Citation: Qin Fanghong, Wan Ting, Qiu Jiangyuan, Wang Yihui, Xiao Biyuan, Huang Zaiyin. Temperature Effects on Photocatalytic Heat Changes and Kinetics via In Situ Photocalorimetry-Fluorescence Spectroscopy[J]. Acta Physico-Chimica Sinica, ;2020, 36(6): 190508. doi: 10.3866/PKU.WHXB201905087 shu

Temperature Effects on Photocatalytic Heat Changes and Kinetics via In Situ Photocalorimetry-Fluorescence Spectroscopy

  • Corresponding author: Qiu Jiangyuan, gxqiujiangyuan@yeah.net Huang Zaiyin, huangzaiyin@163.com
  • Received Date: 31 May 2019
    Revised Date: 7 July 2019
    Accepted Date: 17 July 2019
    Available Online: 19 June 2019

    Fund Project: the National Natural Science Foundation of China 21873022The project was supported by the National Natural Science Foundation of China (21873022, 21573048) and Innovation Project of Guangxi Graduate Education, China (gxun-chxzs2018062)Innovation Project of Guangxi Graduate Education, China gxun-chxzs2018062the National Natural Science Foundation of China 21573048

  • The thermodynamics and kinetics of photocatalytic processes provide the scientific foundation for the optimization of reaction conditions and establishment of reaction mechanisms. Because of the limited availability of techniques that can provide in situ thermodynamics coupled with spectral information during photo-driven processes, research regarding the thermodynamics of the photo-driven processes is rare and in-depth studies on their kinetics remain inadequate. Herein, a novel photocalorimetry-fluorescence spectroscopy system composed of a photocalorimeter and laser-induced fluorescence spectrometer based on a 405 nm laser was developed. This system could simultaneously monitor the thermal and spectral information during photocatalytic processes, providing a correlation between nonspecific thermodynamic and specific molecular fluorescence spectral results. A highly efficient, bionic Z-type g-C3N4@Ag@Ag3PO4 nano-composite photocatalyst was developed and characterized by field-emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). In situ thermodynamic and spectral kinetic information for Rhodamine B (RhB) degradation on g-C3N4@Ag@Ag3PO4 was obtained at five temperatures by synchronously monitoring the calorimetric and spectrometric results using the newly developed photocalorimetry-fluorescence spectroscopy system and the effects of temperature on various parameters were investigated. The catalytic decomposition comprised three stages at different temperatures: (ⅰ) photoresponse of RhB and photocatalyst, (ⅱ) competition between the endothermic photoresponse and exothermic RhB photodegradation, and (ⅲ) stable exothermic period of RhB photodegradation. The in situ heat flux and fluorescence spectra could be combined to estimate the concentration characteristics of the different photocatalytic reactions: (1) the spectral information suggested that the competitive endothermic and exothermic reactions followed first order kinetics, and the reaction rate constants (k) at five temperatures were calculated. The results also indicated that the degradation rate increased with increasing temperature. The activation energy at each temperature interval was determined, and yielded an average value of 23.82 kJ·mol−1. (2) The calorimetric results revealed that the subsequent stable exothermic period was a pseudo-zero-order process. The exothermic rates at 283.15, 288.15, 293.15, 298.15, and 303.15 K were determined to be 0.4668 ± 0.3875, 0.5314 ± 0.3379, 0.5064 ± 0.3234, 0.5328 ± 0.3377, and 0.5762 ± 0.3452 μJ·s−1, respectively. The novel photocalorimetry-fluorescence spectroscopy technique could concurrently obtain thermodynamic, thermo-kinetic, and molecular spectral information, allowing for the direct correlation of the thermodynamics, thermo-kinetics, and spectrokinetics with the underlying mechanisms of the reaction. This in situ technique integrated the thermal information with spectral information for improved understanding of the microscopic mechanisms of photo-driven processes, providing scientific support for the establishment of photothermal spectroscopy.
  • 加载中
    1. [1]

      Zhang, S. Y.; Bao, J. X.; Wu, B.; Zhong, L, S.; Sun, Y, H. Acta Phys. -Chim. Sin. 2019, 35 (9), 616.  doi: 10.3866/PKU.WHXB201810002

    2. [2]

      Gong, C.; Xiang, S. W.; Zhang, Z. Y.; Sun, L.; Ye, C. Q.; Lin, C. J. Acta Phys. -Chim. Sin. 2019, 35 (6), 616.  doi: 10.3866/PKU.WHXB201805082

    3. [3]

      Wang, W.; Li, G.; Xia, D.; An, T.; Zhao, H.; Wong, P. K. Environ. Sci: Nano 2017, 4 (4), 782. doi: 10.1039/C7EN00063D  doi: 10.1039/C7EN00063D

    4. [4]

      Fox, M. A; Dulay, M. T. Chem. Rev. 1993, 93 (1), 341. doi: 10.1021/cr00017a016  doi: 10.1021/cr00017a016

    5. [5]

      Meng, F.; Liu, Y.; Wang, J.; Tan, X.; Sun, H.; Liu, S.; Wang, S. J. Colloid Interface Sci. 2018, 532, 321. doi: 10.1016/j.jcis.2018.07.131  doi: 10.1016/j.jcis.2018.07.131

    6. [6]

      Zhang, L.; Mohamed, H. H.; Dillert, R.; Bahnemann, D. J. Photochem. Photobiol. C: Photochem. Rev. 2012, 13 (4), 263. doi: 10.1016/j.jphotochemrev.2012.07.002  doi: 10.1016/j.jphotochemrev.2012.07.002

    7. [7]

      Velázquez, J. J.; Fernández-González, R.; Díaz, L.; Melián, E. P.; Rodríguez, V. D.; Núñez, P. J. Alloy. Compd. 2017, 721, 405. doi: 10.1016/j.jallcom.2017.05.314  doi: 10.1016/j.jallcom.2017.05.314

    8. [8]

      Zhang, T.; Pan, G.; Zhou, Q. J. Environ. Sci. 2016, 42, 126. doi: 10.1016/j.jes.2015.05.008  doi: 10.1016/j.jes.2015.05.008

    9. [9]

      Liu, S, X., Liu, H. Foundation and Application of Photocatalysis and Photoelectricity; Chemical Industry Press: Beijing, 2006; pp. 59–64.

    10. [10]

      Xiao, M.; Huang, Z. Y.; Tang, H. F.; Lu, S. T.; Liu, C. Acta Phys.-Chim. Sin. 2017, 33 (2), 339.  doi: 10.3866/PKU.WHXB201611092

    11. [11]

      Zhang, J. W.; Wang, S.; Liu, F. S.; Fu, X. J.; Ma, G. Q.; Hou, M. S.; Tang, Z. Acta Phys. -Chim. Sin. 2019, 35 (8), 885.  doi: 10.3866/PKU.WHXB201812022

    12. [12]

      Ohtani B. Phys. Chem. Chem. Phys. 2014, 16 (5), 1788. doi: 10.1039/C3CP53653J  doi: 10.1039/C3CP53653J

    13. [13]

      Ghasemi, Z.; Younesi, H.; Zinatizadeh, A. A. J. Taiwan Inst. Chem. E 2016, 65, 357. doi: 10.1016/j.jtice.2016.05.039  doi: 10.1016/j.jtice.2016.05.039

    14. [14]

      Schneider, J.; Matsuoka, M.; Takeuchi, M.; Zhang, J.; Horiuchi, Y.; Anpo, M.; Bahnemann, D. W. Chem. Rev. 2014, 114 (19), 9919. doi: 10.1021/cr5001892  doi: 10.1021/cr5001892

    15. [15]

      Lee, K. M.; Hamid, S. B. A.; Lai, C. W. J. Nanomater. 2015, 2015, 9. doi: 10.1155/2015/940857  doi: 10.1155/2015/940857

    16. [16]

      Bauchard, E.; This, H. Talanta 2015, 131, 335. doi: 10.1016/j.talanta.2014.07.097  doi: 10.1016/j.talanta.2014.07.097

    17. [17]

      Gondal, M. A.; Hameed, A.; Yamani, Z. H.; Arfaj, A. Chem. Phys. Lett. 2004, 392 (4–6), 372. doi: 10.1016/j.cplett.2004.05.092  doi: 10.1016/j.cplett.2004.05.092

    18. [18]

      Mikko, M.; Shane, M. P.; Enrico, B.; Alexander, L.; Martijn, A. Z.; Filipp, F. Chem. Sci. 2017, 8 (3), 2179. doi: 10.1039/C6SC04378J  doi: 10.1039/C6SC04378J

    19. [19]

      Brady, G. A.; Halloran, J. W.; J. Mater. Sci. 1998, 33 (18), 4551. doi: 10.1023/A:1004416705140  doi: 10.1023/A:1004416705140

    20. [20]

      Li, X. X.; Fan, G. C.; Ma, Z.; Tan, X. C.; Huang, Z. Y. Sci. China Chem. 2014, 10, 1576.  doi: 10.1360/N032013-00066

    21. [21]

      Li, X. X.; Huang, Z. Y.; Fan, G. C.; Wu, Y. N.; Tan, X. C. Chem. J. Chin. Univ. 2014, 7, 1480.  doi: 10.7503/cjcu20140176

    22. [22]

      Li, X, X.; Huang, Z.; Liu, Z.; Diao, K.; Fan, G.; Huang, Z.; Tan, X. Appl. Catal. B-Environ. 2016, 181, 79. doi: 10.1016/j.apcatb.2015.07.036  doi: 10.1016/j.apcatb.2015.07.036

    23. [23]

      Li, X. X.; Wan, T.; Qiu, J. Y.; Wei, H.; Qin, F. H.; Wang, Y. H.; Huang, Z. Y.; Tan, X. C. Appl. Catal. B-Environ. 2017, 217, 591. doi: 10.1016/j.apcatb.2017.05.086  doi: 10.1016/j.apcatb.2017.05.086

    24. [24]

      Wan, T.; Li, X. X.; Huang, Z. Y.; Qiu, J. Y.; Zuo, C.; Tan, X. C. Chem. J. Chin. Univ. 2017, 38 (12), 2226.  doi: 10.7503/cjcu20170371

    25. [25]

      Chen, Y.; Huang, W.; He, D.; Situ, Y.; Huang, H. ACS Appl. Mater. Inter. 2014, 6 (16), 14405. doi: 10.1021/am503674e  doi: 10.1021/am503674e

    26. [26]

      Fu, X, C.; Shen, W, X.; Yao, T, Y. Physical Chemistry, 5th ed.; Higher Education Press: Beijing, 2006; pp. 163–201.

  • 加载中
    1. [1]

      Yadan Luo Hao Zheng Xin Li Fengmin Li Hua Tang Xilin She . 调节O,S共掺杂C3N4中的活性氧生成以促进光催化降解微塑料. Acta Physico-Chimica Sinica, 2025, 41(6): 100052-. doi: 10.1016/j.actphy.2025.100052

    2. [2]

      Changjun You Chunchun Wang Mingjie Cai Yanping Liu Baikang Zhu Shijie Li . 引入内建电场强化BiOBr/C3N5 S型异质结中光载流子分离以实现高效催化降解微污染物. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-. doi: 10.3866/PKU.WHXB202407014

    3. [3]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    4. [4]

      Yingqi BAIHua ZHAOHuipeng LIXinran RENJun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259

    5. [5]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    6. [6]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    7. [7]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    8. [8]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    9. [9]

      Hui Wang Abdelkader Labidi Menghan Ren Feroz Shaik Chuanyi Wang . 微观结构调控的g-C3N4在光催化NO转化中的最新进展:吸附/活化位点的关键作用. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-. doi: 10.1016/j.actphy.2024.100039

    10. [10]

      Jianyin He Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030

    11. [11]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    12. [12]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

    13. [13]

      Jingzhuo Tian Chaohong Guan Haobin Hu Enzhou Liu Dongyuan Yang . 废塑料促进S型NiCr2O4/孪晶Cd0.5Zn0.5S同质异质结光催化产氢. Acta Physico-Chimica Sinica, 2025, 41(6): 100068-. doi: 10.1016/j.actphy.2025.100068

    14. [14]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    15. [15]

      Qin Li Huihui Zhang Huajun Gu Yuanyuan Cui Ruihua Gao Wei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 100031-. doi: 10.3866/PKU.WHXB202402016

    16. [16]

      Yuchen Zhou Huanmin Liu Hongxing Li Xinyu Song Yonghua Tang Peng Zhou . 设计热力学稳定的贵金属单原子光催化剂用于乙醇的高效非氧化转化形成高纯氢和增值产物乙醛. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-. doi: 10.1016/j.actphy.2025.100067

    17. [17]

      Yang Xia Kangyan Zhang Heng Yang Lijuan Shi Qun Yi . 构建双通道路径增强iCOF/Bi2O3 S型异质结在纯水体系中光催化合成H2O2性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-. doi: 10.3866/PKU.WHXB202407012

    18. [18]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    19. [19]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    20. [20]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

Metrics
  • PDF Downloads(7)
  • Abstract views(1071)
  • HTML views(177)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return