Citation: Qiao Chengfang, Lü Lei, Xu Wenfeng, Xia Zhengqiang, Zhou Chunsheng, Chen Sanping, Gao Shengli. Synthesis, Thermal Decomposition Kinetics and Detonation Performance of a Three-Dimensional Solvent-Free Energetic Ag(I)-MOF[J]. Acta Physico-Chimica Sinica, ;2020, 36(6): 190508. doi: 10.3866/PKU.WHXB201905085 shu

Synthesis, Thermal Decomposition Kinetics and Detonation Performance of a Three-Dimensional Solvent-Free Energetic Ag(I)-MOF

  • Corresponding author: Chen Sanping, sanpingchen@126.com
  • Received Date: 31 May 2019
    Revised Date: 27 June 2019
    Accepted Date: 27 June 2019
    Available Online: 1 June 2019

    Fund Project: the National Natural Science Foundation of China 21727805Natural Science Basic Research Program of Shaanxi 2018JM5180the 64th China Postdoctoral Science Foundation Funded Project 2018M643706the National Natural Science Foundation of China 21703135The project was supported by the National Natural Science Foundation of China (21727805, 21673180, 21703135, 21803042), Natural Science Basic Research Program of Shaanxi (2017JZ002, 2018JM5180, 2019JQ-249, 2019JQ-067), the Project of Shaanxi Key Laboratory of Chemical Reaction Engineering (14JS112) and the 64th China Postdoctoral Science Foundation Funded Project (2018M643706)the National Natural Science Foundation of China 21803042Natural Science Basic Research Program of Shaanxi 2019JQ-067the Project of Shaanxi Key Laboratory of Chemical Reaction Engineering 14JS112the National Natural Science Foundation of China 21673180Natural Science Basic Research Program of Shaanxi 2017JZ002Natural Science Basic Research Program of Shaanxi 2019JQ-249

  • Solvent molecules can significantly reduce the heat of detonation and stability of energetic metal-organic framework (EMOF) materials, and the development of solvent-free EMOFs has become an effective strategy to prepare high-energy density materials. In this study, a solvent-free EMOF, [Ag2(DTPZ)]n (1) (N% = 32.58%), was synthesized by reacting a high-energy ligand, 2, 3-di(1H-tetrazol-5-yl)pyrazine (H2DTPZ), with silver ions under hydrothermal conditions, and it was structurally characterized by elemental analysis, infrared spectroscopy, X-ray diffraction, and thermal analysis. In 1, the DTPZ2− ligands that adopted a highly torsional configuration bridged the Ag+ ions in an octadentate coordination mode to form a three-dimensional framework (ρ = 2.812 g∙cm−3). The large steric effect and strong coordination ability of DTPZ2− effectively prevented the solvent molecules from binding with the metal centers or occupying the voids of 1. Moreover, the strong π-π stacking interactions [centroid-centroid distance = 0.34461(1) nm] between the tetrazole rings in different DTPZ2− ligands provided a high thermal stability to the framework (Te = 619.1 K, Tp = 658.7 K). Thermal analysis showed that a one-step rapid weight loss with intense heat release primarily occurred during the decomposition of 1, suggesting potential energetic characteristics. Non-isothermal thermokinetic analyses (based on the Kissinger and Ozawa-Doyle methods) were performed using differential scanning calorimetry to obtain the thermoanalysis kinetic parameters of the thermodecomposition of 1 (Ea = 272.1 kJ·mol−1, Eo = 268.9 kJ·mol−1; lgA =19.67 s−1). The related thermodynamic parameters [enthalpy of activation (ΔH = 266.9 kJ·mol−1), entropy of activation (ΔS = 125.4 J·mol−1·K−1), free energy of activation (ΔG = 188.3 kJ·mol−1)], critical temperature of thermal explosion (Tb = 607.1 K), and self-accelerating decomposition temperature (TSADT = 595.8 K) of the decomposition reaction were also calculated based on the decomposition peak temperature and extrapolated onset temperature when the heating rate approached zero. The results revealed that 1 featured good thermal safety, and its decomposition was a non-spontaneous entropy-driven process. The standard molar enthalpy for the formation of 1 was calculated to be (2165.99 ± 0.81) kJ·mol−1 based on its constant volume combustion energy determined using a precise rotating oxygen bomb calorimeter. Detonation and safety performance tests revealed that 1 was insensitive to impact and friction, and its heat of detonation (10.15 kJ·g−1) was higher than that of common ammonium nitrate explosives, such as octogen (HMX), hexogene (RDX), and 2, 4, 6-trinitrotoluene (TNT), indicating that 1 is a promising high-energy and insensitive material.
  • 加载中
    1. [1]

      Gao, H.; Shreeve, J. M. Chem. Rev. 2011, 111, 7377. doi: 10.1021/cr200039c  doi: 10.1021/cr200039c

    2. [2]

      Thottempudi, V.; Gao, H.; Shreeve, J. M. J. Am. Chem. Soc. 2011, 133, 6464. doi: 10. 1021/ja2013455  doi: 10.1021/ja2013455

    3. [3]

      Thottempudi, V.; Shreeve, J. M. J. Am. Chem. Soc. 2011, 133, 19982. doi: 10.1021/ja208990z  doi: 10.1021/ja208990z

    4. [4]

      Joo, Y. H.; Shreeve, J. M. J. Am. Chem. Soc. 2010, 132, 15081. doi: 10.1021/ja107729c  doi: 10.1021/ja107729c

    5. [5]

      Klapötke, T. M.; Stierstorfer, J. J. Am. Chem. Soc. 2009, 131, 1122. doi: 10.1021/ja8077522  doi: 10.1021/ja8077522

    6. [6]

      Dippold, A. A.; Klapötke, T. M. J. Am. Chem. Soc. 2013, 135, 9931. doi: 10.1021/ja404164j  doi: 10.1021/ja404164j

    7. [7]

      Mcdonald, K. A.; Seth, S.; Matzger, A. J. Cryst. Growth Des. 2015, 15, 5963. doi: 10.1021/acs.cgd.5b01436  doi: 10.1021/acs.cgd.5b01436

    8. [8]

      Zhang, S.; Yang, Q.; Liu, X. Y.; Qu, X. N.; Wei, Q.; Xie, G.; Chen, S. P.; Gao, S. L. Coord. Chem. Rev. 2016, 307, 292. doi: 10.1016/j.ccr.2015.08.006  doi: 10.1016/j.ccr.2015.08.006

    9. [9]

      Zhang, Q. H.; Shreeve, J. M. Angew. Chem. Int. Ed. 2014, 53, 2540. doi: 10.1002/anie.201310014  doi: 10.1002/anie.201310014

    10. [10]

      Zhang, J. C.; Su, H.; Dong, Y. L.; Zhang, P. C.; Du, Y.; Li, S. H.; Gozin, M.; Pang, S. P. Inorg. Chem. 2017, 56, 10281. doi: 10.1021/acs.inorgchem.7b01122  doi: 10.1021/acs.inorgchem.7b01122

    11. [11]

      Fu, H. R.; Wang, N.; Qin, J. H.; Han, M. L.; Ma, L. F.; Wang, F. Chem. Commun. 2018, 54, 11645. doi: 10.1039/C8CC05990J  doi: 10.1039/C8CC05990J

    12. [12]

      Zhang, J. H.; Shreeve, J. M. Dalton Trans. 2016, 45, 2363. doi: 10.1039/C5DT04456A  doi: 10.1039/C5DT04456A

    13. [13]

      Zhang, S.; Liu, X. Y.; Yang, Q.; Su, Z. Y.; Gao, W. J.; Wei, Q.; Xie, G.; Chen, S. P.; Gao, S. L. Chem. -Eur. J. 2014, 20, 7906. doi: 10.1002/chem.201402783  doi: 10.1002/chem.201402783

    14. [14]

      Qu, X. N.; Zhai, L. J.; Wang, B. Z.; Wei, Q.; Xie, G.; Chen, S. P.; Gao, S. L. Dalton Trans. 2016, 45, 17304. doi: 10.1039/C6DT03631G  doi: 10.1039/C6DT03631G

    15. [15]

      Song, X. X.; Zhang, S.; Zhao, G. W.; Zhang, W. D.; Chen, D. P.; Yang, Q.; Wei, Q.; Xie, G.; Yang, D. S.; Chen, S. P.; et al. RSC Adv. 2016, 6, 93231. doi: 10.1039/C6RA21132A  doi: 10.1039/C6RA21132A

    16. [16]

      Qu, X. N.; Zhai, L. J.; Xia, Z. Q.; Wang, B. Z.; Yang, Q.; Xie, G.; Chen, S. P.; Gao, S. L. Chin. J. Energ. Mater. 2018, 26, 937.  doi: 10.11934/CJEM2018220

    17. [17]

      Yang, Q.; Yang, G. L.; Zhang, W. D.; Zhang, S.; Yang, Z. H.; Xie, G.; Wei, Q.; Chen, S. P.; Gao, S. L. Chem. -Eur. J. 2017, 23, 9149. doi: 10.1002/chem.201701325  doi: 10.1002/chem.201701325

    18. [18]

      Demko, Z. P.; Sharpless, K. B. J. Org. Chem. 2001, 66, 7945. doi: 10.1021/jo010635w  doi: 10.1021/jo010635w

    19. [19]

      Meyer, R.; Köhler, J. Explosives, 4th ed.; VCH Publishers: New York, NY, USA, 1993; p. 149.

    20. [20]

      Meyer, R.; Köhler, J. Explosives, 4th ed.; VCH Publishers: New York, NY, USA, 1993; p. 197.

    21. [21]

      Yang, X. W.; Chen, S. P.; Gao, S. L.; Li, H. Y.; Shi, Q. Z. Instrum. Sci. Technol. 2002, 30, 311. doi: 10.1081/Cl-120013509  doi: 10.1081/Cl-120013509

    22. [22]

      Sheldrick, G. M. SHELXS-97, Program for Crystal Structure Solution; University of Göttingen, Göttingen, Germany, 1997.

    23. [23]

      Sheldrick, G. M. SHELXL-97, Program for Crystal Structure Refinement; University of Göttingen, Germany, 1997.

    24. [24]

      Qu, X. N.; Zhang, S.; Wang, B. Z.; Yang, Q.; Han, J.; Wei, Q.; Xie, G.; Chen, S. P. Dalton Trans. 2016, 45, 6968. doi: 10.1039/C6DT00218H  doi: 10.1039/C6DT00218H

    25. [25]

      Qu, X. N.; Yang, Q.; Han, J.; Wei, Q.; Xie, G.; Chen, S. P.; Gao, S. L. RSC Adv. 2016, 6, 46212. doi: 10.1039/C6RA07301H  doi: 10.1039/C6RA07301H

    26. [26]

      Spek, A. L. PLATON, A Multipurpose Crystallographic Tool; Utrecht University, Utrecht, Netherlands, 2003.

    27. [27]

      Kissinger, H. E. Anal. Chem. 1957, 29, 1702. doi: 10.1021/ac60131a045  doi: 10.1021/ac60131a045

    28. [28]

      Ozawa, T. Bull. Chem. Soc. Jpn. 1965, 38, 1881. doi: 10.1246/bcsj.38.1881  doi: 10.1246/bcsj.38.1881

    29. [29]

      Yi, J. H.; Zhao, F. Q.; Wang, B. Z.; Liu, Q. A.; Zhou, C.; Hu, R. Z.; Ren, Y. H.; Xu, S. Y.; Xu, K. Z.; Ren, X. N. J. Hazard. Mater. 2010, 181, 432. doi: 10.1016/j.jhazmat.2010.05.029  doi: 10.1016/j.jhazmat.2010.05.029

    30. [30]

      Lv, J. Y.; Chen, L. P.; Chen, W. H.; Gao, H. S.; Peng, M. J. Thermochim. Acta 2013, 571, 60. doi: 10.1016/j.tca.2013.08.029  doi: 10.1016/j.tca.2013.08.029

    31. [31]

      Zhang, T. L.; Hu, R. Z.; Xie, Y.; Li, F. P. Thermochim. Acta 1994, 244, 171. doi: 10.1016/0040-6031(94)80216-5  doi: 10.1016/0040-6031(94)80216-5

    32. [32]

      Liu, R.; Zhang, T. L.; Yang, L.; Zhou, Z. N.; Zhang, J. G. Chin. J. Explos. and Propell. 2013, 36, 16.  doi: 10.14077/j.issn.1007-7812.2013.05.003

    33. [33]

      Tao, Z.; Ren, Y.; Yang, L.; Zhang, T. L.; Qiao, X. J.; Zhang, J. G.; Zhou, Z. N. Chin. J. Explos. and Propell. 2011, 34, 19.  doi: 10.14077/j.issn.1007-7812.2011.01.010

    34. [34]

      Gao, H. X.; Zhao, F. Q.; Hu, R. Z.; Pan, Q.; Wang, B. Z.; Yang, W. X.; Gao, Y.; Gao, S. L.; Shi, Q. Z. Chin. J. Chem. 2006, 24, 177. doi: 10.1002/cjoc.200690034  doi: 10.1002/cjoc.200690034

    35. [35]

      Lide, D. R. Standard Thermodynamic Properties of Chemical Substances, CRC Handbook of Chemistry and Physics, Internet Version 2007, 87th ed.; Taylor and Francis: Boca Raton, FL, USA, 2007.

    36. [36]

      Kamlet, M. J.; Jacobs, S. J. Chem. Phys. 2003, 48, 23. doi: 10.1063/1.1667908  doi: 10.1063/1.1667908

    37. [37]

      Wang, Y.; Zhang, J. C.; Su, H.; Li, S. H.; Zhang, S. W.; Pang, S. P. J. Phys. Chem. A 2014, 118, 4575. doi: 10.1021/jp502857d  doi: 10.1021/jp502857d

    38. [38]

      Bushuyev, O. S.; Brown, P.; Maiti, A.; Gee, R. H.; Peterson, G. R.; Weeks, B. L.; Hope-Weeks, L. J. J. Am. Chem. Soc. 2012, 134, 1422. doi: 1021/ja09640k  doi: 10.1021/ja209640k

    39. [39]

      Shen, C.; Liu, Y.; Zhu, Z. Q.; Xu, Y. G.; Lu, M. Chem. Commun. 2017, 53, 7489. doi: 10.1039/C7CC03869K  doi: 10.1039/C7CC03869K

    40. [40]

      Li, S. H.; Wang, Y.; Qi, C.; Zhao, X. X.; Zhang, J. C.; Zhang, S. W.; Pang, S. P. Angew. Chem. Int. Ed. 2013, 52, 14031. doi: 10.1002/anie.201307118  doi: 10.1002/anie.201307118

    41. [41]

      Ma, X. H.; Cai, C.; Sun, W. J.; Song, W. M.; Ma, Y. L.; Liu, X. Y.; Xie, G.; Chen, S. P.; Gao, S. L. ACS Appl. Mater. Interfaces 2019, 11, 9233. doi: 10.1021/acsami.9b00834  doi: 10.1021/acsami.9b00834

    42. [42]

      Bushuyev, O. S.; Peterson, G. R.; Brown, P.; Maiti, A.; Gee, R. H.; Weeks, B. L.; Hope-Weeks, L. J. Chem. -Eur. J. 2013, 19, 1706. doi: 10.1002/chem.201203610  doi: 10.1002/chem.201203610

  • 加载中
    1. [1]

      Xin DongJing LiangZhijin XuHuajie WuLei WangShihai YouJunhua LuoLina Li . Exploring centimeter-sized crystals of bismuth-iodide perovskite toward highly sensitive X-ray detection. Chinese Chemical Letters, 2024, 35(6): 108708-. doi: 10.1016/j.cclet.2023.108708

    2. [2]

      Shunshun JiangJi ZhangJing WangShan-Tao Zhang . Excellent energy storage properties in non-stoichiometric Bi0.5Na0.5TiO3-based relaxor ferroelectric ceramics. Chinese Chemical Letters, 2024, 35(7): 108955-. doi: 10.1016/j.cclet.2023.108955

    3. [3]

      Bo YangPu-An LinTingwei ZhouXiaojia ZhengBing CaiWen-Hua Zhang . Facile surface regulation for highly efficient and thermally stable perovskite solar cells via chlormequat chloride. Chinese Chemical Letters, 2024, 35(10): 109425-. doi: 10.1016/j.cclet.2023.109425

    4. [4]

      Yi Herng ChanZhe Phak ChanSerene Sow Mun LockChung Loong YiinShin Ying FoongMee Kee WongMuhammad Anwar IshakVen Chian QuekShengbo GeSu Shiung Lam . Thermal pyrolysis conversion of methane to hydrogen (H2): A review on process parameters, reaction kinetics and techno-economic analysis. Chinese Chemical Letters, 2024, 35(8): 109329-. doi: 10.1016/j.cclet.2023.109329

    5. [5]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

    6. [6]

      Juan GuoMingyuan FangQingsong LiuXiao RenYongqiang QiaoMingju ChaoErjun LiangQilong Gao . Zero thermal expansion in Cs2W3O10. Chinese Chemical Letters, 2024, 35(7): 108957-. doi: 10.1016/j.cclet.2023.108957

    7. [7]

      Ting WangXin YuYaqiang Xie . Unlocking stability: Preserving activity of biomimetic catalysts with covalent organic framework cladding. Chinese Chemical Letters, 2024, 35(6): 109320-. doi: 10.1016/j.cclet.2023.109320

    8. [8]

      Ziyi Zhu Yang Cao Jun Zhang . CO2-switched porous metal-organic framework magnets. Chinese Journal of Structural Chemistry, 2024, 43(2): 100241-100241. doi: 10.1016/j.cjsc.2024.100241

    9. [9]

      Ruizhi Yang Xia Li Weiping Guo Zixuan Chen Hongwei Ming Zhong-Zhen Luo Zhigang Zou . New thermoelectric semiconductors Pb5Sb12+xBi6-xSe32 with ultralow thermal conductivity. Chinese Journal of Structural Chemistry, 2024, 43(3): 100268-100268. doi: 10.1016/j.cjsc.2024.100268

    10. [10]

      Chaozheng HePei ShiDonglin PangZhanying ZhangLong LinYingchun Ding . First-principles study of the relationship between the formation of single atom catalysts and lattice thermal conductivity. Chinese Chemical Letters, 2024, 35(6): 109116-. doi: 10.1016/j.cclet.2023.109116

    11. [11]

      Huan ZHANGJijiang WANGGuang FANLong TANGErlin YUEChao BAIXiao WANGYuqi ZHANG . A highly stable cadmium(Ⅱ) metal-organic framework for detecting tetracycline and p-nitrophenol. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 646-654. doi: 10.11862/CJIC.20230291

    12. [12]

      Tengjia Ni Xianbiao Hou Huanlei Wang Lei Chu Shuixing Dai Minghua Huang . Controllable defect engineering based on cobalt metal-organic framework for boosting oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100210-100210. doi: 10.1016/j.cjsc.2023.100210

    13. [13]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    14. [14]

      Xiangshuai LiJian ZhaoLi LuoZhuohao JiaoYing ShiShengli HouBin Zhao . Visual and portable detection of metronidazole realized by metal-organic framework flexible sensor and smartphone scanning. Chinese Chemical Letters, 2024, 35(10): 109407-. doi: 10.1016/j.cclet.2023.109407

    15. [15]

      Rongliang DengYihang ChenXiaotong FanGuolong ChenShuli WangChangzhi YuXiao YangTingzhu WuZhong ChenYue Lin . Break of thermal equilibrium between optical and acoustic phonon branches of CsPbI3 under continuous-wave light excitation and cryogenic temperature. Chinese Chemical Letters, 2024, 35(7): 109346-. doi: 10.1016/j.cclet.2023.109346

    16. [16]

      Yuxin WangZhengxuan SongYutao LiuYang ChenJinping LiLibo LiJia Yao . Methyl functionalization of trimesic acid in copper-based metal-organic framework for ammonia colorimetric sensing at high relative humidity. Chinese Chemical Letters, 2024, 35(6): 108779-. doi: 10.1016/j.cclet.2023.108779

    17. [17]

      Xinzhi Ding Chong Liu Jing Niu Nan Chen Shutao Xu Yingxu Wei Zhongmin Liu . Solid-state NMR study of the stability of MOR framework aluminum. Chinese Journal of Structural Chemistry, 2024, 43(4): 100247-100247. doi: 10.1016/j.cjsc.2024.100247

    18. [18]

      Hong Chen Mao-Yin Ran Long-Hua Li Xin-Tao Wu Hua Lin . [Cs14Cl][Tm71Se110]: An unusual salt-inclusion chalcogenide containing different valent Tm centers and ultralow thermal conductivity. Chinese Journal of Structural Chemistry, 2024, 43(10): 100397-100397. doi: 10.1016/j.cjsc.2024.100397

    19. [19]

      Benjian Xin Rui Wang Lili Liu Zhiqiang Niu . Metal-organic framework derived MnO@C/CNTs composite for high-rate lithium-based semi-solid flow batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100116-100116. doi: 10.1016/j.cjsc.2023.100116

    20. [20]

      Ke-Ai Zhou Lian Huang Xing-Ping Fu Li-Ling Zhang Yu-Ling Wang Qing-Yan Liu . Fluorinated metal-organic framework for methane purification from a ternary CH4/C2H6/C3H8 mixture. Chinese Journal of Structural Chemistry, 2023, 42(11): 100172-100172. doi: 10.1016/j.cjsc.2023.100172

Metrics
  • PDF Downloads(9)
  • Abstract views(639)
  • HTML views(62)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return