Citation: Zhang Ting, Li Cuicui, Wang Wei, Guo Zhaoqi, Pang Aimin, Ma Haixia. Construction of Three-Dimensional Hematite/Graphene with Effective Catalytic Activity for the Thermal Decomposition of CL-20[J]. Acta Physico-Chimica Sinica, ;2020, 36(6): 190504. doi: 10.3866/PKU.WHXB201905048 shu

Construction of Three-Dimensional Hematite/Graphene with Effective Catalytic Activity for the Thermal Decomposition of CL-20

  • Corresponding author: Pang Aimin, ppam@tom.com Ma Haixia, mahx@nwu.edu.cn
  • Received Date: 13 May 2019
    Revised Date: 10 June 2019
    Accepted Date: 11 June 2019
    Available Online: 17 June 2019

    Fund Project: the National Natural Science Foundation of China 21673179Open Research Fund Program of Science and Technology on Aerospace Chemical Power Laboratory STACPL320181B03-2The project was supported by the National Natural Science Foundation of China (21673179, 21373161), Open Research Fund Program of Science and Technology on Aerospace Chemical Power Laboratory (STACPL320181B03-2)the National Natural Science Foundation of China 21373161

  • High-performance solid propellants are very important for the development of modern weapons. Aside from their high energy and high burning rate, safety performance is regarded as the most important factor that should be considered whenever a new solid propellant recipe is formulated. Therefore, exploring a new type of combustion catalyst that can improve both catalytic activity and reduce the sensitivity of the energetic component is significant. Traditionally, transition metals or metal oxides are used as a combustion catalyst for accelerating the thermal decomposition of energetic components. However, the existing problem of these catalysts is the aggregation of particles accompanied by poor surface area. Coupling metal oxides with graphene is a promising approach to obtain a binary composite with stable structure and large specific surface area. In this work, rod-like and granular Fe2O3 nanoparticles were synthesized using a hydrothermal method. Then, the two as-prepared Fe2O3 nanoparticles were coupled with graphene sheets using an interfacial self-assembly method, which can effectively prevent the aggregation of Fe2O3 particles and simultaneously increase the active sites that participate in the reaction. X-ray diffraction and X-ray photoelectron spectroscopy were used to identify the phase states and chemical compositions of the prepared samples. The morphology and internal structures were further demonstrated through scanning electron microscopy, transmission electron microscopy and nitrogen adsorption-desorption tests. Both phase analysis and structure identification indicate that the prepared Fe2O3/G has high purity and high surface area. The catalytic performance of the prepared Fe2O3 and Fe2O3/G in the thermal decomposition of hexanitrohexaazaisowurtzitane (CL-20) was evaluated based on thermal gravimetric analysis-infrared spectroscopy (TGA-IR) and differential scanning calorimetry (DSC) tests. The non-isothermal decomposition kinetics of CL-20, Fe2O3/CL-20, and Fe2O3/G/CL-20 were further studied by DSC. The results reveal the excellent catalytic activity of Fe2O3/G in the thermal decomposition of CL-20, which is attributed to the presence of abundant pore structure and large surface area. The reaction mechanisms of the exothermic decomposition process of CL-20, Fe2O3/CL-20, and Fe2O3/G/CL-20 were obtained by the logical choice method, and the composites all followed same mechanism function model as CL-20. Through comparison, the rod-like Fe2O3 coupled with graphene was found to have the best catalytic activity in the thermal decomposition of CL-20. Thus, the rod-like Fe2O3 and its Fe2O3/G composite were used to investigate their influence on the impact sensitivity of CL-20 by fall hammer apparatus. The results show that rFe2O3/G can effectively decrease the impact sensitivity of CL-20 compared with pure CL-20 and rFe2O3/CL-20. Therefore, rFe2O3 coupled with graphene not only promotes the thermal decomposition but also improves the safety performance of CL-20.
  • 加载中
    1. [1]

      Lan, Y. F.; Li, X. Y.; Li, G. P.; Luo, Y. J. J. Nanopart. Res. 2015, 17, 395. doi: 10.1007/s11051-015-3200-5  doi: 10.1007/s11051-015-3200-5

    2. [2]

      Zou, Y. Q.; Kan, J.; Wang, Y. J. Phys. Chem. C 2011, 115, 20747. doi: 10.1021/jp206876t  doi: 10.1021/jp206876t

    3. [3]

      Han, S. C.; Hu, L. F.; Liang, Z. P.; Wageh, S.; Al-Ghamdi, A. A.; Chen, Y. S.; Fang, X. S. Adv. Funct. Mater. 2015, 24, 5719. doi: 10.1002/adfm.201401279  doi: 10.1002/adfm.201401279

    4. [4]

      Yan, N.; Qin, L. J.; Hao, H. X.; Hui, L. F.; Zhao, F. Q.; Feng, H. Appl. Surf. Sci. 2017, 408, 51. doi: 10.1016/j.apsusc.2017.02.169  doi: 10.1016/j.apsusc.2017.02.169

    5. [5]

      Chen, Y.; Ma, K. F.; Wang, J. X.; Gao, Y.; Zhu, X. F.; Zhang, W. C. Mater. Res. Bull. 2018, 101, 56. doi: 10.1016/j.materresbull.2018.01.013  doi: 10.1016/j.materresbull.2018.01.013

    6. [6]

      Wei, Z. X.; Xu, Y. Q.; Liu, H. Y.; Hu, C. W. J. Hazard. Mater. 2009, 165, 1056. doi: 10.1016/j.jhazmat.2008.10.086  doi: 10.1016/j.jhazmat.2008.10.086

    7. [7]

      Yan, Q. L.; Zhao, F. Q.; Kuo, K. K.; Zhang, X. H.; Zeman, S.; DeLuca. L. T. Prog. Energ. Combust. 2016, 57, 75. doi: 10.1016/j.pecs.2016.08.002  doi: 10.1016/j.pecs.2016.08.002

    8. [8]

      Hu, Y. J.; Jin, J.; Zhang, H.; Wu, P.; Cai, C. X. Acta Phys. -Chim. Sin. 2010, 26, 2073.  doi: 10.3866/PKU.WHXB20100812

    9. [9]

      Yan, N.; Qin, L. J.; Li, J. G.; Zhao, F. Q.; Feng, H. Appl. Surf. Sci. 2018, 451, 155. doi: 10.1016/j.apsusc.2018.04.247  doi: 10.1016/j.apsusc.2018.04.247

    10. [10]

      Li, Z. M.; Wang, Y.; Zhang, Y. Q.; Liu, L.; Zhang, S. RSC Adv. 2015, 5, 98925. doi: 10.1039/c5ra16228a  doi: 10.1039/c5ra16228a

    11. [11]

      Smeu, M.; Zahid, F.; Ji, W.; Guo, H.; Jaidann, M.; Abou-Rachid, H. J. Phys. Chem. C 2011, 115, 10985. doi: 10.1021/jp201756p  doi: 10.1021/jp201756p

    12. [12]

      Turcotte, R.; Vachon, M.; Kwok, Q. S. M.; Wang, R. P.; Jones, D. E. G. Thermochim. Acta 2005, 433, 105. doi: 10.1016/j.tca.2005.02.021  doi: 10.1016/j.tca.2005.02.021

    13. [13]

      Sivabalan, R.; Gore, G. M.; Nair, U. R.; Saikia, A.; Venugopalan, S.; Gandhe, B. R. J. Hazard. Mater. 2007, 139, 199. doi: 10.1016/j.jhazmat.2006.06.027  doi: 10.1016/j.jhazmat.2006.06.027

    14. [14]

      Ayoman, E.; Hosseini, S. G. J. Therm. Anal. Calorim. 2016, 123, 1213. doi: 10.1007/s10973-015-5059-1  doi: 10.1007/s10973-015-5059-1

    15. [15]

      Liu, B.; Wang, W. M.; Wang, J. J.; Zhang, Y.; Xu, K. Z.; Zhao, F. Q. J. Nanopart. Res. 2019, 21, 48. doi:10.1007/s11051-019-4493-6  doi: 10.1007/s11051-019-4493-6

    16. [16]

      Hu, X. L.; Liao, X.; Xiao, L. Q.; Jian, X. X.; Zhou, W. L. Propell. Explos. Pyrot. 2016, 40, 867. doi: 10.1002/prep.201500046  doi: 10.1002/prep.201500046

    17. [17]

      Wei, Z. X.; Xu, Y. Q.; Liu, H. Y.; Hu, C. W. J. Hazard. Mater. 2009, 165, 1056. doi: 10.1016/j.jhazmat.2008.10.086  doi: 10.1016/j.jhazmat.2008.10.086

    18. [18]

      Zhang, T.; Zhao, N. N.; Li, J. C.; Gong, H. J.; An, T.; Zhao, F. Q.; Ma, H. X. RSC Adv. 2017, 7, 23583. doi: 10.1039/c6ra28502c  doi: 10.1039/c6ra28502c

    19. [19]

      Li, S. Z.; Zhang, H.; Wu, J. B.; Ma, X. Y.; Yang, D. Cryst. Growth Des. 2006, 6, 351. doi: 10.1021/cg0495835  doi: 10.1021/cg0495835

    20. [20]

      Guo, L. L.; Kou, X. Y.; Ding, M. D.; Wang, C.; Dong, L. L.; Zhang, H.; Feng, C. H.; Sun, Y. F.; Gao, Y.; Sun, P.; et al. Sensor Actuat. B-Chem. 2017, 244, 233. doi: 10.1016/j.snb.2016.12.137  doi: 10.1016/j.snb.2016.12.137

    21. [21]

      Pang, M. J.; Long, G. H.; Jiang, S.; Ji, Y.; Han, W.; Wang, B.; Liu, X. L.; Xi, Y. L.; Wang, D. X.; Xu, F. Z. Chem. Eng. J. 2015, 280, 377. doi: 10.1016/j.cej.2015.06.053  doi: 10.1016/j.cej.2015.06.053

    22. [22]

      Xue, L.; Zhao, F. Q.; Hu, R. Z.; Gao, H. X. J. Energ. Mater. 2010, 28, 17. doi: 10.1080/07370650903124518  doi: 10.1080/07370650903124518

    23. [23]

      Zhao, N. N.; Li, J. C.; Gong, H. J.; An, T.; Zhao, F. Q.; Yang, A. W.; Hu, R. Z.; Ma, H. X. J. Anal. Appl. Pyrol. 2016, 120, 165. doi: 10.1016/j.jaap.2016.05.002  doi: 10.1016/j.jaap.2016.05.002

    24. [24]

      Vyazovkin, S.; Dollimore, D. J. Chem. Inf. Comput. Sci. 1996, 36, 42. doi: 10.1021/ci950062m  doi: 10.1021/ci950062m

    25. [25]

      Ma, H. X.; Yan, B.; Ren, Y. H.; Guan, Y. L.; Zhao, F. Q.; Song, J. R.; Hu, R. Z. J. Therm. Anal. Calorim. 2011, 103, 569. doi: 10.1007/s10973-010-0950-2  doi: 10.1007/s10973-010-0950-2

    26. [26]

      Zhang, T.; Guo, Y.; Li, J. C.; Guan, Y. L.; Guo, G. Q.; Ma, H. X. Propell. Explos. Pyrot. 2018, 43, 1263. doi: 10.1002/prep.201800014  doi: 10.1002/prep.201800014

    27. [27]

      Yi, J. H.; Zhao, F. Q.; Xu, S. Y.; Zhang, L. Y.; Gao, H. X.; Hu, R. Z. J. Hazard. Mater. 2009, 165, 853. doi: 10.1016/j.jhazmat.2008.10.107  doi: 10.1016/j.jhazmat.2008.10.107

    28. [28]

      Jiang, Z.; Li, S. F.; Zhao, F. Q.; Chen, P.; Yin, C. M.; Li, S. W. J. Propul. Technol. 2002, 23, 258. doi: 10.1002/mop.10502  doi: 10.1002/mop.10502

    29. [29]

      Karpowicz, R. J.; Brill, T. B. Combust. Flame 1984, 56, 317. doi: 10.1016/0010-2180(84)90065-8  doi: 10.1016/0010-2180(84)90065-8

    30. [30]

      Xiang, M.; Jiao, Q. J.; Zhu, Y. L.; Yu, J. Y.; Chen, L. P. J. Therm. Anal. Calorim. 2014, 116, 1159. doi: 10.1007/s10973-013-3625-y  doi: 10.1007/s10973-013-3625-y

    31. [31]

      Wang, X. H.; Heng, S. Y.; Zhang, G.; Liu, Z. R.; Shi, Z. H.; Tan, H. M. Chin. J. Explos. Propell. 2007, 30, 20.  doi: 10.3969/j.issn.1007-7812.2007.04.006

    32. [32]

      Zhang, T. L.; Hu, R. Z.; Xie, Y.; Li, F. P. Thermochim. Acta 1994, 244, 171. doi: 10.1016/0040-6031(94)80216-5  doi: 10.1016/0040-6031(94)80216-5

  • 加载中
    1. [1]

      Fangzhou WangWentong GaoChenghui Li . A weak but inert hindered urethane bond for high-performance dynamic polyurethane polymers. Chinese Chemical Letters, 2024, 35(5): 109305-. doi: 10.1016/j.cclet.2023.109305

    2. [2]

      Dan-Ying XingXiao-Dan ZhaoChuan-Shu HeBo Lai . Kinetic study and DFT calculation on the tetracycline abatement by peracetic acid. Chinese Chemical Letters, 2024, 35(9): 109436-. doi: 10.1016/j.cclet.2023.109436

    3. [3]

      Yufei LiuLiang XiongBingyang GaoQingyun ShiYing WangZhiya HanZhenhua ZhangZhaowei MaLimin WangYong Cheng . MOF-derived Cu based materials as highly active catalysts for improving hydrogen storage performance of Mg-Ni-La-Y alloys. Chinese Chemical Letters, 2024, 35(12): 109932-. doi: 10.1016/j.cclet.2024.109932

    4. [4]

      Mahmoud SayedHan LiChuanbiao Bie . Challenges and prospects of photocatalytic H2O2 production. Acta Physico-Chimica Sinica, 2025, 41(9): 100117-0. doi: 10.1016/j.actphy.2025.100117

    5. [5]

      Cailiang YueNan SunYixing QiuLinlin ZhuZhiling DuFuqiang Liu . A direct Z-scheme 0D α-Fe2O3/TiO2 heterojunction for enhanced photo-Fenton activity with low H2O2 consumption. Chinese Chemical Letters, 2024, 35(12): 109698-. doi: 10.1016/j.cclet.2024.109698

    6. [6]

      Wenhao ChenMuxuan WuHan ChenLue MoYirong Zhu . Cu2Se@C thin film with three-dimensional braided structure as a cathode material for enhanced Cu2+ storage. Chinese Chemical Letters, 2024, 35(5): 108698-. doi: 10.1016/j.cclet.2023.108698

    7. [7]

      Yi Herng ChanZhe Phak ChanSerene Sow Mun LockChung Loong YiinShin Ying FoongMee Kee WongMuhammad Anwar IshakVen Chian QuekShengbo GeSu Shiung Lam . Thermal pyrolysis conversion of methane to hydrogen (H2): A review on process parameters, reaction kinetics and techno-economic analysis. Chinese Chemical Letters, 2024, 35(8): 109329-. doi: 10.1016/j.cclet.2023.109329

    8. [8]

      Sanmei WangDengxin YanWenhua ZhangLiangbing Wang . Graphene-supported isolated platinum atoms and platinum dimers for CO2 hydrogenation: Catalytic activity and selectivity variations. Chinese Chemical Letters, 2025, 36(4): 110611-. doi: 10.1016/j.cclet.2024.110611

    9. [9]

      Yuhang Li Yang Ling Yanhang Ma . Application of three-dimensional electron diffraction in structure determination of zeolites. Chinese Journal of Structural Chemistry, 2024, 43(4): 100237-100237. doi: 10.1016/j.cjsc.2024.100237

    10. [10]

      Yi Zhang Biao Wang Chao Hu Muhammad Humayun Yaping Huang Yulin Cao Mosaad Negem Yigang Ding Chundong Wang . Fe–Ni–F electrocatalyst for enhancing reaction kinetics of water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100243-100243. doi: 10.1016/j.cjsc.2024.100243

    11. [11]

      Jun DongSenyuan TanSunbin YangYalong JiangRuxing WangJian AoZilun ChenChaohai ZhangQinyou AnXiaoxing Zhang . Spatial confinement of free-standing graphene sponge enables excellent stability of conversion-type Fe2O3 anode for sodium storage. Chinese Chemical Letters, 2025, 36(3): 110010-. doi: 10.1016/j.cclet.2024.110010

    12. [12]

      Bangdi GEXiaowei SONGZhiqiang LIANG . A bifunctional three-dimensional Eu-MOF fluorescent probe for highly sensitive detection of 2, 4, 6-trinitrophenol and tetracycline. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2165-2174. doi: 10.11862/CJIC.20250190

    13. [13]

      Anqiu LIULong LINDezhi ZHANGJunyu LEIKefeng WANGWei ZHANGJunpeng ZHUANGHaijun HAO . Synthesis, structures, and catalytic activity of aluminum and zinc complexes chelated by 2-((2,6-dimethylphenyl)amino)ethanolate. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 791-798. doi: 10.11862/CJIC.20230424

    14. [14]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    15. [15]

      Ying Yang Yonghan Wu Zixuan Li Lu Zhang Rongqin Lin Yefan Zhang Jiquan Liu Xiaohui Ning Yan Li Bin Cui . Visualization Simulation Experiment of Cyclic Voltammetry (CV) Based on Python. University Chemistry, 2025, 40(10): 233-242. doi: 10.12461/PKU.DXHX202412024

    16. [16]

      Ruiying Liu Li Zhao Baishan Liu Jiayuan Yu Yujie Wang Wanqiang Yu Di Xin Chaoqiong Fang Xuchuan Jiang Riming Hu Hong Liu Weijia Zhou . Modulating pollutant adsorption and peroxymonosulfate activation sites on Co3O4@N,O doped-carbon shell for boosting catalytic degradation activity. Chinese Journal of Structural Chemistry, 2024, 43(8): 100332-100332. doi: 10.1016/j.cjsc.2024.100332

    17. [17]

      Juan GuoMingyuan FangQingsong LiuXiao RenYongqiang QiaoMingju ChaoErjun LiangQilong Gao . Zero thermal expansion in Cs2W3O10. Chinese Chemical Letters, 2024, 35(7): 108957-. doi: 10.1016/j.cclet.2023.108957

    18. [18]

      Peng ZhangYitao YangTian QinXueqiu WuYuechang WeiJing XiongXi LiuYu WangZhen ZhaoJinqing JiaoLiwei Chen . Interface engineering of Pt/CeO2-{100} catalysts for enhancing catalytic activity in auto-exhaust carbon particles oxidation. Chinese Chemical Letters, 2025, 36(2): 110396-. doi: 10.1016/j.cclet.2024.110396

    19. [19]

      Haojie DuanHejingying NiuLina GanXiaodi DuanShuo ShiLi Li . Reinterpret the heterogeneous reaction of α-Fe2O3 and NO2 with 2D-COS: The role of SDS, UV and SO2. Chinese Chemical Letters, 2024, 35(6): 109038-. doi: 10.1016/j.cclet.2023.109038

    20. [20]

      Yunli XuXuwen DaLei WangYatong PengWanpeng ZhouXiulian LiuYao WuWentao WangXuesong WangQianxiong Zhou . Ru(Ⅱ)-based aggregation-induced emission (AIE) agents with efficient 1O2 generation, photo-catalytic NADH oxidation and anticancer activity. Chinese Chemical Letters, 2025, 36(5): 110168-. doi: 10.1016/j.cclet.2024.110168

Metrics
  • PDF Downloads(9)
  • Abstract views(989)
  • HTML views(92)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return