Photocatalytic CO2 Reduction Using Ni2P Nanosheets
- Corresponding author: Wang Xinchen, xcwang@fzu.edu.cn
Citation: Pan Zhiming, Liu Minghui, Niu Pingping, Guo Fangsong, Fu Xianzhi, Wang Xinchen. Photocatalytic CO2 Reduction Using Ni2P Nanosheets[J]. Acta Physico-Chimica Sinica, ;2020, 36(1): 190601. doi: 10.3866/PKU.WHXB201906014
Asadi, M.; Kim, K.; Liu, C.; Addepalli, A. V.; Abbasi, P.; Yasaei, P.; Phillips, P.; Behranginia, A.; Cerrato, J. M.; Haasch, R.; et al. Science 2016, 353, 467. doi: 10.1126/science.aaf4767
doi: 10.1126/science.aaf4767
Wang, S.; Wang, X. Angew. Chem. Int. Ed. 2016, 55, 2308. doi: 10.1002/anie.201507145
doi: 10.1002/anie.201507145
Qin, J.; Wang, S.; Ren, H.; Hou, Y.; Wang, X. Appl. Catal. B 2015, 179, 1. doi: 10.1016/j.apcatb.2015.05.005
doi: 10.1016/j.apcatb.2015.05.005
Wang, Y.; Zhang, Z.; Zhang, L.; Luo, Z.; Shen, J.; Lin, H.; Long, J.; Wu, J. C. S.; Fu, X.; Wang, X.; et al. J. Am. Chem. Soc. 2018, 140, 14595. doi: 10.1021/jacs.8b09344
doi: 10.1021/jacs.8b09344
Pan, Z.; Zheng, Y.; Guo, F.; Niu, P.; Wang, X. ChemSusChem 2017, 10, 87. doi: 10.1002/cssc.201600850
doi: 10.1002/cssc.201600850
Liang, F.; Lindberg, P.; Lindblad, P. Sustain. Energy Fuels 2018, 2, 2583. doi: 10.1039/C8SE00281A
doi: 10.1039/C8SE00281A
Pan, Z.; Zhang, G.; Wang, X. Angew. Chem. Int. Ed. 2019, 58, 7102, 7102. doi: 10.1002/anie.201902634
Lan, Z. A.; Wang, X. C. Acta Phys. -Chim. Sin. 2017, 33, 457.
doi: 10.3866/PKU.WHXB201701061
Kuriki, R.; Sekizawa, K.; Ishitani, O.; Maeda, K. Angew. Chem. Int. Ed. 2015, 54, 2406. doi: 10.1002/anie.201411170
doi: 10.1002/anie.201411170
Wu, L. Y.; Mu, Y. F.; Guo, X. X.; Zhang, W.; Zhang, Z. M.; Zhang, M.; Lu, T. B. Angew. Chem. Int. Ed. 2019, 58, 9491. doi: 10.1002/anie.201904537
doi: 10.1002/anie.201904537
Zhai, Q.; Xie, S.; Fan, W.; Zhang, Q.; Wang, Y.; Deng, W.; Wang, Y. Angew. Chem. Int. Ed. 2013, 52, 5776. doi: 10.1002/anie.201301473
doi: 10.1002/anie.201301473
Shown, I.; Samireddi, S.; Chang, Y. C.; Putikam, R.; Chang, P. H.; Sabbah, A.; Fu, F. Y.; Chen, W. F.; Wu, C. I.; Yu, T. Y.; et al. Nat. Commun. 2018, 9, 169. doi: 10.1038/s41467-017-02547-4
doi: 10.1038/s41467-017-02547-4
Qin, J.; Wang, S.; Wang, X. Appl. Catal. B 2017, 209, 476. doi: 10.1016/j.apcatb.2017.03.018
doi: 10.1016/j.apcatb.2017.03.018
Kuriki, R.; Matsunaga, H.; Nakashima, T.; Wada, K.; Yamakata, A.; Ishitani, O.; Maeda, K. J. Am. Chem. Soc. 2016, 138, 5159. doi: 10.1021/jacs.6b01997
doi: 10.1021/jacs.6b01997
Kang, Q.; Wang, T.; Li, P.; Liu, L.; Chang, K.; Li, M.; Ye, J. Angew. Chem. 2015, 127, 855. doi: 10.1002/ange.201409183
doi: 10.1002/ange.201409183
Cometto, C.; Kuriki, R.; Chen, L.; Maeda, K.; Lau, T. C.; Ishitani, O.; Robert, M. J. Am. Chem. Soc. 2018, 140, 7437. doi: 10.1021/jacs.8b04007
doi: 10.1021/jacs.8b04007
Pei, Z.; Li, H.; Huang, Y.; Xue, Q.; Huang, Y.; Zhu, M.; Wang, Z.; Zhi, C. Energy Environ. Sci. 2017, 10, 742. doi: 10.1039/C6EE03265F
doi: 10.1039/C6EE03265F
Wang, S.; Guan, B. Y.; Lou, X. W. Energy Environ. Sci. 2018, 11, 306. doi: 10.1039/C7EE02934A
doi: 10.1039/C7EE02934A
Zheng, Y.; Lin, L.; Ye, X.; Guo, F.; Wang, X. Angew. Chem. Int. Ed. 2014, 53, 11926. doi: 10.1002/anie.201407319
doi: 10.1002/anie.201407319
Wang, S.; Wang, X. Appl. Catal. B 2015, 162, 494. doi: 10.1016/j.apcatb.2014.07.026
doi: 10.1016/j.apcatb.2014.07.026
Kuriki, R.; Yamamoto, M.; Higuchi, K.; Yamamoto, Y.; Akatsuka, M.; Lu, D.; Yagi, S.; Yoshida, T.; Ishitani, O.; Maeda, K. Angew. Chem. Int. Ed. 2017, 56, 4867. doi: 10.1002/anie.201701627
doi: 10.1002/anie.201701627
Ouyang, T.; Wang, H. J.; Huang, H. H.; Wang, J. W.; Guo, S.; Liu, W. J.; Zhong, D. C.; Lu, T. B. Angew. Chem. Int. Ed. 2018, 57, 16480. doi: 10.1002/anie.201811010
doi: 10.1002/anie.201811010
Ouyang, T.; Huang, H. H.; Wang, J. W.; Zhong, D. C.; Lu, T. B. Angew. Chem. Int. Ed. 2017, 56, 738. doi: 10.1002/anie.201610607
doi: 10.1002/anie.201610607
Wang, S.; Wang, X. Angew. Chem. Int. Ed. 2015, 55, 2308. doi: 10.1002/anie.201507145
doi: 10.1002/anie.201507145
Fu, J.; Zhu, B.; Jiang, C.; Cheng, B.; You, W.; Yu, J. Small 2017, 13, 1603938. doi: 10.1002/smll.201603938
doi: 10.1002/smll.201603938
Apaydin, D. H.; Portenkirchner, E.; Jintanalert, P.; Strauss, M.; Luangchaiyaporn, J.; Sariciftci, N. S.; Thamyongkit, P. Sustain. Energy Fuels 2018, 2, 2747. doi: 10.1039/C8SE00422F
doi: 10.1039/C8SE00422F
Yang, Y.; Ajmal, S.; Zheng, X.; Zhang, L. Sustain. Energy Fuels 2018, 2, 510. doi: 10.1039/C7SE00371D
doi: 10.1039/C7SE00371D
Carenco, S.; Portehault, D.; Boissière, C.; Mézailles, N.; Sanchez, C. Adv. Mater. 2014, 26, 371. doi: 10.1002/adma.201303198
doi: 10.1002/adma.201303198
Shi, Y.; Zhang, B. Chem. Soc. Rev. 2016, 45, 1529. doi: 10.1039/C5CS00434A
doi: 10.1039/C5CS00434A
Liu, Q.; Tian, J.; Cui, W.; Jiang, P.; Cheng, N.; Asiri, A. M.; Sun, X. Angew. Chem. 2014, 126, 6828. doi: 10.1002/ange.201404161
doi: 10.1002/ange.201404161
Tian, J.; Liu, Q.; Asiri, A. M.; Sun, X. J. Am. Chem. Soc. 2014, 136, 7587. doi: 10.1021/ja503372r
doi: 10.1021/ja503372r
Li, D.; Baydoun, H.; Verani, C. N.; Brock, S. L. J. Am. Chem. Soc. 2016, 138, 4006. doi: 10.1021/jacs.6b01543
doi: 10.1021/jacs.6b01543
Yu, X. Y.; Feng, Y.; Guan, B.; Lou, X. W.; Paik, U. Energy Environ. Sci. 2016, 9, 1246. doi: 10.1039/C6EE00100A
doi: 10.1039/C6EE00100A
Stern, L. A.; Feng, L.; Song, F.; Hu, X. Energy Environ. Sci. 2015, 8, 2347. doi: 10.1039/C5EE01155H
doi: 10.1039/C5EE01155H
Pan, Z.; Niu, P.; Hou, Y.; Fang, Y.; Liu, M.; Wang, X. ChemSusChem 2019, 12, 1911. doi: 10.1002/cssc.201801691
doi: 10.1002/cssc.201801691
Indra, A.; Acharjya, A.; Menezes, P. W.; Merschjann, C.; Hollmann, D.; Schwarze, M.; Aktas, M.; Friedrich, A.; Lochbrunner, S.; Thomas, A.; et al. Angew. Chem. Int. Ed. 2017, 56, 1653. doi: 10.1002/anie.201611605
doi: 10.1002/anie.201611605
Sun, Z.; Zheng, H.; Li, J.; Du, P. Energy Environ. Sci. 2015, 8, 2668. doi: 10.1039/C5EE01310K
doi: 10.1039/C5EE01310K
Sun, X.; Lu, L.; Zhu, Q.; Wu, C.; Yang, D.; Chen, C.; Han, B. Angew. Chem. Int. Ed. 2018, 57, 2427. doi: 10.1002/anie.201712221
doi: 10.1002/anie.201712221
Calvinho, K. U. D.; Laursen, A. B.; Yap, K. M. K.; Goetjen, T. A.; Hwang, S.; Murali, N.; Mejia-Sosa, B.; Lubarski, A.; Teeluck, K. M.; Hall, E. S.; et al. Energy Environ. Sci. 2018, 11, 2550. doi: 10.1039/C8EE00936H
doi: 10.1039/C8EE00936H
Fu, Z. C.; Xu, R. C.; Moore, J. T.; Liang, F.; Nie, X. C.; Mi, C.; Mo, J.; Xu, Y.; Xu, Q. Q.; Yang, Z.; et al. Chem. Eur. J. 2018, 24, 4273. doi: 10.1002/chem.201800335
doi: 10.1002/chem.201800335
Wang, S.; Guan, B. Y.; Lu, Y.; Lou, X. W. D. J. Am. Chem. Soc. 2017, 139, 17305. doi: 10.1021/jacs.7b10733
doi: 10.1021/jacs.7b10733
Wang, S.; Guan, B. Y.; Lou, X. W. D. J. Am. Chem. Soc. 2018, 140, 5037. doi: 10.1021/jacs.8b02200
doi: 10.1021/jacs.8b02200
Chen, Y.; Jia, G.; Hu, Y.; Fan, G.; Tsang, Y. H.; Li, Z.; Zou, Z. Sustain. Energy Fuels 2017, 1, 1875. doi: 10.1039/C7SE00344G
doi: 10.1039/C7SE00344G
Li, F.; Chen, L.; Knowles, G. P.; MacFarlane, D. R.; Zhang, J. Angew. Chem. Int. Ed. 2017, 56, 505. doi: 10.1002/anie.201608279
doi: 10.1002/anie.201608279
Tu, W.; Zhou, Y.; Liu, Q.; Tian, Z.; Gao, J.; Chen, X.; Zhang, H.; Liu, J.; Zou, Z. Adv. Funct. Mater. 2012, 22, 1215. doi: 10.1002/adfm.201102566
doi: 10.1002/adfm.201102566
Cao, S.; Shen, B.; Tong, T.; Fu, J.; Yu, J. Adv. Funct. Mater. 2018, 28, 1800136. doi: 10.1002/adfm.201800136
doi: 10.1002/adfm.201800136
Ou, H.; Lin, L.; Zheng, Y.; Yang, P.; Fang, Y.; Wang, X. Adv. Mater. 2017, 29, 1700008. doi: 10.1002/adma.201700008
doi: 10.1002/adma.201700008
Pu, Z.; Wei, S.; Chen, Z.; Mu, S. Appl. Catal. B 2016, 196, 193. doi: 10.1016/j.apcatb.2016.05.027
doi: 10.1016/j.apcatb.2016.05.027
Gao, C.; Meng, Q.; Zhao, K.; Yin, H.; Wang, D.; Guo, J.; Zhao, S.; Chang, L.; He, M.; Li, Q.; et al. Adv. Mater. 2016, 28, 6485. doi: 10.1002/adma.201601387
doi: 10.1002/adma.201601387
Jiang, J.; Zhao, K.; Xiao, X.; Zhang, L. J. Am. Chem. Soc. 2012, 134, 4473. doi: 10.1021/ja210484t
doi: 10.1021/ja210484t
Yu, J.; Low, J.; Xiao, W.; Zhou, P.; Jaroniec, M. J. Am. Chem. Soc. 2014, 136, 8839. doi: 10.1021/ja5044787
doi: 10.1021/ja5044787
Jia, J.; Qian, C.; Dong, Y.; Li, Y. F.; Wang, H.; Ghoussoub, M.; Butler, K. T.; Walsh, A.; Ozin, G. A. Chem. Soc. Rev. 2017, 46, 4631. doi: 10.1039/C7CS00026J
doi: 10.1039/C7CS00026J
Li, F.; Xue, M.; Li, J.; Ma, X.; Chen, L.; Zhang, X.; MacFarlane, D. R.; Jie, Z. Angew. Chem. Int. Ed. 2017, 56, 14718. doi: 10.1002/anie.201710038
doi: 10.1002/anie.201710038
Zhao, Y.; Chen, G.; Bian, T.; Zhou, C.; Waterhouse, G. I. N.; Wu, L. Z.; Tung, C. H.; Smith, L. J.; O'Hare, D.; Zhang, T. Adv. Mater. 2015, 27, 7824. doi: 10.1002/adma.201503730
doi: 10.1002/adma.201503730
Yao, T.; Liu, L.; Xiao, C.; Zhang, X.; Liu, Q.; Wei, S.; Xie, Y. Angew. Chem. Int. Ed. 2013, 52, 7554. doi: 10.1002/anie.201302891
doi: 10.1002/anie.201302891
Popczun, E. J.; McKone, J. R.; Read, C. G.; Biacchi, A. J.; Wiltrout, A. M.; Lewis, N. S.; Schaak, R. E. J. Am. Chem. Soc. 2013, 135, 9267. doi: 10.1021/ja403440e
doi: 10.1021/ja403440e
Tang, C.; Zhang, R.; Lu, W.; Wang, Z.; Liu, D.; Hao, S; Du, G.; Asiri, A.M.; Sun, X. Angew. Chem. Int. Ed. 2017, 56, 842. doi: 10.1002/anie.201608899
doi: 10.1002/anie.201608899
Bai, Y.; Zhang, H.; Li, X.; Liu, L.; Xu, H.; Qiu, H.; Wang, Y. Nanoscale 2015, 7, 1446. doi: 10.1039/C4NR05862C
doi: 10.1039/C4NR05862C
Wang, S.; Wang, X. Appl. Catal. B 2015, 162, 494. doi: 10.1016/j.apcatb.2014.07.026
doi: 10.1016/j.apcatb.2014.07.026
Chen, Y.; Wang, B.; Lin, S.; Zhang, Y.; Wang, X. J. Phys. Chem. C 2014, 118, 29981. doi: 10.1021/jp510187c
doi: 10.1021/jp510187c
Wang, S.; Hou, Y.; Wang, X. ACS Appl. Mater. Interfaces 2015, 7, 4327. doi: 10.1021/am508766s
doi: 10.1021/am508766s
Ziruo Zhou , Wenyu Guo , Tingyu Yang , Dandan Zheng , Yuanxing Fang , Xiahui Lin , Yidong Hou , Guigang Zhang , Sibo Wang . Defect and nanostructure engineering of polymeric carbon nitride for visible-light-driven CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100245-100245. doi: 10.1016/j.cjsc.2024.100245
Mengjun Zhao , Yuhao Guo , Na Li , Tingjiang Yan . Deciphering the structural evolution and real active ingredients of iron oxides in photocatalytic CO2 hydrogenation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100348-100348. doi: 10.1016/j.cjsc.2024.100348
Zhen Shi , Wei Jin , Yuhang Sun , Xu Li , Liang Mao , Xiaoyan Cai , Zaizhu Lou . Interface charge separation in Cu2CoSnS4/ZnIn2S4 heterojunction for boosting photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100201-100201. doi: 10.1016/j.cjsc.2023.100201
Weixu Li , Yuexin Wang , Lin Li , Xinyi Huang , Mengdi Liu , Bo Gui , Xianjun Lang , Cheng Wang . Promoting energy transfer pathway in porphyrin-based sp2 carbon-conjugated covalent organic frameworks for selective photocatalytic oxidation of sulfide. Chinese Journal of Structural Chemistry, 2024, 43(7): 100299-100299. doi: 10.1016/j.cjsc.2024.100299
Xuejiao Wang , Suiying Dong , Kezhen Qi , Vadim Popkov , Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
Zongyi Huang , Cheng Guo , Quanxing Zheng , Hongliang Lu , Pengfei Ma , Zhengzhong Fang , Pengfei Sun , Xiaodong Yi , Zhou Chen . Efficient photocatalytic biomass-alcohol conversion with simultaneous hydrogen evolution over ultrathin 2D NiS/Ni-CdS photocatalyst. Chinese Chemical Letters, 2024, 35(7): 109580-. doi: 10.1016/j.cclet.2024.109580
Zhenchun Yang , Bixiao Guo , Zhenyu Hu , Kun Wang , Jiahao Cui , Lina Li , Chun Hu , Yubao Zhao . Molecular engineering towards dual surface local polarization sites on poly(heptazine imide) framework for boosting H2O2 photo-production. Chinese Chemical Letters, 2024, 35(8): 109251-. doi: 10.1016/j.cclet.2023.109251
Maosen Xu , Pengfei Zhu , Qinghong Cai , Meichun Bu , Chenghua Zhang , Hong Wu , Youzhou He , Min Fu , Siqi Li , Xingyan Liu . In-situ fabrication of TiO2/NH2−MIL-125(Ti) via MOF-driven strategy to promote efficient interfacial effects for enhancing photocatalytic NO removal activity. Chinese Chemical Letters, 2024, 35(10): 109524-. doi: 10.1016/j.cclet.2024.109524
Wenhao Wang , Guangpu Zhang , Qiufeng Wang , Fancang Meng , Hongbin Jia , Wei Jiang , Qingmin Ji . Hybrid nanoarchitectonics of TiO2/aramid nanofiber membranes with softness and durability for photocatalytic dye degradation. Chinese Chemical Letters, 2024, 35(7): 109193-. doi: 10.1016/j.cclet.2023.109193
Meijuan Chen , Liyun Zhao , Xianjin Shi , Wei Wang , Yu Huang , Lijuan Fu , Lijun Ma . Synthesis of carbon quantum dots decorating Bi2MoO6 microspherical heterostructure and its efficient photocatalytic degradation of antibiotic norfloxacin. Chinese Chemical Letters, 2024, 35(8): 109336-. doi: 10.1016/j.cclet.2023.109336
Qiang Zhang , Weiran Gong , Huinan Che , Bin Liu , Yanhui Ao . S doping induces to promoted spatial separation of charge carriers on carbon nitride for efficiently photocatalytic degradation of atrazine. Chinese Journal of Structural Chemistry, 2023, 42(12): 100205-100205. doi: 10.1016/j.cjsc.2023.100205
Tianhao Li , Wenguang Tu , Zhigang Zou . In situ photocatalytically enhanced thermogalvanic cells for electricity and hydrogen production. Chinese Journal of Structural Chemistry, 2024, 43(1): 100195-100195. doi: 10.1016/j.cjsc.2023.100195
Chaoqun Ma , Yuebo Wang , Ning Han , Rongzhen Zhang , Hui Liu , Xiaofeng Sun , Lingbao Xing . Carbon dot-based artificial light-harvesting systems with sequential energy transfer and white light emission for photocatalysis. Chinese Chemical Letters, 2024, 35(4): 108632-. doi: 10.1016/j.cclet.2023.108632
Jing Wang , Zenghui Li , Xiaoyang Liu , Bochao Su , Honghong Gong , Chao Feng , Guoping Li , Gang He , Bin Rao . Fine-tuning redox ability of arylene-bridged bis(benzimidazolium) for electrochromism and visible-light photocatalysis. Chinese Chemical Letters, 2024, 35(9): 109473-. doi: 10.1016/j.cclet.2023.109473
Muhammad Humayun , Mohamed Bououdina , Abbas Khan , Sajjad Ali , Chundong Wang . Designing single atom catalysts for exceptional electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100193-100193. doi: 10.1016/j.cjsc.2023.100193
Hong Dong , Feng-Ming Zhang . Covalent organic frameworks for artificial photosynthetic diluted CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100307-100307. doi: 10.1016/j.cjsc.2024.100307
Ping Wang , Tianbao Zhang , Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328
Maomao Liu , Guizeng Liang , Ningce Zhang , Tao Li , Lipeng Diao , Ping Lu , Xiaoliang Zhao , Daohao Li , Dongjiang Yang . Electron-rich Ni2+ in Ni3S2 boosting electrocatalytic CO2 reduction to formate and syngas. Chinese Journal of Structural Chemistry, 2024, 43(8): 100359-100359. doi: 10.1016/j.cjsc.2024.100359
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029