Citation: Ge Yang, Mu Xulin, Lu Yue, Sui Manling. Photoinduced Degradation of Lead Halide Perovskite Thin Films in Air[J]. Acta Physico-Chimica Sinica, ;2020, 36(8): 190503. doi: 10.3866/PKU.WHXB201905039 shu

Photoinduced Degradation of Lead Halide Perovskite Thin Films in Air

  • Corresponding author: Lu Yue, luyuerr@163.com Sui Manling, mlsui@bjut.edu.cn
  • Received Date: 8 May 2019
    Revised Date: 5 June 2019
    Accepted Date: 6 June 2019
    Available Online: 14 June 2019

    Fund Project: The project was supported by the National Key Research and Development Program of China (2016YFB0700700), the National Natural Science Fund for Innovative Research Groups, China (51621003), the National Natural Science Foundation of China (11704015), the Scientific Research Key Program of Beijing Municipal Commission of Education, China (KZ201310005002), and Beijing Municipal Found for Scientific Innovation, China (PXM2019_014204_500031)Beijing Municipal Found for Scientific Innovation, China PXM2019_014204_500031the National Natural Science Fund for Innovative Research Groups, China 51621003the National Key Research and Development Program of China 2016YFB0700700the National Natural Science Foundation of China 11704015the Scientific Research Key Program of Beijing Municipal Commission of Education, China KZ201310005002

  • As an excellent photoelectric material, metal halide perovskites have been rapidly developed in the photovoltaic field. The power conversion efficiency of solar cells based on perovskite materials now exceeds 24%, which is close to the conversion efficiency of silicon-based solar cells. However, organic-inorganic hybrid perovskite materials are sensitive to light, oxygen, and moisture, particularly when combined in the ambient environment, limiting their commercial application in perovskite devices due to their poor environmental stability. Therefore, a comprehensive understanding of the degradation mechanism is the key for development of an effective method to inhibit the degradation of perovskite materials. Herein, the photo-induced degradation process of CH3NH3PbI3 films in air was studied by conventional optical and structural characterization methods, including ultraviolet-visible (UV-Vis) absorption spectroscopy, X-ray diffraction (XRD) and advanced transmission electron microscopy (TEM) equipped with a probe spherical aberration corrector. The CH3NH3PbI3 films were first decomposed into hexagonal PbI2 and amorphous phase, and subsequently oxidized to the amorphous phase under the combined effects of light and oxygen. The molecular formula of the amorphous phase was further confirmed as PbI2−2xOx (0.4 < x < 0.6) via X-ray energy dispersive spectroscopy (EDS) and electron energy loss spectroscopy (EELS). Further analysis showed that the film degradation is mainly related to superoxide (O2•−) formed by combination of oxygen molecules and photoelectrons in the perovskite film. The organic part of the CH3NH3PbI3 is oxidized by O2•− and CH3NH3PbI3 is decomposed to form volatile products, such as CH3NH2 and I2, then degraded into PbI2, and oxidized to form the amorphous PbI2−2xOx. Therefore, during the initial degradation of film under light soaking in air, the degradation sites are mainly located at the interface between CH3NH3PbI3 and air. Many pores were observed on the film surface due to the large loss of volatile decomposition products during the initial degradation. The films then converted to a honeycomb hollow morphology due to the continuous consumption of material under light soaking, reducing the mass of the film as well. Finally, the entire film was oxidized to form an amorphous structure. Herein, for the first time, we report that the formation of amorphous oxides is accompanied by the degradation of perovskite film. This study presents a new understanding of the photo-induced degradation mechanism of perovskite films in air and provides novel theoretical guidance to promote the long-term stability of perovskite solar cells.
  • 加载中
    1. [1]

      De Wolf, S.; Holovsky, J.; Moon, S. J.; Loper, P.; Niesen, B.; Ledinsky, M.; Haug, F. J.; Yum, J. H.; Ballif, C. J. Phys. Chem. Lett. 2014, 5, 1035. doi: 10.1021/jz500279b  doi: 10.1021/jz500279b

    2. [2]

      Stranks, S. D.; Eperon, G. E.; Grancini, G.; Menelaou, C.; Alcocer, M. J.; Leijtens, T.; Herz, L. M.; Petrozza, A.; Snaith, H. J. Science 2013, 342, 341. doi: 10.1126/science.1243982  doi: 10.1126/science.1243982

    3. [3]

      Wehrenfennig, C.; Eperon, G. E.; Johnston, M. B.; Snaith, H. J.; Herz, L. M. Adv. Mater. 2014, 26, 1584. doi: 10.1002/adma.201305172  doi: 10.1002/adma.201305172

    4. [4]

      Steirer, K. X.; Schulz, P.; Teeter, G.; Stevanovic, V.; Yang, M.; Zhu, K.; Berry, J. J. ACS Energy Lett. 2016, 1, 360. doi: 10.1021/acsenergylett.6b00196  doi: 10.1021/acsenergylett.6b00196

    5. [5]

      Jeon, N. J.; Noh, J. H.; Kim, Y. C.; Yang, W. S.; Ryu, S.; Seok, S. I. Nat. Mater. 2014, 13, 897. doi: 10.1038/nmat4014  doi: 10.1038/nmat4014

    6. [6]

      Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. J. Am. Chem. Soc. 2009, 131, 6050. doi: 10.1021/ja809598r  doi: 10.1021/ja809598r

    7. [7]

      https://www.nrel.gov/pv/assets/pdfs/best-reserch-cell-efficiencies (accessed May 1, 2019).

    8. [8]

      Tang, X. F.; Brandl, M.; May, B.; Levchuk, I.; Hou, Y.; Richter, M.; Chen, H. W.; Chen, S.; Kahmann, S.; Osvet, A.; et al. J. Mater. Chem. A 2016, 4, 15896. doi: 10.1039/c6ta06497c  doi: 10.1039/c6ta06497c

    9. [9]

      Yang, J. L.; Siempelkamp, B. D.; Liu, D. Y.; Kelly, T. L. ACS Nano 2015, 9, 1955. doi: 10.1021/nn506864k  doi: 10.1021/nn506864k

    10. [10]

      Aristidou, N.; Sanchez-Molina, I.; Chotchuangchutchaval, T.; Brown, M.; Martinez, L.; Rath, T.; Haque, S. A. Angew. Chem. Int. Ed. 2015, 54, 8208. doi: 10.1002/anie.201503153  doi: 10.1002/anie.201503153

    11. [11]

      Nie, W.; Tsai, H.; Asadpour, R.; Blancon, J. C.; Neukirch, A. J.; Gupta, G.; Crochet, J. J.; Chhowalla, M.; Tretiak, S.; Alam, M. A.; et al. Science 2015, 347, 522. doi: 10.1126/science.aaa0472  doi: 10.1126/science.aaa0472

    12. [12]

      Zhou, Y.; Yang, M.; Vasiliev, A. L.; Garces, H. F.; Zhao, Y.; Wang, D.; Pang, S.; Zhu, K.; Padture, N. P. J. Mater. Chem. A 2015, 3, 9249. doi: 10.1039/c4ta07036d  doi: 10.1039/c4ta07036d

    13. [13]

      Chen, H. Adv. Funct. Mater. 2017, 27, 1605654. doi: 10.1002/adfm.201605654  doi: 10.1002/adfm.201605654

    14. [14]

      Shai, X. X.; Li, D.; Liu, S. S.; Li, H.; Wang, M. K. Acta Phys. -Chim. Sin. 2016, 32, 2159.  doi: 10.3866/PKU.WHXB201606072

    15. [15]

      Rong, Y.; Hu, Y.; Mei, A.; Tan, H.; Saidaminov, M. I.; Seok, S. I.; McGehee, M. D.; Sargent, E. H.; Han, H. Science 2018, 361, eaat8235. doi: 10.1126/science.aat8235  doi: 10.1126/science.aat8235

    16. [16]

      Huang, Y; Sun, Q. D.; Xu, W.; He, Y.; Yin, W. J. Acta Phys. -Chim. Sin. 2017, 33, 1730.  doi: 10.3866/PKU.WHXB201705042

    17. [17]

      Boyd, C. C.; Cheacharoen, R.; Leijtens, T.; McGehee, M. D. Chem. Rev. 2018, 119, 3418. doi: 10.1021/acs.chemrev.8b00336  doi: 10.1021/acs.chemrev.8b00336

    18. [18]

      Sun, Q.; Fassl, P.; Becker-Koch, D.; Bausch, A.; Rivkin, B.; Bai, S.; Hopkinson, P. E.; Snaith, H. J.; Vaynzof, Y. Adv. Energy Mater. 2017, 7, 1700977. doi:10.1002/aenm.201700977  doi: 10.1002/aenm.201700977

    19. [19]

      Bryant, D.; Aristidou, N.; Pont, S.; Sanchez-Molina, I.; Chotchunangatchaval, T.; Wheeler, S.; Durrant, J. R.; Haque, S. A. Energy Environ. Sci. 2016, 9, 1655. doi: 10.1039/c6ee00409a  doi: 10.1039/c6ee00409a

    20. [20]

      Aristidou, N.; Eames, C.; Sanchez-Molina, I.; Bu, X.; Kosco, J.; Islam, M. S.; Haque, S. A. Nat. Commun. 2017, 8, 15218. doi: 10.1038/ncomms15218  doi: 10.1038/ncomms15218

    21. [21]

      Lee, M. M.; Teuscher, J.; Miyasaka, T.; Murakami, T. N.; Snaith, H. J. Science 2012, 338, 643. doi: 10.1126/science.1228604  doi: 10.1126/science.1228604

    22. [22]

      Wu, Y.; Islam, A.; Yang, X.; Qin, C.; Liu, J.; Zhang, K.; Peng, W.; Han, L. Energy Environ. Sci. 2014, 7, 2934. doi: 10.1039/c4ee01624f  doi: 10.1039/c4ee01624f

    23. [23]

      Ouyang, Y.; Shi, L.; Li, Q.; Wang, J. Small Methods 2019, 1900154. doi: 10.1002/smtd.201900154  doi: 10.1002/smtd.201900154

    24. [24]

      Li, Y.; Zhao, Z.; Lin, F.; Cao, X.; Cui, X.; Wei, J. Small 2017, 13, 1604125. doi:10.1002/smll.201604125  doi: 10.1002/smll.201604125

    25. [25]

      Rothmann, M. U.; Li, W.; Zhu, Y.; Liu, A.; Ku, Z. L.; Bach, U.; Etheridge, J.; Cheng, Y. B. Adv. Mater. 2018, 30, 1802769. doi: 10.1002/adma.201802769  doi: 10.1002/adma.201802769

    26. [26]

      Pennycook, S. J.; Nellist, P. D. Z-Contrast Scanning Transmission Electron Microscopy. In Impact of Electron and Scanning Probe Microscopy on Materials Research; Rickerby, D. G., Valdrè, G., Valdrè, U., Eds.; Springer Netherlands: Dordrecht, The Netherlangds, 1999; pp. 161–207.

    27. [27]

      Jung, H. J.; Kim, D.; Kim, S.; Park, J.; Dravid, V. P.; Shin, B. Adv. Mater. 2018, 30, e1802769. doi: 10.1002/adma.201802769  doi: 10.1002/adma.201802769

  • 加载中
    1. [1]

      Xinyuan Shi Chenyangjiang Changyu Zhai Xuemei Lu Jia Li Zhu Mao . Preparation and Photoelectric Performance Characterization of Perovskite CsPbBr3 Thin Films. University Chemistry, 2024, 39(6): 383-389. doi: 10.3866/PKU.DXHX202312019

    2. [2]

      Yingqi BAIHua ZHAOHuipeng LIXinran RENJun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259

    3. [3]

      Xin Han Zhihao Cheng Jinfeng Zhang Jie Liu Cheng Zhong Wenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 100033-. doi: 10.3866/PKU.WHXB202404023

    4. [4]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    5. [5]

      Rui Li Huan Liu Yinan Jiao Shengjian Qin Jie Meng Jiayu Song Rongrong Yan Hang Su Hengbin Chen Zixuan Shang Jinjin Zhao . 卤化物钙钛矿的单双向离子迁移. Acta Physico-Chimica Sinica, 2024, 40(11): 2311011-. doi: 10.3866/PKU.WHXB202311011

    6. [6]

      Yao Ma Xin Zhao Hongxu Chen Wei Wei Liang Shen . Progress and Perspective of Perovskite Thin Single Crystal Photodetectors. Acta Physico-Chimica Sinica, 2025, 41(4): 100030-. doi: 10.3866/PKU.WHXB202309045

    7. [7]

      Jian Li Yu Zhang Rongrong Yan Kaiyuan Sun Xiaoqing Liu Zishang Liang Yinan Jiao Hui Bu Xin Chen Jinjin Zhao Jianlin Shi . 高效靶向示踪钙钛矿纳米系统光电增效抗肿瘤. Acta Physico-Chimica Sinica, 2025, 41(5): 100042-. doi: 10.1016/j.actphy.2024.100042

    8. [8]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    9. [9]

      Lin Song Dourong Wang Biao Zhang . Innovative Experimental Design and Research on Preparing Flexible Perovskite Fluorescent Gels Using 3D Printing. University Chemistry, 2024, 39(7): 337-344. doi: 10.3866/PKU.DXHX202310107

    10. [10]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    11. [11]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    12. [12]

      Xiaoyao YINWenhao ZHUPuyao SHIZongsheng LIYichao WANGNengmin ZHUYang WANGWeihai SUN . Fabrication of all-inorganic CsPbBr3 perovskite solar cells with SnCl2 interface modification. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 469-479. doi: 10.11862/CJIC.20240309

    13. [13]

      Zeyi Yan Ruitao Liu Xinyu Qi Yuxiang Zhang Lulu Sun Xiangyuan Li Anchao Feng . Exploration of Suspension Polymerization: Preparation and Fluorescence Stability of Perovskite Polystyrene Microbeads. University Chemistry, 2025, 40(4): 72-79. doi: 10.12461/PKU.DXHX202405110

    14. [14]

      Pei Li Yuenan Zheng Zhankai Liu An-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 100034-. doi: 10.3866/PKU.WHXB202406012

    15. [15]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    16. [16]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

    17. [17]

      Yinyin Qian Rui Xu . Utilizing VESTA Software in the Context of Material Chemistry: Analyzing Twin Crystal Nanostructures in Indium Antimonide. University Chemistry, 2024, 39(3): 103-107. doi: 10.3866/PKU.DXHX202307051

    18. [18]

      Yadan Luo Hao Zheng Xin Li Fengmin Li Hua Tang Xilin She . 调节O,S共掺杂C3N4中的活性氧生成以促进光催化降解微塑料. Acta Physico-Chimica Sinica, 2025, 41(6): 100052-. doi: 10.1016/j.actphy.2025.100052

    19. [19]

      Jiaxin Su Jiaqi Zhang Shuming Chai Yankun Wang Sibo Wang Yuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-. doi: 10.3866/PKU.WHXB202408012

    20. [20]

      Yujia LITianyu WANGFuxue WANGChongchen WANG . Direct Z-scheme MIL-100(Fe)/BiOBr heterojunctions: Construction and photo-Fenton degradation for sulfamethoxazole. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 481-495. doi: 10.11862/CJIC.20230314

Metrics
  • PDF Downloads(20)
  • Abstract views(1792)
  • HTML views(490)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return