Citation: Ge Yang, Mu Xulin, Lu Yue, Sui Manling. Photoinduced Degradation of Lead Halide Perovskite Thin Films in Air[J]. Acta Physico-Chimica Sinica, ;2020, 36(8): 190503. doi: 10.3866/PKU.WHXB201905039 shu

Photoinduced Degradation of Lead Halide Perovskite Thin Films in Air

  • Corresponding author: Lu Yue, luyuerr@163.com Sui Manling, mlsui@bjut.edu.cn
  • Received Date: 8 May 2019
    Revised Date: 5 June 2019
    Accepted Date: 6 June 2019
    Available Online: 14 June 2019

    Fund Project: The project was supported by the National Key Research and Development Program of China (2016YFB0700700), the National Natural Science Fund for Innovative Research Groups, China (51621003), the National Natural Science Foundation of China (11704015), the Scientific Research Key Program of Beijing Municipal Commission of Education, China (KZ201310005002), and Beijing Municipal Found for Scientific Innovation, China (PXM2019_014204_500031)Beijing Municipal Found for Scientific Innovation, China PXM2019_014204_500031the National Natural Science Fund for Innovative Research Groups, China 51621003the National Key Research and Development Program of China 2016YFB0700700the National Natural Science Foundation of China 11704015the Scientific Research Key Program of Beijing Municipal Commission of Education, China KZ201310005002

  • As an excellent photoelectric material, metal halide perovskites have been rapidly developed in the photovoltaic field. The power conversion efficiency of solar cells based on perovskite materials now exceeds 24%, which is close to the conversion efficiency of silicon-based solar cells. However, organic-inorganic hybrid perovskite materials are sensitive to light, oxygen, and moisture, particularly when combined in the ambient environment, limiting their commercial application in perovskite devices due to their poor environmental stability. Therefore, a comprehensive understanding of the degradation mechanism is the key for development of an effective method to inhibit the degradation of perovskite materials. Herein, the photo-induced degradation process of CH3NH3PbI3 films in air was studied by conventional optical and structural characterization methods, including ultraviolet-visible (UV-Vis) absorption spectroscopy, X-ray diffraction (XRD) and advanced transmission electron microscopy (TEM) equipped with a probe spherical aberration corrector. The CH3NH3PbI3 films were first decomposed into hexagonal PbI2 and amorphous phase, and subsequently oxidized to the amorphous phase under the combined effects of light and oxygen. The molecular formula of the amorphous phase was further confirmed as PbI2−2xOx (0.4 < x < 0.6) via X-ray energy dispersive spectroscopy (EDS) and electron energy loss spectroscopy (EELS). Further analysis showed that the film degradation is mainly related to superoxide (O2•−) formed by combination of oxygen molecules and photoelectrons in the perovskite film. The organic part of the CH3NH3PbI3 is oxidized by O2•− and CH3NH3PbI3 is decomposed to form volatile products, such as CH3NH2 and I2, then degraded into PbI2, and oxidized to form the amorphous PbI2−2xOx. Therefore, during the initial degradation of film under light soaking in air, the degradation sites are mainly located at the interface between CH3NH3PbI3 and air. Many pores were observed on the film surface due to the large loss of volatile decomposition products during the initial degradation. The films then converted to a honeycomb hollow morphology due to the continuous consumption of material under light soaking, reducing the mass of the film as well. Finally, the entire film was oxidized to form an amorphous structure. Herein, for the first time, we report that the formation of amorphous oxides is accompanied by the degradation of perovskite film. This study presents a new understanding of the photo-induced degradation mechanism of perovskite films in air and provides novel theoretical guidance to promote the long-term stability of perovskite solar cells.
  • 加载中
    1. [1]

      De Wolf, S.; Holovsky, J.; Moon, S. J.; Loper, P.; Niesen, B.; Ledinsky, M.; Haug, F. J.; Yum, J. H.; Ballif, C. J. Phys. Chem. Lett. 2014, 5, 1035. doi: 10.1021/jz500279b  doi: 10.1021/jz500279b

    2. [2]

      Stranks, S. D.; Eperon, G. E.; Grancini, G.; Menelaou, C.; Alcocer, M. J.; Leijtens, T.; Herz, L. M.; Petrozza, A.; Snaith, H. J. Science 2013, 342, 341. doi: 10.1126/science.1243982  doi: 10.1126/science.1243982

    3. [3]

      Wehrenfennig, C.; Eperon, G. E.; Johnston, M. B.; Snaith, H. J.; Herz, L. M. Adv. Mater. 2014, 26, 1584. doi: 10.1002/adma.201305172  doi: 10.1002/adma.201305172

    4. [4]

      Steirer, K. X.; Schulz, P.; Teeter, G.; Stevanovic, V.; Yang, M.; Zhu, K.; Berry, J. J. ACS Energy Lett. 2016, 1, 360. doi: 10.1021/acsenergylett.6b00196  doi: 10.1021/acsenergylett.6b00196

    5. [5]

      Jeon, N. J.; Noh, J. H.; Kim, Y. C.; Yang, W. S.; Ryu, S.; Seok, S. I. Nat. Mater. 2014, 13, 897. doi: 10.1038/nmat4014  doi: 10.1038/nmat4014

    6. [6]

      Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. J. Am. Chem. Soc. 2009, 131, 6050. doi: 10.1021/ja809598r  doi: 10.1021/ja809598r

    7. [7]

      https://www.nrel.gov/pv/assets/pdfs/best-reserch-cell-efficiencies (accessed May 1, 2019).

    8. [8]

      Tang, X. F.; Brandl, M.; May, B.; Levchuk, I.; Hou, Y.; Richter, M.; Chen, H. W.; Chen, S.; Kahmann, S.; Osvet, A.; et al. J. Mater. Chem. A 2016, 4, 15896. doi: 10.1039/c6ta06497c  doi: 10.1039/c6ta06497c

    9. [9]

      Yang, J. L.; Siempelkamp, B. D.; Liu, D. Y.; Kelly, T. L. ACS Nano 2015, 9, 1955. doi: 10.1021/nn506864k  doi: 10.1021/nn506864k

    10. [10]

      Aristidou, N.; Sanchez-Molina, I.; Chotchuangchutchaval, T.; Brown, M.; Martinez, L.; Rath, T.; Haque, S. A. Angew. Chem. Int. Ed. 2015, 54, 8208. doi: 10.1002/anie.201503153  doi: 10.1002/anie.201503153

    11. [11]

      Nie, W.; Tsai, H.; Asadpour, R.; Blancon, J. C.; Neukirch, A. J.; Gupta, G.; Crochet, J. J.; Chhowalla, M.; Tretiak, S.; Alam, M. A.; et al. Science 2015, 347, 522. doi: 10.1126/science.aaa0472  doi: 10.1126/science.aaa0472

    12. [12]

      Zhou, Y.; Yang, M.; Vasiliev, A. L.; Garces, H. F.; Zhao, Y.; Wang, D.; Pang, S.; Zhu, K.; Padture, N. P. J. Mater. Chem. A 2015, 3, 9249. doi: 10.1039/c4ta07036d  doi: 10.1039/c4ta07036d

    13. [13]

      Chen, H. Adv. Funct. Mater. 2017, 27, 1605654. doi: 10.1002/adfm.201605654  doi: 10.1002/adfm.201605654

    14. [14]

      Shai, X. X.; Li, D.; Liu, S. S.; Li, H.; Wang, M. K. Acta Phys. -Chim. Sin. 2016, 32, 2159.  doi: 10.3866/PKU.WHXB201606072

    15. [15]

      Rong, Y.; Hu, Y.; Mei, A.; Tan, H.; Saidaminov, M. I.; Seok, S. I.; McGehee, M. D.; Sargent, E. H.; Han, H. Science 2018, 361, eaat8235. doi: 10.1126/science.aat8235  doi: 10.1126/science.aat8235

    16. [16]

      Huang, Y; Sun, Q. D.; Xu, W.; He, Y.; Yin, W. J. Acta Phys. -Chim. Sin. 2017, 33, 1730.  doi: 10.3866/PKU.WHXB201705042

    17. [17]

      Boyd, C. C.; Cheacharoen, R.; Leijtens, T.; McGehee, M. D. Chem. Rev. 2018, 119, 3418. doi: 10.1021/acs.chemrev.8b00336  doi: 10.1021/acs.chemrev.8b00336

    18. [18]

      Sun, Q.; Fassl, P.; Becker-Koch, D.; Bausch, A.; Rivkin, B.; Bai, S.; Hopkinson, P. E.; Snaith, H. J.; Vaynzof, Y. Adv. Energy Mater. 2017, 7, 1700977. doi:10.1002/aenm.201700977  doi: 10.1002/aenm.201700977

    19. [19]

      Bryant, D.; Aristidou, N.; Pont, S.; Sanchez-Molina, I.; Chotchunangatchaval, T.; Wheeler, S.; Durrant, J. R.; Haque, S. A. Energy Environ. Sci. 2016, 9, 1655. doi: 10.1039/c6ee00409a  doi: 10.1039/c6ee00409a

    20. [20]

      Aristidou, N.; Eames, C.; Sanchez-Molina, I.; Bu, X.; Kosco, J.; Islam, M. S.; Haque, S. A. Nat. Commun. 2017, 8, 15218. doi: 10.1038/ncomms15218  doi: 10.1038/ncomms15218

    21. [21]

      Lee, M. M.; Teuscher, J.; Miyasaka, T.; Murakami, T. N.; Snaith, H. J. Science 2012, 338, 643. doi: 10.1126/science.1228604  doi: 10.1126/science.1228604

    22. [22]

      Wu, Y.; Islam, A.; Yang, X.; Qin, C.; Liu, J.; Zhang, K.; Peng, W.; Han, L. Energy Environ. Sci. 2014, 7, 2934. doi: 10.1039/c4ee01624f  doi: 10.1039/c4ee01624f

    23. [23]

      Ouyang, Y.; Shi, L.; Li, Q.; Wang, J. Small Methods 2019, 1900154. doi: 10.1002/smtd.201900154  doi: 10.1002/smtd.201900154

    24. [24]

      Li, Y.; Zhao, Z.; Lin, F.; Cao, X.; Cui, X.; Wei, J. Small 2017, 13, 1604125. doi:10.1002/smll.201604125  doi: 10.1002/smll.201604125

    25. [25]

      Rothmann, M. U.; Li, W.; Zhu, Y.; Liu, A.; Ku, Z. L.; Bach, U.; Etheridge, J.; Cheng, Y. B. Adv. Mater. 2018, 30, 1802769. doi: 10.1002/adma.201802769  doi: 10.1002/adma.201802769

    26. [26]

      Pennycook, S. J.; Nellist, P. D. Z-Contrast Scanning Transmission Electron Microscopy. In Impact of Electron and Scanning Probe Microscopy on Materials Research; Rickerby, D. G., Valdrè, G., Valdrè, U., Eds.; Springer Netherlands: Dordrecht, The Netherlangds, 1999; pp. 161–207.

    27. [27]

      Jung, H. J.; Kim, D.; Kim, S.; Park, J.; Dravid, V. P.; Shin, B. Adv. Mater. 2018, 30, e1802769. doi: 10.1002/adma.201802769  doi: 10.1002/adma.201802769

  • 加载中
    1. [1]

      Xinyuan Shi Chenyangjiang Changyu Zhai Xuemei Lu Jia Li Zhu Mao . Preparation and Photoelectric Performance Characterization of Perovskite CsPbBr3 Thin Films. University Chemistry, 2024, 39(6): 383-389. doi: 10.3866/PKU.DXHX202312019

    2. [2]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    3. [3]

      Rui Li Huan Liu Yinan Jiao Shengjian Qin Jie Meng Jiayu Song Rongrong Yan Hang Su Hengbin Chen Zixuan Shang Jinjin Zhao . 卤化物钙钛矿的单双向离子迁移. Acta Physico-Chimica Sinica, 2024, 40(11): 2311011-. doi: 10.3866/PKU.WHXB202311011

    4. [4]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    5. [5]

      Lin Song Dourong Wang Biao Zhang . Innovative Experimental Design and Research on Preparing Flexible Perovskite Fluorescent Gels Using 3D Printing. University Chemistry, 2024, 39(7): 337-344. doi: 10.3866/PKU.DXHX202310107

    6. [6]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    7. [7]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    8. [8]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    9. [9]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

    10. [10]

      Yinyin Qian Rui Xu . Utilizing VESTA Software in the Context of Material Chemistry: Analyzing Twin Crystal Nanostructures in Indium Antimonide. University Chemistry, 2024, 39(3): 103-107. doi: 10.3866/PKU.DXHX202307051

    11. [11]

      Yujia LITianyu WANGFuxue WANGChongchen WANG . Direct Z-scheme MIL-100(Fe)/BiOBr heterojunctions: Construction and photo-Fenton degradation for sulfamethoxazole. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 481-495. doi: 10.11862/CJIC.20230314

    12. [12]

      Jianjun LIMingjie RENLili ZHANGLingling ZENGHuiling WANGXiangwu MENG . UV-assisted degradation of tetracycline hydrochloride by MnFe2O4@activated carbon activated persulfate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1869-1880. doi: 10.11862/CJIC.20240187

    13. [13]

      Jiaxin Su Jiaqi Zhang Shuming Chai Yankun Wang Sibo Wang Yuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-. doi: 10.3866/PKU.WHXB202408012

    14. [14]

      Qiuyu Xiang Chunhua Qu Guang Xu Yafei Yang Yue Xia . A Journey beyond “Alum”. University Chemistry, 2024, 39(11): 189-195. doi: 10.12461/PKU.DXHX202404094

    15. [15]

      Changjun You Chunchun Wang Mingjie Cai Yanping Liu Baikang Zhu Shijie Li . 引入内建电场强化BiOBr/C3N5 S型异质结中光载流子分离以实现高效催化降解微污染物. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-. doi: 10.3866/PKU.WHXB202407014

    16. [16]

      Lijuan Wang Yuping Ning Jian Li Sha Luo Xiongfei Luo Ruiwen Wang . Enhancing the Advanced Nature of Natural Product Chemistry Laboratory Courses with New Research Findings: A Case Study of the Application of Berberine Hydrochloride in Photodynamic Antimicrobial Films. University Chemistry, 2024, 39(11): 241-250. doi: 10.12461/PKU.DXHX202403017

    17. [17]

      Gaoyan Chen Chaoyue Wang Juanjuan Gao Junke Wang Yingxiao Zong Kin Shing Chan . Heart to Heart: Exploring Cardiac CT. University Chemistry, 2024, 39(9): 146-150. doi: 10.12461/PKU.DXHX202402011

    18. [18]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    19. [19]

      Xiaowu Zhang Pai Liu Qishen Huang Shufeng Pang Zhiming Gao Yunhong Zhang . Acid-Base Dissociation Equilibrium in Multiphase System: Effect of Gas. University Chemistry, 2024, 39(4): 387-394. doi: 10.3866/PKU.DXHX202310021

    20. [20]

      Yingxian Wang Tianye Su Limiao Shen Jinping Gao Qinghe Wu . Introduction of Chinese Lacquer from the Perspective of Chemistry: Popularizing Chemistry in Lacquer and Inherit Lacquer Art. University Chemistry, 2024, 39(5): 371-379. doi: 10.3866/PKU.DXHX202312015

Metrics
  • PDF Downloads(20)
  • Abstract views(1652)
  • HTML views(449)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return