Citation: Qin Fanghong, Wan Ting, Qiu Jiangyuan, Wang Yihui, Xiao Biyuan, Huang Zaiyin. Temperature Effects on Photocatalytic Heat Changes and Kinetics via In Situ Photocalorimetry-Fluorescence Spectroscopy[J]. Acta Physico-Chimica Sinica, ;2020, 36(6): 190508. doi: 10.3866/PKU.WHXB201905087 shu

Temperature Effects on Photocatalytic Heat Changes and Kinetics via In Situ Photocalorimetry-Fluorescence Spectroscopy

  • Corresponding author: Qiu Jiangyuan, gxqiujiangyuan@yeah.net Huang Zaiyin, huangzaiyin@163.com
  • Received Date: 31 May 2019
    Revised Date: 7 July 2019
    Accepted Date: 17 July 2019
    Available Online: 19 June 2019

    Fund Project: the National Natural Science Foundation of China 21873022The project was supported by the National Natural Science Foundation of China (21873022, 21573048) and Innovation Project of Guangxi Graduate Education, China (gxun-chxzs2018062)Innovation Project of Guangxi Graduate Education, China gxun-chxzs2018062the National Natural Science Foundation of China 21573048

  • The thermodynamics and kinetics of photocatalytic processes provide the scientific foundation for the optimization of reaction conditions and establishment of reaction mechanisms. Because of the limited availability of techniques that can provide in situ thermodynamics coupled with spectral information during photo-driven processes, research regarding the thermodynamics of the photo-driven processes is rare and in-depth studies on their kinetics remain inadequate. Herein, a novel photocalorimetry-fluorescence spectroscopy system composed of a photocalorimeter and laser-induced fluorescence spectrometer based on a 405 nm laser was developed. This system could simultaneously monitor the thermal and spectral information during photocatalytic processes, providing a correlation between nonspecific thermodynamic and specific molecular fluorescence spectral results. A highly efficient, bionic Z-type g-C3N4@Ag@Ag3PO4 nano-composite photocatalyst was developed and characterized by field-emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). In situ thermodynamic and spectral kinetic information for Rhodamine B (RhB) degradation on g-C3N4@Ag@Ag3PO4 was obtained at five temperatures by synchronously monitoring the calorimetric and spectrometric results using the newly developed photocalorimetry-fluorescence spectroscopy system and the effects of temperature on various parameters were investigated. The catalytic decomposition comprised three stages at different temperatures: (ⅰ) photoresponse of RhB and photocatalyst, (ⅱ) competition between the endothermic photoresponse and exothermic RhB photodegradation, and (ⅲ) stable exothermic period of RhB photodegradation. The in situ heat flux and fluorescence spectra could be combined to estimate the concentration characteristics of the different photocatalytic reactions: (1) the spectral information suggested that the competitive endothermic and exothermic reactions followed first order kinetics, and the reaction rate constants (k) at five temperatures were calculated. The results also indicated that the degradation rate increased with increasing temperature. The activation energy at each temperature interval was determined, and yielded an average value of 23.82 kJ·mol−1. (2) The calorimetric results revealed that the subsequent stable exothermic period was a pseudo-zero-order process. The exothermic rates at 283.15, 288.15, 293.15, 298.15, and 303.15 K were determined to be 0.4668 ± 0.3875, 0.5314 ± 0.3379, 0.5064 ± 0.3234, 0.5328 ± 0.3377, and 0.5762 ± 0.3452 μJ·s−1, respectively. The novel photocalorimetry-fluorescence spectroscopy technique could concurrently obtain thermodynamic, thermo-kinetic, and molecular spectral information, allowing for the direct correlation of the thermodynamics, thermo-kinetics, and spectrokinetics with the underlying mechanisms of the reaction. This in situ technique integrated the thermal information with spectral information for improved understanding of the microscopic mechanisms of photo-driven processes, providing scientific support for the establishment of photothermal spectroscopy.
  • 加载中
    1. [1]

      Zhang, S. Y.; Bao, J. X.; Wu, B.; Zhong, L, S.; Sun, Y, H. Acta Phys. -Chim. Sin. 2019, 35 (9), 616.  doi: 10.3866/PKU.WHXB201810002

    2. [2]

      Gong, C.; Xiang, S. W.; Zhang, Z. Y.; Sun, L.; Ye, C. Q.; Lin, C. J. Acta Phys. -Chim. Sin. 2019, 35 (6), 616.  doi: 10.3866/PKU.WHXB201805082

    3. [3]

      Wang, W.; Li, G.; Xia, D.; An, T.; Zhao, H.; Wong, P. K. Environ. Sci: Nano 2017, 4 (4), 782. doi: 10.1039/C7EN00063D  doi: 10.1039/C7EN00063D

    4. [4]

      Fox, M. A; Dulay, M. T. Chem. Rev. 1993, 93 (1), 341. doi: 10.1021/cr00017a016  doi: 10.1021/cr00017a016

    5. [5]

      Meng, F.; Liu, Y.; Wang, J.; Tan, X.; Sun, H.; Liu, S.; Wang, S. J. Colloid Interface Sci. 2018, 532, 321. doi: 10.1016/j.jcis.2018.07.131  doi: 10.1016/j.jcis.2018.07.131

    6. [6]

      Zhang, L.; Mohamed, H. H.; Dillert, R.; Bahnemann, D. J. Photochem. Photobiol. C: Photochem. Rev. 2012, 13 (4), 263. doi: 10.1016/j.jphotochemrev.2012.07.002  doi: 10.1016/j.jphotochemrev.2012.07.002

    7. [7]

      Velázquez, J. J.; Fernández-González, R.; Díaz, L.; Melián, E. P.; Rodríguez, V. D.; Núñez, P. J. Alloy. Compd. 2017, 721, 405. doi: 10.1016/j.jallcom.2017.05.314  doi: 10.1016/j.jallcom.2017.05.314

    8. [8]

      Zhang, T.; Pan, G.; Zhou, Q. J. Environ. Sci. 2016, 42, 126. doi: 10.1016/j.jes.2015.05.008  doi: 10.1016/j.jes.2015.05.008

    9. [9]

      Liu, S, X., Liu, H. Foundation and Application of Photocatalysis and Photoelectricity; Chemical Industry Press: Beijing, 2006; pp. 59–64.

    10. [10]

      Xiao, M.; Huang, Z. Y.; Tang, H. F.; Lu, S. T.; Liu, C. Acta Phys.-Chim. Sin. 2017, 33 (2), 339.  doi: 10.3866/PKU.WHXB201611092

    11. [11]

      Zhang, J. W.; Wang, S.; Liu, F. S.; Fu, X. J.; Ma, G. Q.; Hou, M. S.; Tang, Z. Acta Phys. -Chim. Sin. 2019, 35 (8), 885.  doi: 10.3866/PKU.WHXB201812022

    12. [12]

      Ohtani B. Phys. Chem. Chem. Phys. 2014, 16 (5), 1788. doi: 10.1039/C3CP53653J  doi: 10.1039/C3CP53653J

    13. [13]

      Ghasemi, Z.; Younesi, H.; Zinatizadeh, A. A. J. Taiwan Inst. Chem. E 2016, 65, 357. doi: 10.1016/j.jtice.2016.05.039  doi: 10.1016/j.jtice.2016.05.039

    14. [14]

      Schneider, J.; Matsuoka, M.; Takeuchi, M.; Zhang, J.; Horiuchi, Y.; Anpo, M.; Bahnemann, D. W. Chem. Rev. 2014, 114 (19), 9919. doi: 10.1021/cr5001892  doi: 10.1021/cr5001892

    15. [15]

      Lee, K. M.; Hamid, S. B. A.; Lai, C. W. J. Nanomater. 2015, 2015, 9. doi: 10.1155/2015/940857  doi: 10.1155/2015/940857

    16. [16]

      Bauchard, E.; This, H. Talanta 2015, 131, 335. doi: 10.1016/j.talanta.2014.07.097  doi: 10.1016/j.talanta.2014.07.097

    17. [17]

      Gondal, M. A.; Hameed, A.; Yamani, Z. H.; Arfaj, A. Chem. Phys. Lett. 2004, 392 (4–6), 372. doi: 10.1016/j.cplett.2004.05.092  doi: 10.1016/j.cplett.2004.05.092

    18. [18]

      Mikko, M.; Shane, M. P.; Enrico, B.; Alexander, L.; Martijn, A. Z.; Filipp, F. Chem. Sci. 2017, 8 (3), 2179. doi: 10.1039/C6SC04378J  doi: 10.1039/C6SC04378J

    19. [19]

      Brady, G. A.; Halloran, J. W.; J. Mater. Sci. 1998, 33 (18), 4551. doi: 10.1023/A:1004416705140  doi: 10.1023/A:1004416705140

    20. [20]

      Li, X. X.; Fan, G. C.; Ma, Z.; Tan, X. C.; Huang, Z. Y. Sci. China Chem. 2014, 10, 1576.  doi: 10.1360/N032013-00066

    21. [21]

      Li, X. X.; Huang, Z. Y.; Fan, G. C.; Wu, Y. N.; Tan, X. C. Chem. J. Chin. Univ. 2014, 7, 1480.  doi: 10.7503/cjcu20140176

    22. [22]

      Li, X, X.; Huang, Z.; Liu, Z.; Diao, K.; Fan, G.; Huang, Z.; Tan, X. Appl. Catal. B-Environ. 2016, 181, 79. doi: 10.1016/j.apcatb.2015.07.036  doi: 10.1016/j.apcatb.2015.07.036

    23. [23]

      Li, X. X.; Wan, T.; Qiu, J. Y.; Wei, H.; Qin, F. H.; Wang, Y. H.; Huang, Z. Y.; Tan, X. C. Appl. Catal. B-Environ. 2017, 217, 591. doi: 10.1016/j.apcatb.2017.05.086  doi: 10.1016/j.apcatb.2017.05.086

    24. [24]

      Wan, T.; Li, X. X.; Huang, Z. Y.; Qiu, J. Y.; Zuo, C.; Tan, X. C. Chem. J. Chin. Univ. 2017, 38 (12), 2226.  doi: 10.7503/cjcu20170371

    25. [25]

      Chen, Y.; Huang, W.; He, D.; Situ, Y.; Huang, H. ACS Appl. Mater. Inter. 2014, 6 (16), 14405. doi: 10.1021/am503674e  doi: 10.1021/am503674e

    26. [26]

      Fu, X, C.; Shen, W, X.; Yao, T, Y. Physical Chemistry, 5th ed.; Higher Education Press: Beijing, 2006; pp. 163–201.

  • 加载中
    1. [1]

      Changjun You Chunchun Wang Mingjie Cai Yanping Liu Baikang Zhu Shijie Li . 引入内建电场强化BiOBr/C3N5 S型异质结中光载流子分离以实现高效催化降解微污染物. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-. doi: 10.3866/PKU.WHXB202407014

    2. [2]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    3. [3]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    4. [4]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    5. [5]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    6. [6]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    7. [7]

      Jianyin He Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030

    8. [8]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    9. [9]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

    10. [10]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    11. [11]

      Yang Xia Kangyan Zhang Heng Yang Lijuan Shi Qun Yi . 构建双通道路径增强iCOF/Bi2O3 S型异质结在纯水体系中光催化合成H2O2性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-. doi: 10.3866/PKU.WHXB202407012

    12. [12]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    13. [13]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    14. [14]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    15. [15]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    16. [16]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    17. [17]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    18. [18]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    19. [19]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    20. [20]

      Jingyu Cai Xiaoyu Miao Yulai Zhao Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, 2024, 39(4): 169-177. doi: 10.3866/PKU.DXHX202311028

Metrics
  • PDF Downloads(7)
  • Abstract views(924)
  • HTML views(137)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return