Citation: Miao Jing, Guo Ruifeng, Liu Zhihong. Preparation of BaO·4B2O3·5H2O Nanomaterial and Evaluation of Its Flame Retardant Performance to PP by Thermal Decomposition Kinetics Method[J]. Acta Physico-Chimica Sinica, ;2020, 36(6): 190505. doi: 10.3866/PKU.WHXB201905052 shu

Preparation of BaO·4B2O3·5H2O Nanomaterial and Evaluation of Its Flame Retardant Performance to PP by Thermal Decomposition Kinetics Method

  • Corresponding author: Liu Zhihong, liuzh@snnu.edu.cn
  • Received Date: 14 May 2019
    Revised Date: 12 June 2019
    Accepted Date: 12 June 2019
    Available Online: 17 June 2019

    Fund Project: the National Natural Science Foundation of China 21573142This work was supported by the National Natural Science Foundation of China (21573142)

  • Borate is considered one of the most important additives for improving the fire-resistance of combustible polymers because of its smoke suppression, low toxicity, and good thermal stability. However, the size of prepared borate is usually in the micrometer range, which makes it difficult to disperse in a polymer matrix, thus hindering its use as fire-retardant material. The preparation and application of borate nanomaterial as flame retardant is considered an effective method. However, the preparation of barium borate nanomaterials as flame retardant has not been reported. In this paper, nanosheets and nanoribbons with different sizes for a new barium borate BaO·4B2O3·5H2O are prepared by hydrothermal method, and characterized by X-ray diffraction (XRD), Fourier transform infrared spectrum (FT-IR), thermogravimetric analysis-differential scanning calorimetry (TG-DSC), and scanning electron microscope (SEM). The flame-retardant properties of polypropylene (PP)/BaO·4B2O3·5H2O composites are investigated by thermogravimetric analysis (TG), differential scanning calorimetry (DSC) thermal analysis methods and limited oxygen index (LOI) method. Considering the near TG mass losses and the near LOI values for PP with 10% prepared BaO·4B2O3·5H2O nanosheet and nanoribbon, their flame-retardant properties need to be further evaluated by non-isothermal decomposition kinetic method. The apparent activation energy for this decomposition reaction was obtained from the slope by plotting ln(β/Tp2) against 1/Tp according to Kissinger's model. With the reduction of TG mass loss, increased heat absorption in DSC under N2 atmosphere, increased apparent activation energy Ea for the thermal decomposition of PP/BaO·4B2O3·5H2O composite as well as increased LOI value, the flame-retardant performance of prepared BaO·4B2O3·5H2O samples with PP gradually improved from bulk to nanoribbon to nanosheet. This can be attributed to the decrease in the size of BaO·4B2O3·5H2O samples because the smaller sample size leads to improved dispersion and increased contact area with the polymer. The flame-retardant mechanism is discussed by analyzing the after-flame chars of the PP/BaO·4B2O3·5H2O composite in SEM images, which show that the char layer is more compact and continuous for the PP/BaO·4B2O3·5H2O nanosheet composite. The influence of loading BaO·4B2O3·5H2O nanomaterials on the mechanical properties of PP is also tested using a universal material testing machine, in which the PP/BaO·4B2O3·5H2O nanosheet composite has higher tensile strength. The PP/BaO·4B2O3·5H2O nanosheet composite has the best flame-retardant and mechanical properties, which is promising to be developed for the application as flame-retardant material.
  • 加载中
    1. [1]

      Palacios E., Leret P., De La Mata M. J., Fernandez J. F., De Aza A. H., Rodriguez M. A., Rubio-Marcos F., ACS Appl. Mater. Interfaces 2016, 8, 9462. doi: 10.1021/acsami.6b01379  doi: 10.1021/acsami.6b01379

    2. [2]

      Xu J. Z., Liu C. H., Qu H. Q., Ma H. Y., Jiao Y. H., Xie J. X., Polym. Degrad. Stabil. 2013, 98, 1514. doi: 10.1016/j.polymdegradstab.2013.04.016  doi: 10.1016/j.polymdegradstab.2013.04.016

    3. [3]

      Wu C. C., Wu W. H., Qu H. Q., Xu J. Z., Mater. Lett. 2015, 160, 282. doi: 10.1016/j.matlet.2015.07.154  doi: 10.1016/j.matlet.2015.07.154

    4. [4]

      Song P. A., Shen Y., Du B. X., Peng M., Shen L., Fang Z. P., ACS Appl. Mater. Interfaces 2009, 1, 452. doi: 10.1021/am8001204  doi: 10.1021/am8001204

    5. [5]

      Wang B. B., Tang Q. B., Hong N. N., Song L., Wang L., Shi Y. Q., Hu Y., ACS Appl. Mater. Interfaces 2011, 3, 3754. doi: 10.1021/am200940z  doi: 10.1021/am200940z

    6. [6]

      Bourbigot S., Bras M. L., Leeuwendal R., Shen K. K., Schubert D., Polym. Degrad. Stab. 1999, 64, 419. doi: S0141-3910(98)00130-X  doi: 10.1016/S0141-3910(98)00130-X

    7. [7]

      Li S. L., Long B. H., Wang Z. C., Tian Y. M., Zheng Y. H., Zhang, Q. J. Solid State Chem. 2010, 183, 957. doi: 10.1016/j.jssc.2010.02.017  doi: 10.1016/j.jssc.2010.02.017

    8. [8]

      Cui Y., Liu X. L., Tian Y. M., Ding N., Wang Z. C., Colloids Surf. A: Physicochem. Eng. Aspects 2012, 414, 274. doi: 10.1016/j.colsurfa.2012.08.028  doi: 10.1016/j.colsurfa.2012.08.028

    9. [9]

      Zhang Y. Y., Li P., Liu Z. H., Powd. Technol. 2011, 210, 208. doi: 10.1016/j.powtec.2011.03.018  doi: 10.1016/j.powtec.2011.03.018

    10. [10]

      Wang X. S., Pang H. C., Chen W. D., Lin Y., Zong L. S., Ning G. L., ACS Appl. Mater. Interfaces 2014, 6, 7223. doi: 10.1021/am500380n  doi: 10.1021/am500380n

    11. [11]

      Zhang Y. Y., Xue L., Liu Z. H., Thermochim. Acta 2010, 506, 52. doi: 10.1016/j.tca.2010.04.014  doi: 10.1016/j.tca.2010.04.014

    12. [12]

      Guo Y. W., Mao, L; Rong, F; Liu Z. H., Thermochim. Acta 2012, 539, 56. doi: 10.1016/j.tca.2012.04.007  doi: 10.1016/j.tca.2012.04.007

    13. [13]

      Zhang Z. F., Wu W. H., Zhang M. J., Qu J. M., Shi L., Qu H. Q., Xu J. Z., Appl. Surf. Sci. 2017, 425, 896. doi: 10.1016/j.apsusc.2017.07.101  doi: 10.1016/j.apsusc.2017.07.101

    14. [14]

      Yan H. H., Liu Z. H., J. Therm. Anal. Calorim. 2019, 135, 2783. doi: 10.1007/s10973-018-7138-6  doi: 10.1007/s10973-018-7138-6

    15. [15]

      Liu J., Ma X. Y., Liu Z. H., Powd. Technol. 2013, 246, 26. doi: 10.1016/j.powtec.2013.05.001  doi: 10.1016/j.powtec.2013.05.001

    16. [16]

      Geng Y. J., Liu Z. H., Colloids Surf. A: Physicochem. Eng. Asp. 2017, 522, 563. doi: 10.1016/j.colsurfa.2017.03.044  doi: 10.1016/j.colsurfa.2017.03.044

    17. [17]

      Ma Y. Q., Zhang L., Liu Z. H., J. Therm. Anal. Calorim. 2018, 132, 59. doi: 10.1007/s10973-017-6937-5  doi: 10.1007/s10973-017-6937-5

    18. [18]

      Aksener E., Figen A. K., Piskin S., Res. Chem. Intermed. 2014, 40, 2103. doi: 10.1007/s11164-013-1106-3  doi: 10.1007/s11164-013-1106-3

    19. [19]

      Sun H. Y., Sun W., Huang Y. X., Mi J. X., Z. Anorg. Allg. Chem. 2010, 636, 977. 10. doi: 1002/zaac.201000066  doi: 10.1002/zaac.201000066

    20. [20]

      Li J., Xia S. P., Gao S. Y., Spectrochim. Acta 1995, 51A, 519. doi: 10.1016/0584-8539(94)00183-C  doi: 10.1016/0584-8539(94)00183-C

    21. [21]

      Huo J. X., Song S.W., Jin C.W., Ren N., Geng L. N., Zhang J. J., Acta Phys. -Chim. Sin. 2016, 32 (4), 901.  doi: 10.3866/PKU.WHXB201602173

    22. [22]

      Yu H.Y., Wang F., Liu Q. C., Ma Q. Y., Gu Z. G., Acta Phys. -Chim. Sin. 2017, 33 (2), 344.  doi: 10.3866/PKU.WHXB201611023

    23. [23]

      Shao Z. B., Deng C., Tan Y., Chen M. J., Chen L., Wang Y. Z., ACS Appl. Mater. Interfaces 2014, 6, 7363. doi: 10.1021/am500789q  doi: 10.1021/am500789q

    24. [24]

      Lu L. G., Guo N., Qian X. D., Yang S. S., Wang X. B., Jin J., Shao G. S., J. Appl. Polym. Sci. 2018, 9, 45962. doi: 10.1002/app.45962  doi: 10.1002/app.45962

    25. [25]

      Nine, Md J.; Tran, DN. H.; Tung T. T., Kabiri S., Losic D., ACS Appl. Mater. Interfaces. 2017, 9, 10160. doi: 10.1021/acsami.7b00572  doi: 10.1021/acsami.7b00572

  • 加载中
    1. [1]

      Jia FuShilong ZhangLirong LiangChunyu DuZhenqiang YeGuangming Chen . PEDOT-based thermoelectric composites: Preparation, mechanism and applications. Chinese Chemical Letters, 2024, 35(9): 109804-. doi: 10.1016/j.cclet.2024.109804

    2. [2]

      Miao-Miao ChenMin-Ling ZhangXiao SongJun JiangXiaoqian TangQi ZhangXiuhua ZhangPeiwu Li . Smartphone-assisted electrochemiluminescence imaging test strips towards dual-signal visualized and sensitive monitoring of aflatoxin B1 in corn samples. Chinese Chemical Letters, 2025, 36(1): 109785-. doi: 10.1016/j.cclet.2024.109785

    3. [3]

      Xu LuoJinwen XiaoQiming YangXiaolong LuQianjun HuangXiaojun AiBo LiLi SunLong Chen . Biomaterials for surgical repair of osteoporotic bone defects. Chinese Chemical Letters, 2025, 36(1): 109684-. doi: 10.1016/j.cclet.2024.109684

    4. [4]

      Qiuping Liu Yongxian Fan Wenxian Chen Mengdi Wang Mei Mei Genrong Qiang . Design of Ideological and Political Education for the Preparation Experiment of Ferrous Sulfate. University Chemistry, 2024, 39(2): 116-120. doi: 10.3866/PKU.DXHX202309083

    5. [5]

      Feng Zheng Ruxun Yuan Xiaogang Wang . “Research-Oriented” Comprehensive Experimental Design in Polymer Chemistry: the Case of Polyimide Aerogels. University Chemistry, 2024, 39(10): 210-218. doi: 10.12461/PKU.DXHX202404027

    6. [6]

      Yongming Guo Jie Li Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057

    7. [7]

      Tian TIANMeng ZHOUJiale WEIYize LIUYifan MOYuhan YEWenzhi JIABin HE . Ru-doped Co3O4/reduced graphene oxide: Preparation and electrocatalytic oxygen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 385-394. doi: 10.11862/CJIC.20240298

    8. [8]

      Zunyuan Xie Lijin Yang Zixiao Wan Xiaoyu Liu Yushan He . Exploration of the Preparation and Characterization of Nano Barium Titanate and Its Application in Inorganic Chemistry Laboratory Teaching. University Chemistry, 2024, 39(4): 62-69. doi: 10.3866/PKU.DXHX202310137

    9. [9]

      Simin Fang Wei Huang Guanghua Yu Cong Wei Mingli Gao Guangshui Li Hongjun Tian Wan Li . Integrating Science and Education in a Comprehensive Chemistry Design Experiment: The Preparation of Copper(I) Oxide Nanoparticles and Its Application in Dye Water Remediation. University Chemistry, 2024, 39(8): 282-289. doi: 10.3866/PKU.DXHX202401023

    10. [10]

      Jun LIHuipeng LIHua ZHAOQinlong LIU . Preparation and photocatalytic performance of AgNi bimetallic modified polyhedral bismuth vanadate. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 601-612. doi: 10.11862/CJIC.20230401

    11. [11]

      Liyong DUYi LIUGuoli YANG . Preparation and triethylamine sensing performance of ZnSnO3/NiO heterostructur. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 729-740. doi: 10.11862/CJIC.20240404

    12. [12]

      Xingqun PuRongrong LiuYuting XieChenjing YangJingyi ChenBaoling GuoChun-Xia ZhaoPeng ZhaoJian RuanFangfu YeDavid A WeitzDong Chen . One-step preparation of biocompatible amphiphilic dimer nanoparticles with tunable particle morphology and surface property for interface stabilization and drug delivery. Chinese Chemical Letters, 2025, 36(3): 109820-. doi: 10.1016/j.cclet.2024.109820

    13. [13]

      Guan-Nan Xing Di-Ye Wei Hua Zhang Zhong-Qun Tian Jian-Feng Li . Pd-based nanocatalysts for oxygen reduction reaction: Preparation, performance, and in-situ characterization. Chinese Journal of Structural Chemistry, 2023, 42(11): 100021-100021. doi: 10.1016/j.cjsc.2023.100021

    14. [14]

      Wen LUOLin JINPalanisamy KannanJinle HOUPeng HUOJinzhong YAOPeng WANG . Preparation of high-performance supercapacitor based on bimetallic high nuclearity titanium-oxo-cluster based electrodes. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 782-790. doi: 10.11862/CJIC.20230418

    15. [15]

      Ning DINGSiyu WANGShihua YUPengcheng XUDandan HANDexin SHIChao ZHANG . Crystalline and amorphous metal sulfide composite electrode materials with long cycle life: Preparation and performance of hybrid capacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1784-1794. doi: 10.11862/CJIC.20240146

    16. [16]

      Zeyu XUTongzhou LUHaibo SHAOJianming WANG . Preparation and electrochemical lithium storage performance of porous silicon microsphere composite with metal modification and carbon coating. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1995-2008. doi: 10.11862/CJIC.20240164

    17. [17]

      Fei ZHOUXiaolin JIA . Co3O4/TiO2 composite photocatalyst: Preparation and synergistic degradation performance of toluene. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2232-2240. doi: 10.11862/CJIC.20240236

    18. [18]

      Qingwang LIU . MoS2/Ag/g-C3N4 Z-scheme heterojunction: Preparation and photocatalytic performance. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 821-832. doi: 10.11862/CJIC.20240148

    19. [19]

      Ningxiang Wu Huaping Zhao Yong Lei . Nanomaterials with highly ordered nanostructures: Definition, influence and future challenge. Chinese Journal of Structural Chemistry, 2024, 43(11): 100392-100392. doi: 10.1016/j.cjsc.2024.100392

    20. [20]

      Jiangshan XuWeifei ZhangZhengwen CaiYong LiLong BaiShaojingya GaoQiang SunYunfeng Lin . Tetrahedron DNA nanostructure/iron-based nanomaterials for combined tumor therapy. Chinese Chemical Letters, 2024, 35(11): 109620-. doi: 10.1016/j.cclet.2024.109620

Metrics
  • PDF Downloads(15)
  • Abstract views(1010)
  • HTML views(98)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return