, S. B. J. Catal. 2019, 371, 214. doi: 10.1016/j.jcat.2019.01.022  doi: 10.1016/j.jcat.2019.01.022

    43. [43]

      Guzmán D. G.; Isaacs M.; Osorio-Román I; García, M.; Astudillo, J.; Ohlbaum, M. ACS Appl. Mater. Inter. 2015, 7, 19865. doi: 10.1021/acsami.5b05722  doi: 10.1021/acsami.5b05722

    44. [44]

      Zheng, J. G.; Hu, F. Y.; Han, E.; Pan, Z. B.; Zhang, S.; Li, Y.; Qin, P. G.; Wang, H.; Li, P. Q.; Yin, H. Z. Colloids Surfaces A. 2019, 575, 329. doi: 10.1016/j.colsurfa.2019.05.016  doi: 10.1016/j.colsurfa.2019.05.016

    45. [45]

      Cardoso, J. C.; Stulp, S.; de Brito, J. F.; Flor, J. B. S.; Frem, R. C. G.; Zanoni, M. V. B. Appl. Catal. B-Environ. 2018, 225, 563. doi: 10.1016/j.apcatb.2017.12.013  doi: 10.1016/j.apcatb.2017.12.013

    46. [46]

      Shen, Q.; Huang, X. F.; Liu, J. B.; Guo, C. Y.; Zhao, G. H. Appl. Catal. B-Environ. 2017, 201, 70. doi: 10.1016/j.apcatb.2016.08.008  doi: 10.1016/j.apcatb.2016.08.008

    47. [47]

      Huang, X. F.; Shen, Q.; Liu, J. B.; Yang, N. J.; Zhao, G. H. Energ. Environ. Sci. 2016, 9, 3161. doi: 10.1039/c6ee00968a  doi: 10.1039/c6ee00968a

    48. [48]

      Xiao, M.; Luo, B.; Wang, S. C.; Wang, L. Z. J. Energy Chem. 2018, 27, 1111. doi: 10.1016/j.jechem.2018.02.018  doi: 10.1016/j.jechem.2018.02.018

    49. [49]

      Suhadolnik, L.; Pohar, A.; Likozar, B.; Čeh, M. Chem. Eng. J. 2016, 303, 292. doi: 10.1016/j.cej.2016.06.027  doi: 10.1016/j.cej.2016.06.027

    50. [50]

      Sun, T.; Wang, Y.; Al-Mamun, M.; Zhang, H.; Liu, P.; Zhao, H. J. RSC Adv. 2015, 5, 12860. doi: 10.1039/c4ra15336g  doi: 10.1039/c4ra15336g

    51. [51]

      Yang, X.; Fugate, E. A.; Mueanngern, Y.; Baker, L. R. ACS Catal. 2017, 7, 177. doi: 10.1021/acscatal.6b02984  doi: 10.1021/acscatal.6b02984

    52. [52]

      Mora-Hernandez, J M; Huerta-Flores, A M; Torres-Martínez, L. M. J. CO2 Utiliz. 2018, 27, 179. doi: 10.1016/j.jcou.2018.07.014  doi: 10.1016/j.jcou.2018.07.014

    53. [53]

      Meng, X. C.; Zhang, Z. S. Catal. Today 2018, 315, 2. doi: 10.1016/j.cattod.2018.03.015  doi: 10.1016/j.cattod.2018.03.015

    54. [54]

      Hasan, M. R.; Hamid, S. B. A.; Basirun, W. J. Appl. Surf. Sci. 2015, 339, 22. doi: 10.1016/j.apsusc.2015.02.162  doi: 10.1016/j.apsusc.2015.02.162

    55. [55]

      Hasan, M. R.; Abd Hamid, S. B.; Basirun, W. J. RSC Adv. 2015, 5, 77803. doi: 10.1039/c5ra12525a  doi: 10.1039/c5ra12525a

  • 加载中
    1. [1]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    2. [2]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    3. [3]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    4. [4]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    5. [5]

      Peipei Sun Jinyuan Zhang Yanhua Song Zhao Mo Zhigang Chen Hui Xu . 引入内建电场增强光载流子分离以促进H2的生产. Acta Physico-Chimica Sinica, 2024, 40(11): 2311001-. doi: 10.3866/PKU.WHXB202311001

    6. [6]

      Yuejiao An Wenxuan Liu Yanfeng Zhang Jianjun Zhang Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021

    7. [7]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    8. [8]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    9. [9]

      Jiaxing Cai Wendi Xu Haoqiang Chi Qian Liu Wa Gao Li Shi Jingxiang Low Zhigang Zou Yong Zhou . 具有0D/2D界面的InOOH/ZnIn2S4空心球S型异质结用于增强光催化CO2转化性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407002-. doi: 10.3866/PKU.WHXB202407002

    10. [10]

      Changjun You Chunchun Wang Mingjie Cai Yanping Liu Baikang Zhu Shijie Li . 引入内建电场强化BiOBr/C3N5 S型异质结中光载流子分离以实现高效催化降解微污染物. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-. doi: 10.3866/PKU.WHXB202407014

    11. [11]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    12. [12]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    13. [13]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    14. [14]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    15. [15]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    16. [16]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    17. [17]

      Yangrui Xu Yewei Ren Xinlin Liu Hongping Li Ziyang Lu . 具有高传质和亲和表面的NH2-UIO-66基疏水多孔液体用于增强CO2光还原. Acta Physico-Chimica Sinica, 2024, 40(11): 2403032-. doi: 10.3866/PKU.WHXB202403032

    18. [18]

      Min LIXianfeng MENG . Preparation and microwave absorption properties of ZIF-67 derived Co@C/MoS2 nanocomposites. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1932-1942. doi: 10.11862/CJIC.20240065

    19. [19]

      Jianyu Qin Yuejiao An Yanfeng ZhangIn Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-. doi: 10.3866/PKU.WHXB202408002

    20. [20]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

Metrics
  • PDF Downloads(140)
  • Abstract views(3957)
  • HTML views(2012)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return