Citation: Pan Zhiming, Liu Minghui, Niu Pingping, Guo Fangsong, Fu Xianzhi, Wang Xinchen. Photocatalytic CO2 Reduction Using Ni2P Nanosheets[J]. Acta Physico-Chimica Sinica, ;2020, 36(1): 190601. doi: 10.3866/PKU.WHXB201906014 shu

Photocatalytic CO2 Reduction Using Ni2P Nanosheets

  • Corresponding author: Wang Xinchen, xcwang@fzu.edu.cn
  • Received Date: 4 June 2019
    Revised Date: 5 July 2019
    Accepted Date: 11 July 2019
    Available Online: 19 January 2019

    Fund Project: the National Key Technology R&D Program of China 2018YFA0209301The project was supported by the National Key Technology R&D Program of China (2018YFA0209301), the Chang Jiang Scholars Program of China (T2016147), the National Natural Science Foundation of China (21425309, 21761132002, 21861130353) and the 111 Project, China (D16008)the Chang Jiang Scholars Program of China T2016147the National Natural Science Foundation of China 21425309the National Natural Science Foundation of China 21861130353the National Natural Science Foundation of China 21761132002111 Project, China D16008

  • Artificial photosynthesis is an ideal method for solar-to-chemical energy conversion, wherein solar energy is stored in the form of chemical bonds of solar fuels. In particular, the photocatalytic reduction of CO2 has attracted considerable attention due to its dual benefits of fossil fuel production and CO2 pollution reduction. However, CO2 is a comparatively stable molecule and its photoreduction is thermodynamically and kinetically challenging. Thus, the photocatalytic efficiency of CO2 reduction is far below the level of industrial applications. Therefore, development of low-cost cocatalysts is crucial for significantly decreasing the activation energy of CO2 to achieving efficient photocatalytic CO2 reduction. Herein, we have reported the use of a Ni2P material that can serve as a robust cocatalyst by cooperating with a photosensitizer for the photoconversion of CO2. An effective strategy for engineering Ni2P in an ultrathin layered structure has been proposed to improve the CO2 adsorption capability and decrease the CO2 activation energy, resulting in efficient CO2 reduction. A series of physicochemical characterizations including X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), and atomic force microscopy (AFM) were used to demonstrate the successful preparation of ultrathin Ni2P nanosheets. The XRD and XPS results confirm the successful synthesis of Ni2P from Ni(OH)2 by a low temperature phosphidation process. According to the TEM images, the prepared Ni2P nanosheets exhibit a 2D and near-transparent sheet-like structure, suggesting their ultrathin thickness. The AFM images further demonstrated this result and also showed that the height of the Ni2P nanosheets is ca 1.5 nm. The photoluminescence (PL) spectroscopy results revealed that the Ni2P material could efficiently promote the separation of the photogenerated electrons and holes in [Ru(bpy)3]Cl2·6H2O. More importantly, the Ni2P nanosheets could more efficiently promote the charge transfer and charge separation rate of [Ru(bpy)3]Cl2·6H2O compared with the Ni2P particles. In addition, the electrochemical experiments revealed that the Ni2P nanosheets, with their high active surface area and charge conductivity, can provide more active centers for CO2 conversion and accelerate the interfacial reaction dynamics. These results strongly suggest that the Ni2P nanosheets are a promising material for photocatalytic CO2 reduction, and can achieve a CO generation rate of 64.8 μmol·h-1, which is 4.4 times higher than that of the Ni2P particles. In addition, the XRD and XPS measurements of the used Ni2P nanosheets after the six cycles of the photocatalytic CO2 reduction reaction demonstrated their high stability. Overall, this study offers a new function for the 2D transition-metal phosphide catalysts in photocatalytic CO2 reduction.
  • 加载中
    1. [1]

      Asadi, M.; Kim, K.; Liu, C.; Addepalli, A. V.; Abbasi, P.; Yasaei, P.; Phillips, P.; Behranginia, A.; Cerrato, J. M.; Haasch, R.; et al. Science 2016, 353, 467. doi: 10.1126/science.aaf4767  doi: 10.1126/science.aaf4767

    2. [2]

      Wang, S.; Wang, X. Angew. Chem. Int. Ed. 2016, 55, 2308. doi: 10.1002/anie.201507145  doi: 10.1002/anie.201507145

    3. [3]

      Qin, J.; Wang, S.; Ren, H.; Hou, Y.; Wang, X. Appl. Catal. B 2015, 179, 1. doi: 10.1016/j.apcatb.2015.05.005  doi: 10.1016/j.apcatb.2015.05.005

    4. [4]

      Wang, Y.; Zhang, Z.; Zhang, L.; Luo, Z.; Shen, J.; Lin, H.; Long, J.; Wu, J. C. S.; Fu, X.; Wang, X.; et al. J. Am. Chem. Soc. 2018, 140, 14595. doi: 10.1021/jacs.8b09344  doi: 10.1021/jacs.8b09344

    5. [5]

      Pan, Z.; Zheng, Y.; Guo, F.; Niu, P.; Wang, X. ChemSusChem 2017, 10, 87. doi: 10.1002/cssc.201600850  doi: 10.1002/cssc.201600850

    6. [6]

      Liang, F.; Lindberg, P.; Lindblad, P. Sustain. Energy Fuels 2018, 2, 2583. doi: 10.1039/C8SE00281A  doi: 10.1039/C8SE00281A

    7. [7]

      Pan, Z.; Zhang, G.; Wang, X. Angew. Chem. Int. Ed. 2019, 58, 7102, 7102. doi: 10.1002/anie.201902634

    8. [8]

      Lan, Z. A.; Wang, X. C. Acta Phys. -Chim. Sin. 2017, 33, 457.  doi: 10.3866/PKU.WHXB201701061

    9. [9]

      Kuriki, R.; Sekizawa, K.; Ishitani, O.; Maeda, K. Angew. Chem. Int. Ed. 2015, 54, 2406. doi: 10.1002/anie.201411170  doi: 10.1002/anie.201411170

    10. [10]

      Wu, L. Y.; Mu, Y. F.; Guo, X. X.; Zhang, W.; Zhang, Z. M.; Zhang, M.; Lu, T. B. Angew. Chem. Int. Ed. 2019, 58, 9491. doi: 10.1002/anie.201904537  doi: 10.1002/anie.201904537

    11. [11]

      Zhai, Q.; Xie, S.; Fan, W.; Zhang, Q.; Wang, Y.; Deng, W.; Wang, Y. Angew. Chem. Int. Ed. 2013, 52, 5776. doi: 10.1002/anie.201301473  doi: 10.1002/anie.201301473

    12. [12]

      Shown, I.; Samireddi, S.; Chang, Y. C.; Putikam, R.; Chang, P. H.; Sabbah, A.; Fu, F. Y.; Chen, W. F.; Wu, C. I.; Yu, T. Y.; et al. Nat. Commun. 2018, 9, 169. doi: 10.1038/s41467-017-02547-4  doi: 10.1038/s41467-017-02547-4

    13. [13]

      Qin, J.; Wang, S.; Wang, X. Appl. Catal. B 2017, 209, 476. doi: 10.1016/j.apcatb.2017.03.018  doi: 10.1016/j.apcatb.2017.03.018

    14. [14]

      Kuriki, R.; Matsunaga, H.; Nakashima, T.; Wada, K.; Yamakata, A.; Ishitani, O.; Maeda, K. J. Am. Chem. Soc. 2016, 138, 5159. doi: 10.1021/jacs.6b01997  doi: 10.1021/jacs.6b01997

    15. [15]

      Kang, Q.; Wang, T.; Li, P.; Liu, L.; Chang, K.; Li, M.; Ye, J. Angew. Chem. 2015, 127, 855. doi: 10.1002/ange.201409183  doi: 10.1002/ange.201409183

    16. [16]

      Cometto, C.; Kuriki, R.; Chen, L.; Maeda, K.; Lau, T. C.; Ishitani, O.; Robert, M. J. Am. Chem. Soc. 2018, 140, 7437. doi: 10.1021/jacs.8b04007  doi: 10.1021/jacs.8b04007

    17. [17]

      Pei, Z.; Li, H.; Huang, Y.; Xue, Q.; Huang, Y.; Zhu, M.; Wang, Z.; Zhi, C. Energy Environ. Sci. 2017, 10, 742. doi: 10.1039/C6EE03265F  doi: 10.1039/C6EE03265F

    18. [18]

      Wang, S.; Guan, B. Y.; Lou, X. W. Energy Environ. Sci. 2018, 11, 306. doi: 10.1039/C7EE02934A  doi: 10.1039/C7EE02934A

    19. [19]

      Zheng, Y.; Lin, L.; Ye, X.; Guo, F.; Wang, X. Angew. Chem. Int. Ed. 2014, 53, 11926. doi: 10.1002/anie.201407319  doi: 10.1002/anie.201407319

    20. [20]

      Wang, S.; Wang, X. Appl. Catal. B 2015, 162, 494. doi: 10.1016/j.apcatb.2014.07.026  doi: 10.1016/j.apcatb.2014.07.026

    21. [21]

      Kuriki, R.; Yamamoto, M.; Higuchi, K.; Yamamoto, Y.; Akatsuka, M.; Lu, D.; Yagi, S.; Yoshida, T.; Ishitani, O.; Maeda, K. Angew. Chem. Int. Ed. 2017, 56, 4867. doi: 10.1002/anie.201701627  doi: 10.1002/anie.201701627

    22. [22]

      Ouyang, T.; Wang, H. J.; Huang, H. H.; Wang, J. W.; Guo, S.; Liu, W. J.; Zhong, D. C.; Lu, T. B. Angew. Chem. Int. Ed. 2018, 57, 16480. doi: 10.1002/anie.201811010  doi: 10.1002/anie.201811010

    23. [23]

      Ouyang, T.; Huang, H. H.; Wang, J. W.; Zhong, D. C.; Lu, T. B. Angew. Chem. Int. Ed. 2017, 56, 738. doi: 10.1002/anie.201610607  doi: 10.1002/anie.201610607

    24. [24]

      Wang, S.; Wang, X. Angew. Chem. Int. Ed. 2015, 55, 2308. doi: 10.1002/anie.201507145  doi: 10.1002/anie.201507145

    25. [25]

      Fu, J.; Zhu, B.; Jiang, C.; Cheng, B.; You, W.; Yu, J. Small 2017, 13, 1603938. doi: 10.1002/smll.201603938  doi: 10.1002/smll.201603938

    26. [26]

      Apaydin, D. H.; Portenkirchner, E.; Jintanalert, P.; Strauss, M.; Luangchaiyaporn, J.; Sariciftci, N. S.; Thamyongkit, P. Sustain. Energy Fuels 2018, 2, 2747. doi: 10.1039/C8SE00422F  doi: 10.1039/C8SE00422F

    27. [27]

      Yang, Y.; Ajmal, S.; Zheng, X.; Zhang, L. Sustain. Energy Fuels 2018, 2, 510. doi: 10.1039/C7SE00371D  doi: 10.1039/C7SE00371D

    28. [28]

      Carenco, S.; Portehault, D.; Boissière, C.; Mézailles, N.; Sanchez, C. Adv. Mater. 2014, 26, 371. doi: 10.1002/adma.201303198  doi: 10.1002/adma.201303198

    29. [29]

      Shi, Y.; Zhang, B. Chem. Soc. Rev. 2016, 45, 1529. doi: 10.1039/C5CS00434A  doi: 10.1039/C5CS00434A

    30. [30]

      Liu, Q.; Tian, J.; Cui, W.; Jiang, P.; Cheng, N.; Asiri, A. M.; Sun, X. Angew. Chem. 2014, 126, 6828. doi: 10.1002/ange.201404161  doi: 10.1002/ange.201404161

    31. [31]

      Tian, J.; Liu, Q.; Asiri, A. M.; Sun, X. J. Am. Chem. Soc. 2014, 136, 7587. doi: 10.1021/ja503372r  doi: 10.1021/ja503372r

    32. [32]

      Li, D.; Baydoun, H.; Verani, C. N.; Brock, S. L. J. Am. Chem. Soc. 2016, 138, 4006. doi: 10.1021/jacs.6b01543  doi: 10.1021/jacs.6b01543

    33. [33]

      Yu, X. Y.; Feng, Y.; Guan, B.; Lou, X. W.; Paik, U. Energy Environ. Sci. 2016, 9, 1246. doi: 10.1039/C6EE00100A  doi: 10.1039/C6EE00100A

    34. [34]

      Stern, L. A.; Feng, L.; Song, F.; Hu, X. Energy Environ. Sci. 2015, 8, 2347. doi: 10.1039/C5EE01155H  doi: 10.1039/C5EE01155H

    35. [35]

      Pan, Z.; Niu, P.; Hou, Y.; Fang, Y.; Liu, M.; Wang, X. ChemSusChem 2019, 12, 1911. doi: 10.1002/cssc.201801691  doi: 10.1002/cssc.201801691

    36. [36]

      Indra, A.; Acharjya, A.; Menezes, P. W.; Merschjann, C.; Hollmann, D.; Schwarze, M.; Aktas, M.; Friedrich, A.; Lochbrunner, S.; Thomas, A.; et al. Angew. Chem. Int. Ed. 2017, 56, 1653. doi: 10.1002/anie.201611605  doi: 10.1002/anie.201611605

    37. [37]

      Sun, Z.; Zheng, H.; Li, J.; Du, P. Energy Environ. Sci. 2015, 8, 2668. doi: 10.1039/C5EE01310K  doi: 10.1039/C5EE01310K

    38. [38]

      Sun, X.; Lu, L.; Zhu, Q.; Wu, C.; Yang, D.; Chen, C.; Han, B. Angew. Chem. Int. Ed. 2018, 57, 2427. doi: 10.1002/anie.201712221  doi: 10.1002/anie.201712221

    39. [39]

      Calvinho, K. U. D.; Laursen, A. B.; Yap, K. M. K.; Goetjen, T. A.; Hwang, S.; Murali, N.; Mejia-Sosa, B.; Lubarski, A.; Teeluck, K. M.; Hall, E. S.; et al. Energy Environ. Sci. 2018, 11, 2550. doi: 10.1039/C8EE00936H  doi: 10.1039/C8EE00936H

    40. [40]

      Fu, Z. C.; Xu, R. C.; Moore, J. T.; Liang, F.; Nie, X. C.; Mi, C.; Mo, J.; Xu, Y.; Xu, Q. Q.; Yang, Z.; et al. Chem. Eur. J. 2018, 24, 4273. doi: 10.1002/chem.201800335  doi: 10.1002/chem.201800335

    41. [41]

      Wang, S.; Guan, B. Y.; Lu, Y.; Lou, X. W. D. J. Am. Chem. Soc. 2017, 139, 17305. doi: 10.1021/jacs.7b10733  doi: 10.1021/jacs.7b10733

    42. [42]

      Wang, S.; Guan, B. Y.; Lou, X. W. D. J. Am. Chem. Soc. 2018, 140, 5037. doi: 10.1021/jacs.8b02200  doi: 10.1021/jacs.8b02200

    43. [43]

      Chen, Y.; Jia, G.; Hu, Y.; Fan, G.; Tsang, Y. H.; Li, Z.; Zou, Z. Sustain. Energy Fuels 2017, 1, 1875. doi: 10.1039/C7SE00344G  doi: 10.1039/C7SE00344G

    44. [44]

      Li, F.; Chen, L.; Knowles, G. P.; MacFarlane, D. R.; Zhang, J. Angew. Chem. Int. Ed. 2017, 56, 505. doi: 10.1002/anie.201608279  doi: 10.1002/anie.201608279

    45. [45]

      Tu, W.; Zhou, Y.; Liu, Q.; Tian, Z.; Gao, J.; Chen, X.; Zhang, H.; Liu, J.; Zou, Z. Adv. Funct. Mater. 2012, 22, 1215. doi: 10.1002/adfm.201102566  doi: 10.1002/adfm.201102566

    46. [46]

      Cao, S.; Shen, B.; Tong, T.; Fu, J.; Yu, J. Adv. Funct. Mater. 2018, 28, 1800136. doi: 10.1002/adfm.201800136  doi: 10.1002/adfm.201800136

    47. [47]

      Ou, H.; Lin, L.; Zheng, Y.; Yang, P.; Fang, Y.; Wang, X. Adv. Mater. 2017, 29, 1700008. doi: 10.1002/adma.201700008  doi: 10.1002/adma.201700008

    48. [48]

      Pu, Z.; Wei, S.; Chen, Z.; Mu, S. Appl. Catal. B 2016, 196, 193. doi: 10.1016/j.apcatb.2016.05.027  doi: 10.1016/j.apcatb.2016.05.027

    49. [49]

      Gao, C.; Meng, Q.; Zhao, K.; Yin, H.; Wang, D.; Guo, J.; Zhao, S.; Chang, L.; He, M.; Li, Q.; et al. Adv. Mater. 2016, 28, 6485. doi: 10.1002/adma.201601387  doi: 10.1002/adma.201601387

    50. [50]

      Jiang, J.; Zhao, K.; Xiao, X.; Zhang, L. J. Am. Chem. Soc. 2012, 134, 4473. doi: 10.1021/ja210484t  doi: 10.1021/ja210484t

    51. [51]

      Yu, J.; Low, J.; Xiao, W.; Zhou, P.; Jaroniec, M. J. Am. Chem. Soc. 2014, 136, 8839. doi: 10.1021/ja5044787  doi: 10.1021/ja5044787

    52. [52]

      Jia, J.; Qian, C.; Dong, Y.; Li, Y. F.; Wang, H.; Ghoussoub, M.; Butler, K. T.; Walsh, A.; Ozin, G. A. Chem. Soc. Rev. 2017, 46, 4631. doi: 10.1039/C7CS00026J  doi: 10.1039/C7CS00026J

    53. [53]

      Li, F.; Xue, M.; Li, J.; Ma, X.; Chen, L.; Zhang, X.; MacFarlane, D. R.; Jie, Z. Angew. Chem. Int. Ed. 2017, 56, 14718. doi: 10.1002/anie.201710038  doi: 10.1002/anie.201710038

    54. [54]

      Zhao, Y.; Chen, G.; Bian, T.; Zhou, C.; Waterhouse, G. I. N.; Wu, L. Z.; Tung, C. H.; Smith, L. J.; O'Hare, D.; Zhang, T. Adv. Mater. 2015, 27, 7824. doi: 10.1002/adma.201503730  doi: 10.1002/adma.201503730

    55. [55]

      Yao, T.; Liu, L.; Xiao, C.; Zhang, X.; Liu, Q.; Wei, S.; Xie, Y. Angew. Chem. Int. Ed. 2013, 52, 7554. doi: 10.1002/anie.201302891  doi: 10.1002/anie.201302891

    56. [56]

      Popczun, E. J.; McKone, J. R.; Read, C. G.; Biacchi, A. J.; Wiltrout, A. M.; Lewis, N. S.; Schaak, R. E. J. Am. Chem. Soc. 2013, 135, 9267. doi: 10.1021/ja403440e  doi: 10.1021/ja403440e

    57. [57]

      Tang, C.; Zhang, R.; Lu, W.; Wang, Z.; Liu, D.; Hao, S; Du, G.; Asiri, A.M.; Sun, X. Angew. Chem. Int. Ed. 2017, 56, 842. doi: 10.1002/anie.201608899  doi: 10.1002/anie.201608899

    58. [58]

      Bai, Y.; Zhang, H.; Li, X.; Liu, L.; Xu, H.; Qiu, H.; Wang, Y. Nanoscale 2015, 7, 1446. doi: 10.1039/C4NR05862C  doi: 10.1039/C4NR05862C

    59. [59]

      Wang, S.; Wang, X. Appl. Catal. B 2015, 162, 494. doi: 10.1016/j.apcatb.2014.07.026  doi: 10.1016/j.apcatb.2014.07.026

    60. [60]

      Chen, Y.; Wang, B.; Lin, S.; Zhang, Y.; Wang, X. J. Phys. Chem. C 2014, 118, 29981. doi: 10.1021/jp510187c  doi: 10.1021/jp510187c

    61. [61]

      Wang, S.; Hou, Y.; Wang, X. ACS Appl. Mater. Interfaces 2015, 7, 4327. doi: 10.1021/am508766s  doi: 10.1021/am508766s

  • 加载中
    1. [1]

      Ziruo Zhou Wenyu Guo Tingyu Yang Dandan Zheng Yuanxing Fang Xiahui Lin Yidong Hou Guigang Zhang Sibo Wang . Defect and nanostructure engineering of polymeric carbon nitride for visible-light-driven CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100245-100245. doi: 10.1016/j.cjsc.2024.100245

    2. [2]

      Mengjun Zhao Yuhao Guo Na Li Tingjiang Yan . Deciphering the structural evolution and real active ingredients of iron oxides in photocatalytic CO2 hydrogenation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100348-100348. doi: 10.1016/j.cjsc.2024.100348

    3. [3]

      Zhen Shi Wei Jin Yuhang Sun Xu Li Liang Mao Xiaoyan Cai Zaizhu Lou . Interface charge separation in Cu2CoSnS4/ZnIn2S4 heterojunction for boosting photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100201-100201. doi: 10.1016/j.cjsc.2023.100201

    4. [4]

      Weixu Li Yuexin Wang Lin Li Xinyi Huang Mengdi Liu Bo Gui Xianjun Lang Cheng Wang . Promoting energy transfer pathway in porphyrin-based sp2 carbon-conjugated covalent organic frameworks for selective photocatalytic oxidation of sulfide. Chinese Journal of Structural Chemistry, 2024, 43(7): 100299-100299. doi: 10.1016/j.cjsc.2024.100299

    5. [5]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    6. [6]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    7. [7]

      Zongyi HuangCheng GuoQuanxing ZhengHongliang LuPengfei MaZhengzhong FangPengfei SunXiaodong YiZhou Chen . Efficient photocatalytic biomass-alcohol conversion with simultaneous hydrogen evolution over ultrathin 2D NiS/Ni-CdS photocatalyst. Chinese Chemical Letters, 2024, 35(7): 109580-. doi: 10.1016/j.cclet.2024.109580

    8. [8]

      Zhenchun YangBixiao GuoZhenyu HuKun WangJiahao CuiLina LiChun HuYubao Zhao . Molecular engineering towards dual surface local polarization sites on poly(heptazine imide) framework for boosting H2O2 photo-production. Chinese Chemical Letters, 2024, 35(8): 109251-. doi: 10.1016/j.cclet.2023.109251

    9. [9]

      Maosen XuPengfei ZhuQinghong CaiMeichun BuChenghua ZhangHong WuYouzhou HeMin FuSiqi LiXingyan LiuIn-situ fabrication of TiO2/NH2−MIL-125(Ti) via MOF-driven strategy to promote efficient interfacial effects for enhancing photocatalytic NO removal activity. Chinese Chemical Letters, 2024, 35(10): 109524-. doi: 10.1016/j.cclet.2024.109524

    10. [10]

      Wenhao WangGuangpu ZhangQiufeng WangFancang MengHongbin JiaWei JiangQingmin Ji . Hybrid nanoarchitectonics of TiO2/aramid nanofiber membranes with softness and durability for photocatalytic dye degradation. Chinese Chemical Letters, 2024, 35(7): 109193-. doi: 10.1016/j.cclet.2023.109193

    11. [11]

      Meijuan ChenLiyun ZhaoXianjin ShiWei WangYu HuangLijuan FuLijun Ma . Synthesis of carbon quantum dots decorating Bi2MoO6 microspherical heterostructure and its efficient photocatalytic degradation of antibiotic norfloxacin. Chinese Chemical Letters, 2024, 35(8): 109336-. doi: 10.1016/j.cclet.2023.109336

    12. [12]

      Qiang Zhang Weiran Gong Huinan Che Bin Liu Yanhui Ao . S doping induces to promoted spatial separation of charge carriers on carbon nitride for efficiently photocatalytic degradation of atrazine. Chinese Journal of Structural Chemistry, 2023, 42(12): 100205-100205. doi: 10.1016/j.cjsc.2023.100205

    13. [13]

      Tianhao Li Wenguang Tu Zhigang Zou . In situ photocatalytically enhanced thermogalvanic cells for electricity and hydrogen production. Chinese Journal of Structural Chemistry, 2024, 43(1): 100195-100195. doi: 10.1016/j.cjsc.2023.100195

    14. [14]

      Chaoqun MaYuebo WangNing HanRongzhen ZhangHui LiuXiaofeng SunLingbao Xing . Carbon dot-based artificial light-harvesting systems with sequential energy transfer and white light emission for photocatalysis. Chinese Chemical Letters, 2024, 35(4): 108632-. doi: 10.1016/j.cclet.2023.108632

    15. [15]

      Jing WangZenghui LiXiaoyang LiuBochao SuHonghong GongChao FengGuoping LiGang HeBin Rao . Fine-tuning redox ability of arylene-bridged bis(benzimidazolium) for electrochromism and visible-light photocatalysis. Chinese Chemical Letters, 2024, 35(9): 109473-. doi: 10.1016/j.cclet.2023.109473

    16. [16]

      Muhammad Humayun Mohamed Bououdina Abbas Khan Sajjad Ali Chundong Wang . Designing single atom catalysts for exceptional electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100193-100193. doi: 10.1016/j.cjsc.2023.100193

    17. [17]

      Hong Dong Feng-Ming Zhang . Covalent organic frameworks for artificial photosynthetic diluted CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100307-100307. doi: 10.1016/j.cjsc.2024.100307

    18. [18]

      Ping Wang Tianbao Zhang Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328

    19. [19]

      Maomao Liu Guizeng Liang Ningce Zhang Tao Li Lipeng Diao Ping Lu Xiaoliang Zhao Daohao Li Dongjiang Yang . Electron-rich Ni2+ in Ni3S2 boosting electrocatalytic CO2 reduction to formate and syngas. Chinese Journal of Structural Chemistry, 2024, 43(8): 100359-100359. doi: 10.1016/j.cjsc.2024.100359

    20. [20]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

Metrics
  • PDF Downloads(12)
  • Abstract views(333)
  • HTML views(28)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return