Citation: Zhang Ting, Li Cuicui, Wang Wei, Guo Zhaoqi, Pang Aimin, Ma Haixia. Construction of Three-Dimensional Hematite/Graphene with Effective Catalytic Activity for the Thermal Decomposition of CL-20[J]. Acta Physico-Chimica Sinica, ;2020, 36(6): 190504. doi: 10.3866/PKU.WHXB201905048 shu

Construction of Three-Dimensional Hematite/Graphene with Effective Catalytic Activity for the Thermal Decomposition of CL-20

  • Corresponding author: Pang Aimin, ppam@tom.com Ma Haixia, mahx@nwu.edu.cn
  • Received Date: 13 May 2019
    Revised Date: 10 June 2019
    Accepted Date: 11 June 2019
    Available Online: 17 June 2019

    Fund Project: the National Natural Science Foundation of China 21673179Open Research Fund Program of Science and Technology on Aerospace Chemical Power Laboratory STACPL320181B03-2The project was supported by the National Natural Science Foundation of China (21673179, 21373161), Open Research Fund Program of Science and Technology on Aerospace Chemical Power Laboratory (STACPL320181B03-2)the National Natural Science Foundation of China 21373161

  • High-performance solid propellants are very important for the development of modern weapons. Aside from their high energy and high burning rate, safety performance is regarded as the most important factor that should be considered whenever a new solid propellant recipe is formulated. Therefore, exploring a new type of combustion catalyst that can improve both catalytic activity and reduce the sensitivity of the energetic component is significant. Traditionally, transition metals or metal oxides are used as a combustion catalyst for accelerating the thermal decomposition of energetic components. However, the existing problem of these catalysts is the aggregation of particles accompanied by poor surface area. Coupling metal oxides with graphene is a promising approach to obtain a binary composite with stable structure and large specific surface area. In this work, rod-like and granular Fe2O3 nanoparticles were synthesized using a hydrothermal method. Then, the two as-prepared Fe2O3 nanoparticles were coupled with graphene sheets using an interfacial self-assembly method, which can effectively prevent the aggregation of Fe2O3 particles and simultaneously increase the active sites that participate in the reaction. X-ray diffraction and X-ray photoelectron spectroscopy were used to identify the phase states and chemical compositions of the prepared samples. The morphology and internal structures were further demonstrated through scanning electron microscopy, transmission electron microscopy and nitrogen adsorption-desorption tests. Both phase analysis and structure identification indicate that the prepared Fe2O3/G has high purity and high surface area. The catalytic performance of the prepared Fe2O3 and Fe2O3/G in the thermal decomposition of hexanitrohexaazaisowurtzitane (CL-20) was evaluated based on thermal gravimetric analysis-infrared spectroscopy (TGA-IR) and differential scanning calorimetry (DSC) tests. The non-isothermal decomposition kinetics of CL-20, Fe2O3/CL-20, and Fe2O3/G/CL-20 were further studied by DSC. The results reveal the excellent catalytic activity of Fe2O3/G in the thermal decomposition of CL-20, which is attributed to the presence of abundant pore structure and large surface area. The reaction mechanisms of the exothermic decomposition process of CL-20, Fe2O3/CL-20, and Fe2O3/G/CL-20 were obtained by the logical choice method, and the composites all followed same mechanism function model as CL-20. Through comparison, the rod-like Fe2O3 coupled with graphene was found to have the best catalytic activity in the thermal decomposition of CL-20. Thus, the rod-like Fe2O3 and its Fe2O3/G composite were used to investigate their influence on the impact sensitivity of CL-20 by fall hammer apparatus. The results show that rFe2O3/G can effectively decrease the impact sensitivity of CL-20 compared with pure CL-20 and rFe2O3/CL-20. Therefore, rFe2O3 coupled with graphene not only promotes the thermal decomposition but also improves the safety performance of CL-20.
  • 加载中
    1. [1]

      Lan, Y. F.; Li, X. Y.; Li, G. P.; Luo, Y. J. J. Nanopart. Res. 2015, 17, 395. doi: 10.1007/s11051-015-3200-5  doi: 10.1007/s11051-015-3200-5

    2. [2]

      Zou, Y. Q.; Kan, J.; Wang, Y. J. Phys. Chem. C 2011, 115, 20747. doi: 10.1021/jp206876t  doi: 10.1021/jp206876t

    3. [3]

      Han, S. C.; Hu, L. F.; Liang, Z. P.; Wageh, S.; Al-Ghamdi, A. A.; Chen, Y. S.; Fang, X. S. Adv. Funct. Mater. 2015, 24, 5719. doi: 10.1002/adfm.201401279  doi: 10.1002/adfm.201401279

    4. [4]

      Yan, N.; Qin, L. J.; Hao, H. X.; Hui, L. F.; Zhao, F. Q.; Feng, H. Appl. Surf. Sci. 2017, 408, 51. doi: 10.1016/j.apsusc.2017.02.169  doi: 10.1016/j.apsusc.2017.02.169

    5. [5]

      Chen, Y.; Ma, K. F.; Wang, J. X.; Gao, Y.; Zhu, X. F.; Zhang, W. C. Mater. Res. Bull. 2018, 101, 56. doi: 10.1016/j.materresbull.2018.01.013  doi: 10.1016/j.materresbull.2018.01.013

    6. [6]

      Wei, Z. X.; Xu, Y. Q.; Liu, H. Y.; Hu, C. W. J. Hazard. Mater. 2009, 165, 1056. doi: 10.1016/j.jhazmat.2008.10.086  doi: 10.1016/j.jhazmat.2008.10.086

    7. [7]

      Yan, Q. L.; Zhao, F. Q.; Kuo, K. K.; Zhang, X. H.; Zeman, S.; DeLuca. L. T. Prog. Energ. Combust. 2016, 57, 75. doi: 10.1016/j.pecs.2016.08.002  doi: 10.1016/j.pecs.2016.08.002

    8. [8]

      Hu, Y. J.; Jin, J.; Zhang, H.; Wu, P.; Cai, C. X. Acta Phys. -Chim. Sin. 2010, 26, 2073.  doi: 10.3866/PKU.WHXB20100812

    9. [9]

      Yan, N.; Qin, L. J.; Li, J. G.; Zhao, F. Q.; Feng, H. Appl. Surf. Sci. 2018, 451, 155. doi: 10.1016/j.apsusc.2018.04.247  doi: 10.1016/j.apsusc.2018.04.247

    10. [10]

      Li, Z. M.; Wang, Y.; Zhang, Y. Q.; Liu, L.; Zhang, S. RSC Adv. 2015, 5, 98925. doi: 10.1039/c5ra16228a  doi: 10.1039/c5ra16228a

    11. [11]

      Smeu, M.; Zahid, F.; Ji, W.; Guo, H.; Jaidann, M.; Abou-Rachid, H. J. Phys. Chem. C 2011, 115, 10985. doi: 10.1021/jp201756p  doi: 10.1021/jp201756p

    12. [12]

      Turcotte, R.; Vachon, M.; Kwok, Q. S. M.; Wang, R. P.; Jones, D. E. G. Thermochim. Acta 2005, 433, 105. doi: 10.1016/j.tca.2005.02.021  doi: 10.1016/j.tca.2005.02.021

    13. [13]

      Sivabalan, R.; Gore, G. M.; Nair, U. R.; Saikia, A.; Venugopalan, S.; Gandhe, B. R. J. Hazard. Mater. 2007, 139, 199. doi: 10.1016/j.jhazmat.2006.06.027  doi: 10.1016/j.jhazmat.2006.06.027

    14. [14]

      Ayoman, E.; Hosseini, S. G. J. Therm. Anal. Calorim. 2016, 123, 1213. doi: 10.1007/s10973-015-5059-1  doi: 10.1007/s10973-015-5059-1

    15. [15]

      Liu, B.; Wang, W. M.; Wang, J. J.; Zhang, Y.; Xu, K. Z.; Zhao, F. Q. J. Nanopart. Res. 2019, 21, 48. doi:10.1007/s11051-019-4493-6  doi: 10.1007/s11051-019-4493-6

    16. [16]

      Hu, X. L.; Liao, X.; Xiao, L. Q.; Jian, X. X.; Zhou, W. L. Propell. Explos. Pyrot. 2016, 40, 867. doi: 10.1002/prep.201500046  doi: 10.1002/prep.201500046

    17. [17]

      Wei, Z. X.; Xu, Y. Q.; Liu, H. Y.; Hu, C. W. J. Hazard. Mater. 2009, 165, 1056. doi: 10.1016/j.jhazmat.2008.10.086  doi: 10.1016/j.jhazmat.2008.10.086

    18. [18]

      Zhang, T.; Zhao, N. N.; Li, J. C.; Gong, H. J.; An, T.; Zhao, F. Q.; Ma, H. X. RSC Adv. 2017, 7, 23583. doi: 10.1039/c6ra28502c  doi: 10.1039/c6ra28502c

    19. [19]

      Li, S. Z.; Zhang, H.; Wu, J. B.; Ma, X. Y.; Yang, D. Cryst. Growth Des. 2006, 6, 351. doi: 10.1021/cg0495835  doi: 10.1021/cg0495835

    20. [20]

      Guo, L. L.; Kou, X. Y.; Ding, M. D.; Wang, C.; Dong, L. L.; Zhang, H.; Feng, C. H.; Sun, Y. F.; Gao, Y.; Sun, P.; et al. Sensor Actuat. B-Chem. 2017, 244, 233. doi: 10.1016/j.snb.2016.12.137  doi: 10.1016/j.snb.2016.12.137

    21. [21]

      Pang, M. J.; Long, G. H.; Jiang, S.; Ji, Y.; Han, W.; Wang, B.; Liu, X. L.; Xi, Y. L.; Wang, D. X.; Xu, F. Z. Chem. Eng. J. 2015, 280, 377. doi: 10.1016/j.cej.2015.06.053  doi: 10.1016/j.cej.2015.06.053

    22. [22]

      Xue, L.; Zhao, F. Q.; Hu, R. Z.; Gao, H. X. J. Energ. Mater. 2010, 28, 17. doi: 10.1080/07370650903124518  doi: 10.1080/07370650903124518

    23. [23]

      Zhao, N. N.; Li, J. C.; Gong, H. J.; An, T.; Zhao, F. Q.; Yang, A. W.; Hu, R. Z.; Ma, H. X. J. Anal. Appl. Pyrol. 2016, 120, 165. doi: 10.1016/j.jaap.2016.05.002  doi: 10.1016/j.jaap.2016.05.002

    24. [24]

      Vyazovkin, S.; Dollimore, D. J. Chem. Inf. Comput. Sci. 1996, 36, 42. doi: 10.1021/ci950062m  doi: 10.1021/ci950062m

    25. [25]

      Ma, H. X.; Yan, B.; Ren, Y. H.; Guan, Y. L.; Zhao, F. Q.; Song, J. R.; Hu, R. Z. J. Therm. Anal. Calorim. 2011, 103, 569. doi: 10.1007/s10973-010-0950-2  doi: 10.1007/s10973-010-0950-2

    26. [26]

      Zhang, T.; Guo, Y.; Li, J. C.; Guan, Y. L.; Guo, G. Q.; Ma, H. X. Propell. Explos. Pyrot. 2018, 43, 1263. doi: 10.1002/prep.201800014  doi: 10.1002/prep.201800014

    27. [27]

      Yi, J. H.; Zhao, F. Q.; Xu, S. Y.; Zhang, L. Y.; Gao, H. X.; Hu, R. Z. J. Hazard. Mater. 2009, 165, 853. doi: 10.1016/j.jhazmat.2008.10.107  doi: 10.1016/j.jhazmat.2008.10.107

    28. [28]

      Jiang, Z.; Li, S. F.; Zhao, F. Q.; Chen, P.; Yin, C. M.; Li, S. W. J. Propul. Technol. 2002, 23, 258. doi: 10.1002/mop.10502  doi: 10.1002/mop.10502

    29. [29]

      Karpowicz, R. J.; Brill, T. B. Combust. Flame 1984, 56, 317. doi: 10.1016/0010-2180(84)90065-8  doi: 10.1016/0010-2180(84)90065-8

    30. [30]

      Xiang, M.; Jiao, Q. J.; Zhu, Y. L.; Yu, J. Y.; Chen, L. P. J. Therm. Anal. Calorim. 2014, 116, 1159. doi: 10.1007/s10973-013-3625-y  doi: 10.1007/s10973-013-3625-y

    31. [31]

      Wang, X. H.; Heng, S. Y.; Zhang, G.; Liu, Z. R.; Shi, Z. H.; Tan, H. M. Chin. J. Explos. Propell. 2007, 30, 20.  doi: 10.3969/j.issn.1007-7812.2007.04.006

    32. [32]

      Zhang, T. L.; Hu, R. Z.; Xie, Y.; Li, F. P. Thermochim. Acta 1994, 244, 171. doi: 10.1016/0040-6031(94)80216-5  doi: 10.1016/0040-6031(94)80216-5

  • 加载中
    1. [1]

      Fangzhou WangWentong GaoChenghui Li . A weak but inert hindered urethane bond for high-performance dynamic polyurethane polymers. Chinese Chemical Letters, 2024, 35(5): 109305-. doi: 10.1016/j.cclet.2023.109305

    2. [2]

      Dan-Ying XingXiao-Dan ZhaoChuan-Shu HeBo Lai . Kinetic study and DFT calculation on the tetracycline abatement by peracetic acid. Chinese Chemical Letters, 2024, 35(9): 109436-. doi: 10.1016/j.cclet.2023.109436

    3. [3]

      Yi Herng ChanZhe Phak ChanSerene Sow Mun LockChung Loong YiinShin Ying FoongMee Kee WongMuhammad Anwar IshakVen Chian QuekShengbo GeSu Shiung Lam . Thermal pyrolysis conversion of methane to hydrogen (H2): A review on process parameters, reaction kinetics and techno-economic analysis. Chinese Chemical Letters, 2024, 35(8): 109329-. doi: 10.1016/j.cclet.2023.109329

    4. [4]

      Wenhao ChenMuxuan WuHan ChenLue MoYirong Zhu . Cu2Se@C thin film with three-dimensional braided structure as a cathode material for enhanced Cu2+ storage. Chinese Chemical Letters, 2024, 35(5): 108698-. doi: 10.1016/j.cclet.2023.108698

    5. [5]

      Yi Zhang Biao Wang Chao Hu Muhammad Humayun Yaping Huang Yulin Cao Mosaad Negem Yigang Ding Chundong Wang . Fe–Ni–F electrocatalyst for enhancing reaction kinetics of water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100243-100243. doi: 10.1016/j.cjsc.2024.100243

    6. [6]

      Yuhang Li Yang Ling Yanhang Ma . Application of three-dimensional electron diffraction in structure determination of zeolites. Chinese Journal of Structural Chemistry, 2024, 43(4): 100237-100237. doi: 10.1016/j.cjsc.2024.100237

    7. [7]

      Anqiu LIULong LINDezhi ZHANGJunyu LEIKefeng WANGWei ZHANGJunpeng ZHUANGHaijun HAO . Synthesis, structures, and catalytic activity of aluminum and zinc complexes chelated by 2-((2,6-dimethylphenyl)amino)ethanolate. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 791-798. doi: 10.11862/CJIC.20230424

    8. [8]

      Ruiying Liu Li Zhao Baishan Liu Jiayuan Yu Yujie Wang Wanqiang Yu Di Xin Chaoqiong Fang Xuchuan Jiang Riming Hu Hong Liu Weijia Zhou . Modulating pollutant adsorption and peroxymonosulfate activation sites on Co3O4@N,O doped-carbon shell for boosting catalytic degradation activity. Chinese Journal of Structural Chemistry, 2024, 43(8): 100332-100332. doi: 10.1016/j.cjsc.2023.100332

    9. [9]

      Juan GuoMingyuan FangQingsong LiuXiao RenYongqiang QiaoMingju ChaoErjun LiangQilong Gao . Zero thermal expansion in Cs2W3O10. Chinese Chemical Letters, 2024, 35(7): 108957-. doi: 10.1016/j.cclet.2023.108957

    10. [10]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    11. [11]

      Haojie DuanHejingying NiuLina GanXiaodi DuanShuo ShiLi Li . Reinterpret the heterogeneous reaction of α-Fe2O3 and NO2 with 2D-COS: The role of SDS, UV and SO2. Chinese Chemical Letters, 2024, 35(6): 109038-. doi: 10.1016/j.cclet.2023.109038

    12. [12]

      Hui GuMingyue GaoKuan ShenTianli ZhangJunhao ZhangXiangjun ZhengXingmei GuoYuanjun LiuFu CaoHongxing GuQinghong KongShenglin Xiong . F127 assisted fabrication of Ge/rGO/CNTs nanocomposites with three-dimensional network structure for efficient lithium storage. Chinese Chemical Letters, 2024, 35(9): 109273-. doi: 10.1016/j.cclet.2023.109273

    13. [13]

      Xin LiWanting FuRuiqing GuanYue YuanQinmei ZhongGang YaoSheng-Tao YangLiandong JingSong Bai . Nucleophiles promotes the decomposition of electrophilic functional groups of tetracycline in ZVI/H2O2 system: Efficiency and mechanism. Chinese Chemical Letters, 2024, 35(10): 109625-. doi: 10.1016/j.cclet.2024.109625

    14. [14]

      Shiqi PengYongfang RaoTan LiYufei ZhangJun-ji CaoShuncheng LeeYu Huang . Regulating the electronic structure of Ir single atoms by ZrO2 nanoparticles for enhanced catalytic oxidation of formaldehyde at room temperature. Chinese Chemical Letters, 2024, 35(7): 109219-. doi: 10.1016/j.cclet.2023.109219

    15. [15]

      Chao Ma Peng Guo Zhongmin Liu . DNL-16: A new zeolitic layered silicate unraveled by three-dimensional electron diffraction. Chinese Journal of Structural Chemistry, 2024, 43(4): 100235-100235. doi: 10.1016/j.cjsc.2024.100235

    16. [16]

      Shiyu HouMaolin SunLiming CaoChaoming LiangJiaxin YangXinggui ZhouJinxing YeRuihua Cheng . Computational fluid dynamics simulation and experimental study on mixing performance of a three-dimensional circular cyclone-type microreactor. Chinese Chemical Letters, 2024, 35(4): 108761-. doi: 10.1016/j.cclet.2023.108761

    17. [17]

      Yifan LIUZhan ZHANGRongmei ZHUZiming QIUHuan PANG . A three-dimensional flower-like Cu-based composite and its low-temperature calcination derivatives for efficient oxygen evolution reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 979-990. doi: 10.11862/CJIC.20240008

    18. [18]

      Ya-Nan YangZi-Sheng LiSourav MondalLei QiaoCui-Cui WangWen-Juan TianZhong-Ming SunJohn E. McGrady . Metal-metal bonds in Zintl clusters: Synthesis, structure and bonding in [Fe2Sn4Bi8]3– and [Cr2Sb12]3–. Chinese Chemical Letters, 2024, 35(8): 109048-. doi: 10.1016/j.cclet.2023.109048

    19. [19]

      Zhenzhong MEIHongyu WANGXiuqi KANGYongliang SHAOJinzhong GU . Syntheses and catalytic performances of three coordination polymers with tetracarboxylate ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1795-1802. doi: 10.11862/CJIC.20240081

    20. [20]

      Lu LIUHuijie WANGHaitong WANGYing LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489

Metrics
  • PDF Downloads(9)
  • Abstract views(727)
  • HTML views(64)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return