Citation: Zhen Wei, Minjie Li, Wencong Lu. Theoretical Study of High-Efficiency Organic Dyes with Different Electron-Withdrawing Groups Based on R6 toward Dye-Sensitized Solar Cells[J]. Acta Physico-Chimica Sinica, ;2021, 37(10): 190508. doi: 10.3866/PKU.WHXB201905084 shu

Theoretical Study of High-Efficiency Organic Dyes with Different Electron-Withdrawing Groups Based on R6 toward Dye-Sensitized Solar Cells

  • Corresponding author: Minjie Li, minjieli@shu.edu.cn Wencong Lu, wclu@shu.edu.cn
  • Received Date: 30 May 2019
    Revised Date: 16 July 2019
    Accepted Date: 25 July 2019
    Available Online: 31 July 2019

    Fund Project: the National Key Research and Development Program of China 2016YFB0700504Natural Science Foundation of Shanghai, China 16ZR1411500Science and Technology Commission of Shanghai Municipality, China 18520723500

  • Dye-sensitized solar cells (DSSCs) are the most promising alternatives to traditional fossil energy because of their advantages of low production cost, facile structure, relatively low environmental impact, relatively high photoelectronic absorption efficiency, and overall high efficiency. In addition, several studies on sensitizers as vital components have been conducted over the last three decades. Compared to metal dyes, metal-free organic dyes have been considered as promising candidates because of their simple fabrication, multiple structures, high molar absorption coefficients, easily tunable properties, and environmental friendliness. In this study, we systematically investigated the optoelectronic properties of six metal-free organic donor-acceptor dyes (RD1–6) derived from the known dye R6 by using the density functional theory (DFT) and time-dependent DFT methods. Cell performance parameters were discussed, including the geometrical and electronic structures, absorption spectrum, adsorption energy, light harvesting efficiency (LHE) curve, predictive short circuit current density (JscPred.), predictive open circuit voltage (VocPred.), and theoretical power conversion efficiency (PCE). Results revealed that all the designed dyes exhibited high theoretical PCE. In particular, dyes RD1, 2, and 4–6 showed greater conjugations, and dyes RD1–3 had smaller energy gaps than those of the reference dye. In addition, dyes RD1–3, 5, and 6 exhibited better light harvesting capacities that covered the entire visible region and extended to the near-infrared region with obviously red-shift maximum absorption wavelengths (λmax), wider LHE curves, and higher JscPred. as compared to the reference dye. It was critical that dyes RD1 and 2 not only have greater conjugations and narrow band gaps but also good light harvesting capacities with more than 56-nm red-shift maximum absorption wavelengths and broadened LHE curves than those of the reference dye. Notably, mainly because of an average increment of 12.0% of JscPred., a remarkable increment of the theoretical power conversion efficiency was observed from 12.6% for dye R6 to 14.1% for dyes RD1 and 2. Thus, dyes RD1 and 2 exhibited superior cell performances and could be promising sensitizer candidates for highly efficient DSSCs. These results could be used to guide effective synthetic efforts in the discovery of efficient metal-free organic dye sensitizers in DSSCs.
  • 加载中
    1. [1]

      O'Regan, B.; Grätzel, M. Nature 1991, 353, 737. doi: 10.1038/353737a0  doi: 10.1038/353737a0

    2. [2]

      Yang, L.; Li, Y.; Chen, S.; Zhang, J.; Zhang, M.; Wang, P. Acta Phys. -Chim. Sin. 2016, 32, 329.  doi: 10.3866/PKU.WHXB201511031

    3. [3]

      Mathew, S.; Yella, A.; Gao, P.; Humphry-Baker, R.; Curchod, B. F.; Ashari-Astani, N. Nat. Chem. 2014, 6, 242. doi: 10.1038/nchem.1861  doi: 10.1038/nchem.1861

    4. [4]

      Yang, Z.; Shao, D.; Li, J. Spectrochim. Acta A 2018, 196, 385. doi: 10.1016/j.saa.2018.02.002  doi: 10.1016/j.saa.2018.02.002

    5. [5]

      Listorti, A.; O'Regan, B.; Durrant, J. R. Chem. Mater. 2011, 23, 3381. doi: 10.1021/cm200651e  doi: 10.1021/cm200651e

    6. [6]

      Mohamed, R. E.; Rui, S.; Fadda, A. A.; Etman, H. A.; Eman, H. T.; Ahmed, E. New J. Chem. 2018, 42, 11430. doi: 10.1039/c8nj01482e  doi: 10.1039/c8nj01482e

    7. [7]

      Jia, H. L.; Peng, Z. J.; Guan, M. Y. New J. Chem. 2018, 42, 13770. doi: 10.1039/c8nj02889c  doi: 10.1039/c8nj02889c

    8. [8]

      Bisht, R.; Sudhakar, V.; Karjule, N.; Nithyanandhan, J. ACS Appl. Mater. Inter. 2018, 10, 26335. doi: 10.1021/acsami.8b09866  doi: 10.1021/acsami.8b09866

    9. [9]

      Santhini, P. V.; Jayadev, V.; Sourava, C.; Sivasankaran, L.; Nitha, P. R.; Chaithanya, M. V.; Rakesh, K. M. New J. Chem. 2019, 43, 862. doi: 10.1039/c8nj04561e  doi: 10.1039/c8nj04561e

    10. [10]

      Chunxiang D. A.; Kazuhiro, K.; Mizuho, K.; Dai, M.; Kathleen, I.; Moineau, C. C.; Shogo, M. J. Photochem. Photobiol. A 2018, 3659, 403. doi: 10.1016/j.jphotochem.2018.01.021  doi: 10.1016/j.jphotochem.2018.01.021

    11. [11]

      Telugu, B. R.; Peddaboodi, G.; Jayraj, V. V.; Saurabh, S. S.; Parameswar, K. I. J. Photochem. Photobiol. A 2019, 6030, 31901. doi: 10.1016/j.jphotochem.2019.02.015  doi: 10.1016/j.jphotochem.2019.02.015

    12. [12]

      Xu, Z. J.; Li, Y. Y.; Zhang, W. J. Spectrochim. Acta A 2019, 212, 272. doi: 10.1016/j.saa.2019.01.002  doi: 10.1016/j.saa.2019.01.002

    13. [13]

      Yao, Z.; Wu, H.; Li, Y.; Wang, J.; Zhang, J.; Zhang, M.; Guo, Y.; Wang, P. Energy Environ. Sci. 2015, 8, 3192. doi: 10.1039/C5EE02822A  doi: 10.1039/C5EE02822A

    14. [14]

      Li, Z. G.; Lu, T.; Gao, H.; Zhang, Q.; Li, M. J.; Ren, W.; Lu, W. C. Acta Phys.-Chim. Sin. 2017, 9, 1789.  doi: 10.3866/PKU.WHXB201705082

    15. [15]

      Yang, Z.; Liu, C.; Li, K.; Cole, J. M.; Cao, D. ACS Appl. Energy Mater. 2018, 1, 1435. doi: 10.1021/acsaem.7b00154  doi: 10.1021/acsaem.7b00154

    16. [16]

      Yan, F.; Tian, L.; Xu, Y.; Li, M.; Zhen, W.; Liu, H.; Lu, W. C. Dyes Pigments 2018, 155, 292. doi: 10.1016/j.dyepig.2018.03.045  doi: 10.1016/j.dyepig.2018.03.045

    17. [17]

      Wang, L.; Zhang, J.; Duan, Y. C.; Pan, Q. Q.; Wu, Y.; Geng, Y.; Su, Z. M. J. Photochem. Photobiol. A 2019, 369, 150. doi: 10.1039/C8NJ03592J  doi: 10.1039/C8NJ03592J

    18. [18]

      Li, M.; Kou, L.; Diao, L.; Zhang, Q.; Li, Z.; Wu, Q.; Lu, W.; Pan, D. J. Phys. Chem. A 2015, 119, 3299. doi: 10.1021/acs.jpca.5b00798  doi: 10.1021/acs.jpca.5b00798

    19. [19]

      Walid, S.; Zeinab, M. H.; Basant, A. A.; Mohamed, M. E.; Rayhan, M. A.; Nageh, K. A. S. J. Photochem. Photobiol. A 2018, 367, 128. doi: 10.1016/j.jphotochem.2018.08.034  doi: 10.1016/j.jphotochem.2018.08.034

    20. [20]

      Puttavva, M.; Goli, N.; Jung, W. Y.; Sun, H. J.; Young, D. G. New J. Chem. 2019, 43, 3017. doi: 10.1039/c8nj06083e  doi: 10.1039/c8nj06083e

    21. [21]

      Yao, Z.; Zhang, M.; Wu, H.; Yang, L.; Li, R.; Wang, P. J. Am. Chem. Soc. 2015, 137, 3799. doi: 10.1021/jacs.5b01537  doi: 10.1021/jacs.5b01537

    22. [22]

      Yao, Z.; Zhang, M.; Li, R.; Yang, L.; Qiao, Y.; Wang, P. Angew. Chem. Int. Ed. 2015, 54, 5994. doi: 10.1002/ange.201501195  doi: 10.1002/ange.201501195

    23. [23]

      Yao, Z.; Wu, H.; Li, Y.; Wang, J.; Zhang, J.; Zhang, M.; Guo, Y.; Wang, P. Energ. Environ. Sci. 2015, 8, 3192. doi: 10.1039/c5ee02822a  doi: 10.1039/c5ee02822a

    24. [24]

      Ren, Y.; Li, Y.; Chen, S.; Liu, J.; Zhang, J.; Wang, P. Energ. Environ. Sci. 2016, 9, 1390. doi: 10.1039/C5EE03309H  doi: 10.1039/C5EE03309H

    25. [25]

      Ren, Y.; Liu, J.; Zheng, A.; Dong, X.; Wang, P. Adv. Sci. 2017, 4, 1700099. doi: 10.1002/advs.201700099  doi: 10.1002/advs.201700099

    26. [26]

      Ren, Y.; Sun, D.; Cao, Y.; Tsao, H. N.; Yuan, Y.; Zakeeruddin, S. M.; Wang, P.; Gratzel, M. J. Am. Chem. Soc. 2018, 140, 2405. doi: 10.1021/jacs.7b12348  doi: 10.1021/jacs.7b12348

    27. [27]

      Becke, A. D. J. Chem. Phy. 1993, 98, 5648. doi: 10.1063/1.464913  doi: 10.1063/1.464913

    28. [28]

      Chen, S. L.; Yang, L. N.; Li, Z. S. J. Power Sources 2013, 223, 86. doi: 10.1016/j.jpowsour.2012.09.053  doi: 10.1016/j.jpowsour.2012.09.053

    29. [29]

      Cossi, M.; Rega, N.; Scalmani, G.; Barone, V. J. Comput. Chem. 2003, 24, 669. doi: 10.1002/jcc.10189  doi: 10.1002/jcc.10189

    30. [30]

      Wang, Y. L.; Wu, G. S. Acta Phys. -Chim. Sin. 2007, 23, 1831.  doi: 10.1016/S1872-1508(07)60086-2

    31. [31]

      Hao, D.; Lin, Z.; Xin, Z. Theor. Chem. Acc. 2014, 133, 1. doi: 10.1007/s00214-014-1496-3  doi: 10.1007/s00214-014-1496-3

    32. [32]

      Yanai, T.; Tew, D. P.; Handy, N. C. Chem. Phys. Lett. 2004, 393, 51. doi: 10.1016/j.cplett.2004.06.011  doi: 10.1016/j.cplett.2004.06.011

    33. [33]

      Lu, X.; Shao, Y.; Wei, S.; Zhao, Z.; Li, K.; Guo, C.; Wang, W.; Zhang, M.; Guo, W. J. Mater. Chem. C 2015, 3, 10129. doi: 10.1039/C5TC02286J  doi: 10.1039/C5TC02286J

    34. [34]

      Heyd, J.; Scuseria, G. E.; Ernzerhof, M. J. Chem. Phys. 2006, 124, 21. doi: 10.1063/1.2204597  doi: 10.1063/1.2204597

    35. [35]

      Lynch, B. J.; Fast, P. L.; Harris, M.; Truhlar, D. G. J. Phys. Chem. A 2000, 104, 4811. doi: 10.1021/jp000497z  doi: 10.1021/jp000497z

    36. [36]

      Becke, A. D. J. Chem. Phys. 1993, 98, 1372. doi: 10.1063/1.464304  doi: 10.1063/1.464304

    37. [37]

      Zhao, Y.; Truhlar, D. G. Theor. Chem. Acc. 2008, 120, 215. doi: 10.1007/s00214-007-0401-8  doi: 10.1007/s00214-007-0401-8

    38. [38]

      Fan, W. J.; Chang, Y. Z.; Zhao, J. L.; Xu, Z. N.; Chen, Y. New J. Chem. 2018, 42, 20163. doi: 10.1016/j.jphotochem.2018.10.022  doi: 10.1016/j.jphotochem.2018.10.022

    39. [39]

      Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G., Barone, V.; Petersson, G. A.; Nakatsuji, X.; et al. Gaussian 16, Revision B.03, Gaussian, Inc.: Wallingford, CT, USA, 2016.

    40. [40]

      Lu, T.; Chen, F. J. Comput. Chem. 2012, 33, 580. doi: 10.1002/jcc.22885  doi: 10.1002/jcc.22885

    41. [41]

      De Angelis, F.; Tilocca, A.; Selloni, A. J. Am. Chem. Soc. 2004, 126, 15024. doi: 10.1021/ja045152z  doi: 10.1021/ja045152z

    42. [42]

      De Angelis, F. Chem. Phys. Lett. 2010, 493, 323. doi: 10.1016/j.cplett.2010.05.064  doi: 10.1016/j.cplett.2010.05.064

    43. [43]

      Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865. doi: 10.1103/physrevlett.77.3865  doi: 10.1103/physrevlett.77.3865

    44. [44]

      Perdew, J. P.; Wang, Y. Phys. Rev. B 2018, 98, 7. doi: 10.1103/PhysRevB.98.079904  doi: 10.1103/PhysRevB.98.079904

    45. [45]

      Mulliken, R. S. J. Chem. Phys. 1955, 23, 1833. doi: 10.1063/1.1740588  doi: 10.1063/1.1740588

    46. [46]

      Zeng, W.; Liu, T.; Wang, Z.; Tsukimoto, S.; Saito, M.; Ikuhara, Y. Mater. Trans. 2010, 51, 171. doi: 10.2320/matertrans.M2009317  doi: 10.2320/matertrans.M2009317

    47. [47]

      Graetzel, M. Acc. Chem. Res. 2009, 42, 1788. doi: 10.1021/ar900141y  doi: 10.1021/ar900141y

    48. [48]

      Zhang, J.; Li, H. B.; Zhang, J. Z.; Wu, Y.; Geng, Y.; Fu, Q.; Su, Z. M. J. Mater. Chem. A 2013, 1, 14000. doi: 10.1039/c3ta12311a  doi: 10.1039/c3ta12311a

    49. [49]

      Nazeeruddin, M. K.; Kay, A.; Rodicio, I.; Humphry-Baker, R.; Mueller, E.; Liska, P.; Vlachopoulos, N.; Graetzel, M. J. Am. Chem. Soc. 1993, 115, 6382. doi: 10.1021/ja00067a063  doi: 10.1021/ja00067a063

    50. [50]

      Marinado, T.; Nonomura, K.; Nissfolk, J.; Karlsson, M. K.; Hagberg, D. P.; Sun, L.; Mori, S.; Hagfeldt, A. Langmuir 2010, 26, 2592. doi: 10.1021/la902897z  doi: 10.1021/la902897z

    51. [51]

      Feldt, S. M.; Gibson, E. A.; Gabrielsson, E.; Sun, L.; Boschloo, G.; Hagfeldt, A. J. Am. Chem. Soc. 2010, 132, 16714. doi: 10.1021/ja1088869  doi: 10.1021/ja1088869

    52. [52]

      Muscat, J. P.; Newns, D. M. Prog. Surf. Sci. 1978, 9, 1. doi: 10.1016/0079-6816(78)90005-9  doi: 10.1016/0079-6816(78)90005-9

    53. [53]

      Schiff, L. I. Phys. Today 1949, 24, 70. doi: 10.1119/1.1934159  doi: 10.1119/1.1934159

    54. [54]

      Persson, P.; Lundqvist, M. J.; Ernstorfer, R.; Goddard, W. A.; Willig, F. J. Chem. Theory Comput. 2006, 2, 441. doi: 10.1021/ct050141x  doi: 10.1021/ct050141x

  • 加载中
    1. [1]

      Yikai Wang Xiaolin Jiang Haoming Song Nan Wei Yifan Wang Xinjun Xu Cuihong Li Hao Lu Yahui Liu Zhishan Bo . 氰基修饰的苝二酰亚胺衍生物作为膜厚不敏感型阴极界面材料用于高效有机太阳能电池. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-. doi: 10.3866/PKU.WHXB202406007

    2. [2]

      Yanglin Jiang Mingqing Chen Min Liang Yige Yao Yan Zhang Peng Wang Jianping Zhang . Experimental and Theoretical Investigations of Solvent Polarity Effect on ESIPT Mechanism in 4′-N,N-diethylamino-3-hydroxybenzoflavone. Acta Physico-Chimica Sinica, 2025, 41(2): 100012-. doi: 10.3866/PKU.WHXB202309027

    3. [3]

      Lang GaoCen ZhouRui WangFeng LanBohang AnXiaozhou HuangXiao Zhang . Unveiling inverse vulcanized polymers as metal-free, visible-light-driven photocatalysts for cross-coupling reactions. Chinese Chemical Letters, 2024, 35(4): 108832-. doi: 10.1016/j.cclet.2023.108832

    4. [4]

      Tao BanXi-Yang YuHai-Kuo TianZheng-Qing HuangChun-Ran Chang . One-step conversion of methane and formaldehyde to ethanol over SA-FLP dual-active-site catalysts: A DFT study. Chinese Chemical Letters, 2024, 35(4): 108549-. doi: 10.1016/j.cclet.2023.108549

    5. [5]

      Chaoqun MaYuebo WangNing HanRongzhen ZhangHui LiuXiaofeng SunLingbao Xing . Carbon dot-based artificial light-harvesting systems with sequential energy transfer and white light emission for photocatalysis. Chinese Chemical Letters, 2024, 35(4): 108632-. doi: 10.1016/j.cclet.2023.108632

    6. [6]

      Huaixiang YangMiao-Miao LiAijun ZhangJiefei GuoYongqi YuWei Ding . Visible-light-induced photocatalyst- and metal-free radical phosphinoyloximation of alkenes with tert-butyl nitrite as bifunctional reagent. Chinese Chemical Letters, 2025, 36(3): 110425-. doi: 10.1016/j.cclet.2024.110425

    7. [7]

      Lei ZhouYoujun ZhouLizhen FangYiqiao BaiYujia MengLiang LiJie YangYong Yao . Pillar[5]arene based artificial light-harvesting supramolecular polymer for efficient and recyclable photocatalytic applications. Chinese Chemical Letters, 2024, 35(9): 109509-. doi: 10.1016/j.cclet.2024.109509

    8. [8]

      Xuanyu WangZhao GaoWei Tian . Supramolecular confinement effect enabling light-harvesting system for photocatalytic α-oxyamination reaction. Chinese Chemical Letters, 2024, 35(11): 109757-. doi: 10.1016/j.cclet.2024.109757

    9. [9]

      Ran CenYan-Yan TangLi-Xia ChenZhu TaoXin Xiao . A novel supramolecular assembly based on nor-seco-cucurbit[10]uril for spermine sensing and artificial light-harvesting. Chinese Chemical Letters, 2025, 36(1): 109744-. doi: 10.1016/j.cclet.2024.109744

    10. [10]

      Xiuwen XuQuan ZhouYacong WangYunjie HeQiang WangYuan WangBing Chen . Expanding the toolbox of metal-free organic halide perovskite for X-ray detection. Chinese Chemical Letters, 2024, 35(9): 109272-. doi: 10.1016/j.cclet.2023.109272

    11. [11]

      Jieqiong XuWenbin ChenShengkai LiQian ChenTao WangYadong ShiShengyong DengMingde LiPeifa WeiZhuo Chen . Organic stoichiometric cocrystals with a subtle balance of charge-transfer degree and molecular stacking towards high-efficiency NIR photothermal conversion. Chinese Chemical Letters, 2024, 35(10): 109808-. doi: 10.1016/j.cclet.2024.109808

    12. [12]

      Jaeyong AhnZhenping LiZhiwei WangKe GaoHuagui ZhuoWanuk ChoiGang ChangXiaobo ShangJoon Hak Oh . Surface doping effect on the optoelectronic performance of 2D organic crystals based on cyano-substituted perylene diimides. Chinese Chemical Letters, 2024, 35(9): 109777-. doi: 10.1016/j.cclet.2024.109777

    13. [13]

      Dan-Ying XingXiao-Dan ZhaoChuan-Shu HeBo Lai . Kinetic study and DFT calculation on the tetracycline abatement by peracetic acid. Chinese Chemical Letters, 2024, 35(9): 109436-. doi: 10.1016/j.cclet.2023.109436

    14. [14]

      Hao CaiXiaoyan WuLei JiangFeng YuYuxiang YangYan LiXian ZhangJian LiuZijian LiHong Bi . Lysosome-targeted carbon dots with a light-controlled nitric oxide releasing property for enhanced photodynamic therapy. Chinese Chemical Letters, 2024, 35(4): 108946-. doi: 10.1016/j.cclet.2023.108946

    15. [15]

      Muhammad Riaz Rakesh Kumar Gupta Di Sun Mohammad Azam Ping Cui . Selective adsorption of organic dyes and iodine by a two-dimensional cobalt(II) metal-organic framework. Chinese Journal of Structural Chemistry, 2024, 43(12): 100427-100427. doi: 10.1016/j.cjsc.2024.100427

    16. [16]

      Xin-Tong ZhaoJin-Zhi GuoWen-Liang LiJing-Ping ZhangXing-Long Wu . Two-dimensional conjugated coordination polymer monolayer as anode material for lithium-ion batteries: A DFT study. Chinese Chemical Letters, 2024, 35(6): 108715-. doi: 10.1016/j.cclet.2023.108715

    17. [17]

      Tao LIUYuting TIANKe GAOXuwei HANRu'nan MINWenjing ZHAOXueyi SUNCaixia YIN . A photothermal agent with high photothermal conversion efficiency and high stability for tumor therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1622-1632. doi: 10.11862/CJIC.20240107

    18. [18]

      Chunxiu YuZelin WuHongle ShiLingyun GuKexin ChenChuan-Shu HeYang LiuHeng ZhangPeng ZhouZhaokun XiongBo Lai . Insights into the electron transfer mechanisms of peroxydisulfate activation by modified metal-free acetylene black for degradation of sulfisoxazole. Chinese Chemical Letters, 2024, 35(8): 109334-. doi: 10.1016/j.cclet.2023.109334

    19. [19]

      Kexin YinJingren YangYanwei LiQian LiXing Xu . Metal-free diatomaceous carbon-based catalyst for ultrafast and anti-interference Fenton-like oxidation. Chinese Chemical Letters, 2024, 35(12): 109847-. doi: 10.1016/j.cclet.2024.109847

    20. [20]

      Chunhua MaMengjiao LiuSiyu OuyangZhenwei CuiJingjing BiYuqin JiangZhiguo Zhang . Metal-free construction of diverse 1,2,4-triazolo[1,5-a]pyridines on water. Chinese Chemical Letters, 2025, 36(1): 109755-. doi: 10.1016/j.cclet.2024.109755

Metrics
  • PDF Downloads(18)
  • Abstract views(340)
  • HTML views(16)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return