Citation: Jin Piao, Guan Zichao, Liang Yan, Tan Kai, Wang Xia, Song Guangling, Du Ronggui. Photocathodic Protection on Stainless Steel by Heterostructured NiO/TiO2 Nanotube Array Film with Charge Storage Capability[J]. Acta Physico-Chimica Sinica, ;2021, 37(3): 190603. doi: 10.3866/PKU.WHXB201906033 shu

Photocathodic Protection on Stainless Steel by Heterostructured NiO/TiO2 Nanotube Array Film with Charge Storage Capability

  • Corresponding author: Song Guangling, guangling.song@hotmail.com Du Ronggui, rgdu@xmu.edu.cn
  • Received Date: 6 June 2019
    Revised Date: 3 July 2019
    Accepted Date: 13 July 2019
    Available Online: 18 July 2019

    Fund Project: The project was supported by the National Natural Science Foundation of China (21573182, 51731008, 51671163, 21621091)the National Natural Science Foundation of China 21573182the National Natural Science Foundation of China 51731008the National Natural Science Foundation of China 51671163the National Natural Science Foundation of China 21621091

  • Photocathodic protection by TiO2 semiconductor materials for metals has interested many corrosion researchers for years. However, a pure TiO2 semiconductor anode can only absorb ultraviolet light and cannot maintain the photocathodic protection in the dark. This has limited its practical applications to a great extent. Overcoming these limitations is significant as well as challenging. Therefore, the objective of this work is to prepare a modified TiO2 composite film with visible light absorption and charge storage capabilities for application in photocathodic protection. First, we fabricated an ordered TiO2 nanotube array film on a Ti substrate by electrochemical anodization. Then, we prepared NiO nanoparticles on the film via a hydrothermal reaction to obtain a p-n heterostructured NiO/TiO2 nanotube array composite film. The properties of the prepared films were investigated by scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, UV-Vis absorption spectroscopy, photoluminescence spectroscopy, and photoelectrochemical techniques. The results indicated that the electrochemically anodized TiO2 film had an anatase phase structure and consisted of vertically ordered nanotubes with an inner diameter of about 80 nm and length of 250 nm. After the NiO nanoparticles were deposited on the film, the TiO2 nanotube array structure remained intact. The main phase of TiO2 was still anatase, but the light absorption of the NiO/TiO2 composite film was extended into the visible region, which was in contrast to that of the simple TiO2 film. Moreover, the composite film showed lower photoluminescence intensities than the TiO2 film, implying that a higher charge carrier separation efficiency could be achieved by modification with NiO. Under white light illumination, the photocurrent density of the NiO/TiO2 composite film in a mixed solution of 0.5 mol·L-1 KOH and 1 mol·L-1 CH3OH reached 176 μA·cm-2, which was 2 times higher than that of the simple TiO2 nanotube film, indicating that the composite film had improved photoelectric conversion efficiency and photoelectrochemical properties. The potential of 403 stainless steel (403SS) in 0.5 mol·L-1 NaCl solution decreased by 380 and 440 mV relative to its corrosion potential when coupled to the TiO2 film and NiO/TiO2 composite film, respectively, under white light illumination. This indicated that the heterostructured NiO/TiO2 film as a photoanode could produce more effective photocathodic protection on the steel as compared with the pure TiO2 film. Even after 2.5 h of illumination, the composite film could continuously provide photocathodic protection to 403SS for about 15.5 h in the dark, suggesting that the NiO/TiO2 composite film had a charge storage capability that was significant for its practical applications.
  • 加载中
    1. [1]

      Chen, X. B.; Mao, S. S. Chem. Rev. 2007, 107, 2891. doi: 10.1021/cr0500535  doi: 10.1021/cr0500535

    2. [2]

      Li, H.; Wang, X. T.; Wei, Q. Y.; Liu, X. Q.; Qian, Z. H.; Hou, B. R. Nanotechnology 2017, 28, 225701. doi: 10.1088/1361-6528/aa6e5d  doi: 10.1088/1361-6528/aa6e5d

    3. [3]

      Sun, M. M.; Chen, Z. Y.; Yu, J. Q. Electrochim. Acta 2013, 109, 13. doi: 10.1016/j.electacta.2013.07.121  doi: 10.1016/j.electacta.2013.07.121

    4. [4]

      Sun, W. X.; Cui, S. W.; Wei, N.; Chen, S. G.; Liu, Y. P.; Wang, D. A. J. Alloys Compd. 2018, 749, 741. doi: 10.1016/j.jallcom.2018.03.371  doi: 10.1016/j.jallcom.2018.03.371

    5. [5]

      Liu, W. J.; Du, T.; Ru, Q. X.; Zuo, S. X.; Cai, Y. H.; Yao, C. Mater. Res. Bull 2018, 102, 399. doi: 10.1016/j.materresbull.2018.03.012  doi: 10.1016/j.materresbull.2018.03.012

    6. [6]

      Wei, Q. Y.; Wang, X. T.; Ning, X. B.; Li, X. R.; Shao, J.; Li, H.; Wang, W. C.; Huang, Y. L.; Hou, B. R. Surf. Coat. Technol. 2018, 352, 26. doi: 10.1016/j.surfcoat.2018.08.004  doi: 10.1016/j.surfcoat.2018.08.004

    7. [7]

      Liang, Y., Guan, Z. C.; Wang, H. P.; Du, R. G. Electrochem. Commun. 2017, 77. 120. doi: 10.1016/j.elecom.2017.03.008  doi: 10.1016/j.elecom.2017.03.008

    8. [8]

      Li, B.; Chen, X. W.; Zhang, T. Y.; Jiang, S.; Zhang, G. H.; Wu, W. B.; Ma, X. Y. Appl. Surf. Sci. 2018, 439, 1047. doi: 10.1016/j.apsusc.2017.12.220  doi: 10.1016/j.apsusc.2017.12.220

    9. [9]

      Xiao, F. X. ACS Appl. Mater. Interfaces 2012, 4, 7054. doi: 10.1021/am302462d  doi: 10.1021/am302462d

    10. [10]

      Guan, Z.C.; Wang, H. P.; Wang, X.; Hu, J.; Du, R. G. Corros. Sci. 2018, 136, 60. doi: 10.1016/j.corsci.2018.02.048  doi: 10.1016/j.corsci.2018.02.048

    11. [11]

      Lei, J.; Shao, Q.; Wang, X. T.; Wei, Q. Y.; Yang, L. Y.; Li, H.; Huang, Y. L.; Hou, B. R. Mater. Res. Bull. 2017, 95, 25. doi: 10.1016/j.materresbull.2017.07.048  doi: 10.1016/j.materresbull.2017.07.048

    12. [12]

      Liang, Y. Q.; Cui, Z. D.; Zhu, S. L.; Li, Z. Y.; Yang, X. J.; Chen, Y. J.; Ma, J. M. Nanoscale 2013, 5, 10916. doi: 10.1039/c3nr03616b  doi: 10.1039/c3nr03616b

    13. [13]

      Wang, Q. Y.; Liu, Z. Y.; Jin, R. C.; Wang, Y.; Gao, S. M. Sep. Purif. Technol. 2019, 210, 798. doi: 10.1016/j.seppur.2018.08.050  doi: 10.1016/j.seppur.2018.08.050

    14. [14]

      Ku, Y.; Lin, C. N.; Hou, W. M. J. Mol. Catal. A: Chem. 2011, 349, 20. doi: 10.1016/j.molcata.2011.08.006  doi: 10.1016/j.molcata.2011.08.006

    15. [15]

      Wang, H. P.; Guan, Z. C.; Wang, X.; Jin, P.; Xu, H.; Chen, L. F.; Song, G. L.; Du, R. G. Acta Phys. -Chim. Sin. 2019, 35, 1232.  doi: 10.3866/PKU.WHXB201901025

    16. [16]

      Wang, M. G.; Han, J.; Hu, Y. M.; Guo, R.; Yin, Y. D. ACS Appl. Mater. Interfaces 2016, 8, 29511. doi: 10.1021/acsami.6b10480  doi: 10.1021/acsami.6b10480

    17. [17]

      Li, H. R.; Zhou, J.; Zhang, X. B.; Zhou, K.; Qu, S. X.; Wang, J. X.; Lu, X.; Weng, J.; Feng, B. J. Mater. Sci. Mater. Electron. 2015, 26, 257. doi: 10.1007/s10854-015-2724-x  doi: 10.1007/s10854-015-2724-x

    18. [18]

      Li, L. L.; Cheng, B.; Wang, Y. X.; Yu, J. G. J. Colloid Interface Sci. 2015, 449, 115. doi: 10.1016/j.jcis.2014.10.072  doi: 10.1016/j.jcis.2014.10.072

    19. [19]

      Sim, L. C.; Ng, K. W.; Ibrahim, S.; Saravanan, P. Int. J. Photoenergy 2013, 2013, 1. doi: 10.1155/2013/659013  doi: 10.1155/2013/659013

    20. [20]

      Biju, V. Mater. Res. Bull. 2007, 42, 791. doi: 10.1016/j.materresbull.2006.10.009  doi: 10.1016/j.materresbull.2006.10.009

    21. [21]

      Sasi, B.; Gopchandran, K. G. Nanotechnology 2007, 18, 115613. doi: 10.1088/0957-4484/18/11/115613  doi: 10.1088/0957-4484/18/11/115613

    22. [22]

      Yang, J.; Wang, X. X.; Yang, X. J.; Li, J. X.; Zhang, X. H.; Zhao, J. J. Electrochim. Acta 2015, 169, 227. doi: 10.1016/j.electacta.2015.04.076  doi: 10.1016/j.electacta.2015.04.076

    23. [23]

      Lewera, A.; Timperman, L. J. Phys. Chem. C 2011, 115, 20153. doi: 10.1021/jp2068446  doi: 10.1021/jp2068446

    24. [24]

      Ahmed, M. A. J. Photochem. Photobiol. 2012, 238, 63. doi: 10.1016/j.jphotochem.2012.04.010  doi: 10.1016/j.jphotochem.2012.04.010

    25. [25]

      Sharma, A.; Lee, B. K. J, Environ. Manage. 2016, 181, 563. doi: 10.1016/j.jenvman.2016.07.016  doi: 10.1016/j.jenvman.2016.07.016

    26. [26]

      Jing, L. Q.; Qu, Y C.; Wang, B. Q; Li, S. D.; Jiang, B. J.; Yang, L, B.; Fu, W.; Fu, H. G.; Sun, Z. J. Sol. Energy Mater. Sol. Cells 2006, 90, 1773. doi: 10.1016/j.solmat.2005.11.007  doi: 10.1016/j.solmat.2005.11.007

    27. [27]

      Zhong, M. L.; Zhang, G. Q.; Yang, X. Q. Mater. Lett. 2015, 145, 216. doi: 10.1016/j.matlet.2015.01.091  doi: 10.1016/j.matlet.2015.01.091

    28. [28]

      Zhang, J.; Hu, J.; Zhu, Y. F.; Liu, Q.; Zhang, H.; Du, R. G.; Lin, C. J. Corros. Sci. 2015, 99, 118. doi: 10.1016/j.corsci.2015.06.029  doi: 10.1016/j.corsci.2015.06.029

    29. [29]

      Liu, Q.; Hu, J.; Liang, Y.; Guan, Z. C.; Zhang, H.; Wang, H. P.; Du, R. G. J. Electrochem. Soc. 2016, 163, C539. doi: 10.1149/2.0481609jes  doi: 10.1149/2.0481609jes

    30. [30]

      Cubides, Y.; Castaneda, H. Corros. Sci. 2016, 109, 145. doi: 10.1016/j.corsci.2016.03.023  doi: 10.1016/j.corsci.2016.03.023

    31. [31]

      Yu, X.; Zhang, J.; Zhao, Z. H.; Guo, W. B.; Qiu, J. H.; Mou, X. N.; Li, A. X.; Claverie, J P.; Liu, H. Nano Energy 2015, 16, 207. doi: 10.1016/j.nanoen.2015.06.028  doi: 10.1016/j.nanoen.2015.06.028

    32. [32]

      Wang, M. G.; Hu, Y. M.; Han, J.; Guo, R.; Xiong, H. X.; Yin, Y. D. J. Mater. Chem. 2015, A3, 207275. doi: 10.1039/C5TA05839B  doi: 10.1039/C5TA05839B

    33. [33]

      Huang, H.; Jiang, L.; Zhang, W. K.; Gan, Y. P.; Tao, X. Y.; Chen, H. F. Sol. Energy Mater. Sol. Cells 2010, 94, 355. doi: 10.1016/j.solmat.2009.10.013  doi: 10.1016/j.solmat.2009.10.013

  • 加载中
    1. [1]

      Hongye Bai Lihao Yu Jinfu Xu Xuliang Pang Yajie Bai Jianguo Cui Weiqiang Fan . Controllable Decoration of Ni-MOF on TiO2: Understanding the Role of Coordination State on Photoelectrochemical Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100096-100096. doi: 10.1016/j.cjsc.2023.100096

    2. [2]

      Limin Wang Feiyi Huang Xinyi Liang Rajkumar Devasenathipathy Xiaotian Liu Qiulan Huang Zhongyun Yang Dujuan Huang Xinglan Peng Du-Hong Chen Youjun Fan Wei Chen . Photoelectric synergy induced synchronous functionalization of graphene and its applications in water splitting and desalination. Chinese Journal of Structural Chemistry, 2025, 44(2): 100501-100501. doi: 10.1016/j.cjsc.2024.100501

    3. [3]

      Zhiqiang WangYajie GaoTianjun WangWei ChenZefeng RenXueming YangChuanyao Zhou . Photocatalyzed oxidation of water on oxygen pretreated rutile TiO2(110). Chinese Chemical Letters, 2025, 36(4): 110602-. doi: 10.1016/j.cclet.2024.110602

    4. [4]

      Yifen HeChao QuNa RenDawei Liang . Enhanced degradation of refractory organics in ORR-EO system with a blue TiO2 nanotube array modified Ti-based Ni-Sb co-doped SnO2 anode. Chinese Chemical Letters, 2024, 35(8): 109262-. doi: 10.1016/j.cclet.2023.109262

    5. [5]

      Liyong DUYi LIUGuoli YANG . Preparation and triethylamine sensing performance of ZnSnO3/NiO heterostructur. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 729-740. doi: 10.11862/CJIC.20240404

    6. [6]

      Fanxin Kong Hongzhi Wang Huimei Duan . Inhibition effect of sulfation on Pt/TiO2 catalysts in methane combustion. Chinese Journal of Structural Chemistry, 2024, 43(5): 100287-100287. doi: 10.1016/j.cjsc.2024.100287

    7. [7]

      Ying ChenXingyuan XiaLei TianMengying YinLing-Ling ZhengQian FuDaishe WuJian-Ping Zou . Constructing built-in electric field via CuO/NiO heterojunction for electrocatalytic reduction of nitrate at low concentrations to ammonia. Chinese Chemical Letters, 2024, 35(12): 109789-. doi: 10.1016/j.cclet.2024.109789

    8. [8]

      Linlu BaiWensen LiXiaoyu ChuHaochun YinYang QuEkaterina KozlovaZhao-Di YangLiqiang Jing . Effects of nanosized Au on the interface of zinc phthalocyanine/TiO2 for CO2 photoreduction. Chinese Chemical Letters, 2025, 36(2): 109931-. doi: 10.1016/j.cclet.2024.109931

    9. [9]

      Lihua HUANGJian HUA . Denitration performance of HoCeMn/TiO2 catalysts prepared by co-precipitation and impregnation methods. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 629-645. doi: 10.11862/CJIC.20230315

    10. [10]

      Wenhao WangGuangpu ZhangQiufeng WangFancang MengHongbin JiaWei JiangQingmin Ji . Hybrid nanoarchitectonics of TiO2/aramid nanofiber membranes with softness and durability for photocatalytic dye degradation. Chinese Chemical Letters, 2024, 35(7): 109193-. doi: 10.1016/j.cclet.2023.109193

    11. [11]

      Mengli Xu Zhenmin Xu Zhenfeng Bian . Achieving Ullmann coupling reaction via photothermal synergy with ultrafine Pd nanoclusters supported on mesoporous TiO2. Chinese Journal of Structural Chemistry, 2024, 43(7): 100305-100305. doi: 10.1016/j.cjsc.2024.100305

    12. [12]

      Fei ZHOUXiaolin JIA . Co3O4/TiO2 composite photocatalyst: Preparation and synergistic degradation performance of toluene. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2232-2240. doi: 10.11862/CJIC.20240236

    13. [13]

      Zhuoyan Lv Yangming Ding Leilei Kang Lin Li Xiao Yan Liu Aiqin Wang Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015

    14. [14]

      Jiatong LiLinlin ZhangPeng HuangChengjun Ge . Carbon bridge effects regulate TiO2–acrylate fluoroboron coatings for efficient marine antifouling. Chinese Chemical Letters, 2025, 36(2): 109970-. doi: 10.1016/j.cclet.2024.109970

    15. [15]

      Bo YANGGongxuan LÜJiantai MA . Corrosion inhibition of nickel-cobalt-phosphide in water by coating TiO2 layer. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 365-384. doi: 10.11862/CJIC.20240063

    16. [16]

      Xingang KongYabei SuCuijuan XingWeijie ChengJianfeng HuangLifeng ZhangHaibo OuyangQi Feng . Facile synthesis of porous TiO2/SnO2 nanocomposite as lithium ion battery anode with enhanced cycling stability via nanoconfinement effect. Chinese Chemical Letters, 2024, 35(11): 109428-. doi: 10.1016/j.cclet.2023.109428

    17. [17]

      Shengfei DongZiyu LiuXiaoyi Yang . Hydrothermal liquefaction of biomass for jet fuel precursors: A review. Chinese Chemical Letters, 2024, 35(8): 109142-. doi: 10.1016/j.cclet.2023.109142

    18. [18]

      Cailiang YueNan SunYixing QiuLinlin ZhuZhiling DuFuqiang Liu . A direct Z-scheme 0D α-Fe2O3/TiO2 heterojunction for enhanced photo-Fenton activity with low H2O2 consumption. Chinese Chemical Letters, 2024, 35(12): 109698-. doi: 10.1016/j.cclet.2024.109698

    19. [19]

      Xiao LiWanqiang YuYujie WangRuiying LiuQingquan YuRiming HuXuchuan JiangQingsheng GaoHong LiuJiayuan YuWeijia Zhou . Metal-encapsulated nitrogen-doped carbon nanotube arrays electrode for enhancing sulfion oxidation reaction and hydrogen evolution reaction by regulating of intermediate adsorption. Chinese Chemical Letters, 2024, 35(8): 109166-. doi: 10.1016/j.cclet.2023.109166

    20. [20]

      Maosen XuPengfei ZhuQinghong CaiMeichun BuChenghua ZhangHong WuYouzhou HeMin FuSiqi LiXingyan LiuIn-situ fabrication of TiO2/NH2−MIL-125(Ti) via MOF-driven strategy to promote efficient interfacial effects for enhancing photocatalytic NO removal activity. Chinese Chemical Letters, 2024, 35(10): 109524-. doi: 10.1016/j.cclet.2024.109524

Metrics
  • PDF Downloads(16)
  • Abstract views(1163)
  • HTML views(249)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return