Citation: Zhou Peng, Sheng Jinzhi, Gao Chongwei, Dong Jun, An Qinyou, Mai Liqiang. Synthesis of V2O5/Fe2V4O13 Nanocomposite Materials using In situ Phase Separation and the Electrochemical Performance for Sodium Storage[J]. Acta Physico-Chimica Sinica, ;2020, 36(5): 190604. doi: 10.3866/PKU.WHXB201906046 shu

Synthesis of V2O5/Fe2V4O13 Nanocomposite Materials using In situ Phase Separation and the Electrochemical Performance for Sodium Storage

  • Corresponding author: Mai Liqiang, mlq518@whut.edu.cn
  • Received Date: 12 June 2019
    Revised Date: 13 August 2019
    Accepted Date: 16 September 2019
    Available Online: 16 May 2019

    Fund Project: the National Natural Science Foundation of China 51425204The project was supported by the National Natural Science Foundation of China (51425204, 51521001) and the Yellow Crane Talent (Science & Technology) Program of Wuhan City, Chinathe National Natural Science Foundation of China 51521001

  • Sodium has the advantages of being an abundant resource and having a low cost; thus, sodium ion batteries are considered as one of the best candidates for replacing lithium ion batteries in the future. However, the radius of the sodium ion is larger than that of the lithium ion, and the de-intercalation of the sodium ion will seriously damage the crystal structure of most electrode materials during the charging and discharging process, which considerably limits its charge-discharge specific capacity, cycle performance, and rate performance. However, finding appropriate electrode materials is one of the difficulties in fabricating high-performance sodium ion batteries. Among the many candidate materials, vanadate materials can improve the stability of material structures by introducing cations to increase the coordination numbers of vanadium, thus improving the electrochemical performance of sodium ion batteries. In this paper, an in situ phase separation method to fabricate V2O5/Fe2V4O13 nanocomposite materials is reported. First, we synthesized hydrated crystalline Fe5V15O39(OH)9·9H2O nanomaterials using a water bath heating method; then, we in situ constructed two-phase nanocomposite V2O5 and Fe2V4O13 from the single phase by further high-temperature treatment. The morphology, composition, and structure of the electrode materials were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy(FTIR), as well as other methods. The V2O5/Fe2V4O13 nanocomposite materials were found to have a more stable structure, higher initial discharge capacity (342 mAh·g-1 at a current density of 0.1 A·g-1), longer cycle life, and better rate performance than V2O5 nanowires. Therefore, this research on V2O5/Fe2V4O13 nanocomposite materials has broadened ability to develop new high-performance anode materials for sodium ion batteries.
  • 加载中
    1. [1]

      Tarascon, J. M.; Armand, M. Nature 2001, 414, 359. doi: 10.1038/35104644  doi: 10.1038/35104644

    2. [2]

      Bruce, P. G.; Freunberger, S. A.; Hardwick, L. J.; Jean-Marie, T. Nat. Mater. 2011, 11, 19. doi: 10.1038/NMAT3191  doi: 10.1038/NMAT3191

    3. [3]

      Recham, N.; Chotard, J. N.; Dupont, L.; Delacourt, C.; Walker, W.; Armand, M.; Tarascon, J. M. Nat. Mater. 2010, 9, 68. doi: 10.1038/NMAT2590  doi: 10.1038/NMAT2590

    4. [4]

      Kisuk, K.; Shirley, M. Y.; Julien, B.; Grey, C. P.; Gerbrand, C. Science 2006, 311, 977. doi: 10.1126/science.1122152  doi: 10.1126/science.1122152

    5. [5]

      Wang, H.; Liu, S.; Ren, Y.; Wang, W.; Tang, A. Energy Environ. Sci. 2012, 5, 6173. doi: 10.1039/c2ee03215e  doi: 10.1039/c2ee03215e

    6. [6]

      Wang, S.; Li, S.; Sun, Y.; Feng, X.; Chen, C. Energy Environ. Sci. 2011, 4, 2854. doi: 10.1039/c1ee01172c  doi: 10.1039/c1ee01172c

    7. [7]

      Wu, H.; Chan, G.; Choi, J. W.; Ryu, I.; Yao, Y.; McDowell, M. T.; Lee, S. W.; Jackson, A.; Yang, Y.; Hu, L.; et al. Nanotechnol. 2012, 7, 310. doi: 10.1038/NNANO.2012.35  doi: 10.1038/NNANO.2012.35

    8. [8]

      Hong, S. Y.; Kim, Y.; Park, Y.; Choi, A.; Choi, N. S.; Lee, K. T. Energy Environ. Sci. 2013, 6, 168. doi: 10.1039/c3ee40811f  doi: 10.1039/c3ee40811f

    9. [9]

      Ellis, B. L.; Nazar, L. F. Curr. Opin. Solid. ST. M. 2012, 16, 168. doi: 10.1016/j.cossms.2012.04.002  doi: 10.1016/j.cossms.2012.04.002

    10. [10]

      Li, H.; Wu, C.; Wu, F.; Bai, Y. Acta Chim. Sin. 2014, 72, 21. doi: 10.6023/A13080830  doi: 10.6023/A13080830

    11. [11]

      Palomares, V.; Serras, P.; Villaluenga, I.; Hueso, K. B.; Carretero-González, J.; Rojo, T. Energy Environ. Sci. 2012, 5, 5884. doi: 10.1039/c2ee02781j  doi: 10.1039/c2ee02781j

    12. [12]

      Kim, S. W.; Seo, D. H.; Ma, X.; Ceder, G.; Kang, K. Adv. Energy Mater. 2012, 2, 710. doi: 10.1002/aenm.201200026  doi: 10.1002/aenm.201200026

    13. [13]

      Ong, S. P.; Chevrier, V. L.; Hautier, G.; Jain, A.; Moore, C.; Kim, S.; Ma, X.; Ceder, G. Energy Environ. Sci. 2011, 4, 3680. doi: 10.1039/c1ee01782a  doi: 10.1039/c1ee01782a

    14. [14]

      Liu, J.; Zhang, J. G.; Yang, Z.; Lemmon, J. P.; Imhoff, C.; Graff, G. L.; Li, L.; Hu, J.; Wang, C.; Xiao, J.; et al. Adv. Funct. Mater. 2013, 23, 929. doi: 10.1002/adfm.201200690  doi: 10.1002/adfm.201200690

    15. [15]

      Yao, Y.; McDowell, M. T.; Ryu, I.; Wu, H.; Liu, N.; Hu, L.; Nix, W. D.; Cui, Y. Nano Lett. 2011, 11, 2949. doi: 10.1021/nl201470j  doi: 10.1021/nl201470j

    16. [16]

      Fergus, J. W. J. Power Sources 2010, 195, 939. doi: 10.1016/j.jpowsour.2009.08.089  doi: 10.1016/j.jpowsour.2009.08.089

    17. [17]

      Chao, D.; Xia, X.; Liu, J.; Fan, Z.; Ng, C. F.; Lin, J.; Zhang, H.; Shen, Z. X.; Fan, H. J. Adv. Mater. 2014, 26, 5794. doi: 10.1002/adma.201400719  doi: 10.1002/adma.201400719

    18. [18]

      Raju, V.; Rains, J.; Gates, C.; Luo, W.; Wang, X.; Stickle, W. F.; Stucky, G. D.; Ji, X. Nano Lett. 2014, 14, 4119. doi: 10.1021/nl501692p  doi: 10.1021/nl501692p

    19. [19]

      Wang, Y.; Cao, G. Adv. Mater. 2008, 20, 2251. doi: 10.1002/adma.200702242  doi: 10.1002/adma.200702242

    20. [20]

      Mai, L. Q.; Xu, X.; Han, C. H.; Luo, Y. Z.; Xu, L.; Wu, Y. A.; Zhao, Y. L. Nano Lett. 2011, 11, 4992. doi: 10.1021/nl202943b  doi: 10.1021/nl202943b

    21. [21]

      Chen, Z.; Qin, Y.; Weng, D.; Xiao, Q.; Peng, Y.; Wang, X.; Li, H.; Wei, F.; Lu, Y. Adv. Funct. Mater. 2009, 19, 3420. doi: 10.1002/adfm.200900971  doi: 10.1002/adfm.200900971

    22. [22]

      Wang, Y.; Takahashi, K.; Shang, H. M.; Cao, G. Z. J. Phys. Chem. B 2005, 109, 3085. doi: 10.1021/jp044286w  doi: 10.1021/jp044286w

    23. [23]

      Wei, X. J.; An, Q. Y.; Wei, Q. L.; Yan, M. Y.; Wang, X. P.; Li, Q. D.; Zhang, P. F.; Wang, B. L.; Mai, L. Q. Phys. Chem. Chem. Phys. 2014, 16, 18680. doi: 10.1039/c4cp02762k  doi: 10.1039/c4cp02762k

    24. [24]

      Wei, Q. L.; Jiang, Z. Y.; Tan, S. S.; Li, Q. D.; Huang, L.; Yan, M. Y.; Zhou, L.; An, Q. Y.; Mai, L. Q. ACS Appl. Mater. Interfaces 2015, 7, 18211. doi: 10.1021/acsami.5b06154  doi: 10.1021/acsami.5b06154

    25. [25]

      Muller-Bouvet, D.; Baddour-Hadjean, R; Tanabe, M.; Huynh, L. T. N.; Le, M. L. P.; Pereira-Ramos, J. P. Electrochim. Acta 2015, 176, 586. doi: 10.1016/j.electacta.2015.07.030  doi: 10.1016/j.electacta.2015.07.030

    26. [26]

      Kai, Z.; Zhang, C.; Guo, S.; Yu, H.; Liao, K.; Gang, C.; Wei, Y.; Zhou, H. S. ChemElectroChem 2016, 2, 1660. doi: 10.1002/celc.201500240  doi: 10.1002/celc.201500240

    27. [27]

      Wang, X.; Li, G.; Hassan, F. M.; Li, J.; Fan, X.; Batmaz, R.; Xiao, X.; Chen, Z. Nano Energy 2015, 15, 746. doi: 10.1016/j.nanoen.2015.05.038  doi: 10.1016/j.nanoen.2015.05.038

    28. [28]

      Xu, X. M.; Niu, C. J.; Duan, M. Y.; Wang, X. P.; Huang, L.; Wang, J. H.; Pu, L. T.; Ren, W. H.; Shi, C. W.; Meng, J. S.; et al. Nat. Commun. 2017, 8, 460. doi: 10.1038/s41467-017-00211-5  doi: 10.1038/s41467-017-00211-5

    29. [29]

      Sarkar. A.; Sarkar. S.; Sarkar. T.; Kumar. P.; Bharadwaj. M. D.; Mitra. S. ACS Appl. Mater. Interfaces 2015, 7, 31. doi: 10.1021/acsami.5b03210  doi: 10.1021/acsami.5b03210

    30. [30]

      Wei, Q. L.; Wang, Q. Q.; Li, Q. D.; An, Q. Y.; Zhao, Y. L.; Peng, Z.; Jiang, Y. L.; Tan, S. S.; Yan, M. Y.; Mai, L. Q. Nano Energy 2018, 47, 294. doi: 10.1016/j.nanoen.2018.02.028  doi: 10.1016/j.nanoen.2018.02.028

    31. [31]

      Peng, Z.; Wei, Q. L.; Tan, S. S.; He, P.; Luo, W.; An, Q. Y.; Mai, L. Q. Chem Commun. 2018, 54, 4041. doi: 10.1039/c8cc00987b  doi: 10.1039/c8cc00987b

    32. [32]

      Luo, Y. Z.; Huang, D.; Liang, C.; Wang, P.; Han, K; Wu, B.; Cao, F.; Mai, L. Q.; Chen, H. Small 2019, 15, 1804706. doi: 10.1002/smll.201804706  doi: 10.1002/smll.201804706

    33. [33]

      Allen, G. C.; Curtis, M. T.; Hooper, A. J.; Tucker, P. M. J. Chem. Soc. Dalton Trans. 1974, 1525. doi: 10.1039/dt9740001525  doi: 10.1039/dt9740001525

    34. [34]

      Tan, B. J.; Klabunde, K. J.; Sherwood, P. M. A. Chem. Mater. 1990, 2, 186. doi: 10.1021/cm00008a021  doi: 10.1021/cm00008a021

    35. [35]

      Moser, T. P.; Schrader, G. L. J. Catal. 1987, 104, 99. doi: 10.1016/0021-9517(87)90340-X  doi: 10.1016/0021-9517(87)90340-X

    36. [36]

      Igarashi, H.; Tsuji, K; Okuhara, T.; Misono, M. J. Phys. Chem. 1993, 97, 7065. doi: 10.1021/j100129a023  doi: 10.1021/j100129a023

    37. [37]

      Berry, F. J.; Brett, M. E.; Marbrow, R. A.; Patterson, W. R. J. Chem. Soc. Dalton Trans. 1984, 985. doi: 10.1039/DT9840000985  doi: 10.1039/DT9840000985

    38. [38]

      Minyaev, A. I.; Denisov, I. A.; Soroko, V. E.; Konovalov, V. A. ZhurnalPrikladnoiKhimii 1986, 59.

  • 加载中
    1. [1]

      Jianbao Mei Bei Li Shu Zhang Dongdong Xiao Pu Hu Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023

    2. [2]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    3. [3]

      Yongming Zhu Huili Hu Yuanchun Yu Xudong Li Peng Gao . Construction and Practice on New Form Stereoscopic Textbook of Electrochemistry for Energy Storage Science and Engineering: Taking Basic Course of Electrochemistry as an Example. University Chemistry, 2024, 39(8): 44-47. doi: 10.3866/PKU.DXHX202312086

    4. [4]

      Kuaibing Wang Honglin Zhang Wenjie Lu Weihua Zhang . Experimental Design and Practice for Recycling and Nickel Content Detection from Waste Nickel-Metal Hydride Batteries. University Chemistry, 2024, 39(11): 335-341. doi: 10.12461/PKU.DXHX202403084

    5. [5]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

    6. [6]

      Jianfeng Yan Yating Xiao Xin Zuo Caixia Lin Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005

    7. [7]

      Yifei Cheng Jiahui Yang Wei Shao Wanqun Zhang Wanqun Hu Weiwei Li Kaiping Yang . Learning Goes Beyond the Written Word: Practical Insights from the “Leaf Electroplating” Popular Science Experiment. University Chemistry, 2024, 39(9): 319-327. doi: 10.3866/PKU.DXHX202310033

    8. [8]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    9. [9]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    10. [10]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    11. [11]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    12. [12]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    13. [13]

      Haohao SunWenxuan WangYuli XiongZelang JianWen Chen . Boosting the electrochromic properties by large V2O5 nanobelts interlayer spacing tuned via PEDOT. Chinese Chemical Letters, 2024, 35(9): 109213-. doi: 10.1016/j.cclet.2023.109213

    14. [14]

      Yong Zhou Jia Guo Yun Xiong Luying He Hui Li . Comprehensive Teaching Experiment on Electrochemical Corrosion in Galvanic Cell for Chemical Safety and Environmental Protection Course. University Chemistry, 2024, 39(7): 330-336. doi: 10.3866/PKU.DXHX202310109

    15. [15]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    16. [16]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    17. [17]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    18. [18]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    19. [19]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    20. [20]

      Shuangxi LiHuijun YuTianwei LanLiyi ShiDanhong ChengLupeng HanDengsong Zhang . NOx reduction against alkali poisoning over Ce(SO4)2-V2O5/TiO2 catalysts by constructing the Ce4+–SO42− pair sites. Chinese Chemical Letters, 2024, 35(5): 108240-. doi: 10.1016/j.cclet.2023.108240

Metrics
  • PDF Downloads(20)
  • Abstract views(1087)
  • HTML views(165)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return